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Abstract
A new description of the universal Whitham hierarchy in terms of a factorization
problem in the Lie group of canonical transformations is provided. This scheme
allows us to give a natural description of dressing transformations, string
equations and additional symmetries for the Whitham hierarchy. We show
how to dress any given solution and prove that any solution of the hierarchy
may be undressed, and therefore comes from a factorization of a canonical
transformation. A particularly important function, related to the τ -function,
appears as a potential of the hierarchy. We introduce a class of string equations
which extends and contains previous classes of string equations considered
by Krichever and by Takasaki and Takebe. The scheme is also applied for
a convenient derivation of additional symmetries. Moreover, new functional
symmetries of the Zakharov extension of the Benney gas equations are given
and the action of additional symmetries over the potential in terms of linear
PDEs is characterized.

PACS number: 02.30.Ik
Mathematics Subject Classification: 58B20

1. Introduction

Dispersionless integrable models, see [11, 14, 32, 33], appear in the analysis of various
problems in physics and applied mathematics from the theory of quantum fields, see [12] and
[2], to the theory of conformal and quasiconformal maps on the complex plane, see [5–10].
The new millennium brought new applications of these models, see [29, 30], in different areas,
as for example integrable deformations of conformal maps and interfacial processes.

The Krichever’s universal Whitham hierarchies, see [11, 12], are the integrable systems
involved in these applications. These hierarchies include as particular cases the dispersionless
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KP, dispersionless-modified KP and dispersionless Toda hierarchies, see [1, 17, 30] and
[8, 24]. The role of twistor or string equations for studying dispersionless integrable models
was emphasized by Takasaki and Takebe in [24–28]. Solutions of these string equations have
attractive mathematical properties as well as interesting physical meaning.

The objective of this paper is to formulate the factorization problem for the zero genus
Whitham hierarchy within the context of Lie groups of symplectic transformations and to
give a natural and general formalism for string equations and additional symmetries. In
particular, we characterize a special class of string equations, related to a Virasoro algebra.
It turns out that this class determines not only the solutions of the algebraic orbits of the
Whitham hierarchy [12] but also the solutions arising in the above-mentioned applications of
dispersionless integrable models [19, 20].

The layout of the paper is as follows. In section 2, we introduce the Lie algebraic splitting
for Hamiltonian vector fields and the corresponding factorization problem for canonical
transformations. Then, in section 3 we show how deformations of the factorization problem of
canonical transformations lead to solutions of the Whitham hierarchy. We remark a particular
system of equations within the hierarchy: the Boyer–Finley–Benney equations, which extend
the Boyer–Finley and the Benney equations, respectively. Here, we also introduce a potential
function of the hierarchy from which all the fields of the hierarchy are gotten by appropriate
derivations. In a forthcoming paper [21], we show that this function is the x-derivative of
−log τ , where τ is the τ -function of the hierarchy. We proof that any solution of the Whitham
hierarchy may be obtained from a factorization problem, i.e., it may be undressed. To conclude
the section, we extend the factorization scheme to get the dressing of any given solution of
the Whitham hierarchy. In section 4, we consider the string equations in the context of the
factorization problem. For that aim we introduce the Orlov–Schulman functions and show
that the factorization problem leads to string equations. Thus, all solutions of the Whitham
hierarchy fulfil certain set of string equations. In [21], we show that any solution of the string
equations is a solution of the Whitham hierarchy. We finish this section by introducing some
particular factorization problems and the corresponding string equations which generalize and
contain as particular cases the string equations of Krichever and of Takasaki–Takebe. Finally,
section 5 is devoted to the study of additional symmetries of the Whitham hierarchy. First, we
derive the additional symmetries from the factorization problem and then characterize its action
over the potential function of the hierarchy. We compute the additional symmetries of the
mentioned Boyer–Finley–Benney system and obtain a set of explicit functional symmetries.
In particular, for the Zakharov extension of the Benney system we get explicit functional
symmetries depending on three arbitrary functions of variable. We conclude by considering
the action of Virasoro type of additional symmetries on our extension of the Krichever and
Takasaki–Takebe string equations and showing that solutions of string equations are invariant
solutions under a Lie algebra of additional symmetries, which contain two set of Virasoro
algebras.

2. The factorization problem

2.1. Lie algebraic setting

We present a splitting which is inspired in [23] and in [15], where it was used for a better
understanding of harmonic maps and chiral models. The factorization problem technique
was applied to the dispersionless KP hierarchy in [7] and is inspired in the dressing method
proposed by Takasi and Takabe in the series of papers [24–28].
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Given the set
{
q(0)

µ

}M
µ=0 ⊂ C̄, q

(0)
0 = ∞, of punctures in the extended complex plane, we

introduce the local parameters p−1
µ where

pµ =
{

p, µ = 0,(
p − q

(0)
i

)−1
, µ = i ∈ S,

and

S := {1, . . . ,M}.
For each set of punctures we consider the set R of rational functions in p with poles at the
punctures, i.e., the functions f = f (p) of the form

f :=
M∑

µ=0

Nµ∑
n=0

aµ
n pn

µ,

where Nµ ∈ N. In this paper, we use Greek letters like µ to denote an index that runs from 0
to M and italic letters like i, when it runs from 1 to M.

For each puncture q(0)
µ we consider the set Lµ = C(pµ) of formal Laurent series in pµ

and the subset L−
µ defined as

L−
µ :=

{
p−1

C[[p−1]], for µ = 0,

C
[[

p − q
(0)
i

]]
, for µ = i ∈ S.

Here, C[[p]] denotes the set of formal power series in p. Finally, we define

L :=
M⊕

µ=0

Lµ, L− :=
M⊕

µ=0

L−
µ .

Given an element (f0, f1, . . . , fM) ∈ L, let f(µ,+) be the polynomial in p−1
µ such that

f̃ −
µ := fµ − f(µ,+) ∈ L−

µ . Then, there exists a unique rational function f ∈ R whose
principal parts at q(0)

µ are given by f(µ,+) (observe the normalization condition at ∞), namely,

f =
M∑

µ=0

f(µ,+).

Moreover, we have a unique splitting of fµ of the form

fµ = f −
µ + f

with

f −
µ := f̃ −

µ −
∑
ν �=µ

f̃ −
ν ∈ L−

µ .

Therefore, we conclude that the following splitting

L = L− ⊕ R (1)

holds.
The above construction can be extended in the following manner. Let us consider, for

i ∈ S, the disc Di containing the point q(0)
i with border the clockwise-oriented circle γi := ∂Di ,

and also the disc D0, centred at 0, which contains all the other discs Di, i = 1, . . . ,M , with
border the counter-clockwise-oriented circle γ0 := ∂D0. Let D := Dc

0 ∪ (⋃M
i=1 Di

)
and

γ := ⋃M
µ=0 γµ, here Dc

0 := C̄\D0 is the complementary set of the disc D0. We will consider
the completion of L as the set of complex functions over �. We complete the rational splitting
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Figure 1. Graphical illustration of the splitting.

by extending L−
µ as those complex functions over γµ which admit analytic extensions to its

interior, and for µ = 0 such that the extension vanishes at ∞. Then, L− = ⊕M
µ=0L−

µ and R
is the set of complex functions on � such that they do have a holomorphic extension to C\D.
In this context, (1) also holds. We refer to figure 1 for a graphical illustration of the rational
splitting and its completion. Now, we shall extend the above splitting to the Lie algebra of
symplectic vector fields. In spite that normally the coordinates (p, x) are real, here we will
consider that they take complex values. This extension does not affect the standard local
symplectic constructions.

The local Hamiltonian vector fields

X = A(p, x)
∂

∂p
+ B(p, x)

∂

∂x
,

are the divergence-free vector fields Ap + Bx = 0, and locally there exists a Hamiltonian
function H such that

A = −∂H

∂x
, B = ∂H

∂p
.

The Poisson bracket in the set F of differentiable functions of p and x is locally given by

{H, H̃ } = ∂H

∂p

∂H̃

∂x
− ∂H

∂x

∂H̃

∂p
,

and the pair h := (F, {·, ·}) is a Lie algebra. The set of inner derivations of g

adH := {H, ·} = ∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
= XH

may be locally identified with the set of Hamiltonian vector fields. In fact, the set of locally
Hamiltonian vector fields constitute a Lie algebra under the Lie bracket given by the Lie
derivative of vector fields, and we have that

[XH ,XH̃ ] = X {H,H̃ },
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so that the mapping H → XH is a Lie algebra homomorphism with kernel given by the
constant functions, i.e., the centre of the Lie algebra of Hamiltonian functions.

We denote by gµ, g−
µ and r, the Lie subalgebras of h such that the corresponding Lie

algebras of Hamiltonian vector fields ad gµ, ad g−
µ and ad r are built up from vector fields with

coefficients in Lµ,L−
µ and R, respectively. Here, we suppose that the coefficients of the vector

fields are complex-valued functions. Let us describe in more detail these Lie algebras:

1. The Lie algebra r. The components A and B of a Hamiltonian vector field

ad H = A
∂

∂p
+ B

∂

∂x
∈ ad r

are A = −Hx and B = Hp with

H =
N0∑
n=0

hn(x)pn +
M∑
i=1


hi0 log

(
p − q

(0)
i

)
+

Ni∑
j=1

hij (x)(
p − q

(0)
i

)j

 ,

and hi0,x = 0.
2. The Lie algebras gµ. The components Aµ and Bµ of a Hamiltonian vector field

ad Hµ = Aµ

∂

∂p
+ Bµ

∂

∂x
∈ ad gµ

are Aµ = −Hµ,x and Bµ = Hµ,p with

Hµ = hµ0 log(pµ) +
∑

n�−∞
hµn(x)p−n

µ , hµ0,x = 0.

3. The Lie algebra g−. The components Aµ and Bν of a vector field

ad Hµ = Aµ

∂

∂p
+ Bµ

∂

∂x
∈ g−

µ,

are Aµ = −Hµ,x and Bµ = Hµ,p with

H0 = h00 log p +
∞∑

n=1

h0n(x)p−n, Hi =
∞∑

n=0

hin(x)
(
p − q

(0)
i

)n
,

with h00,x = 0.

Now, we define the Lie algebras

g :=
M⊕

µ=0

gµ, g− :=
M⊕

µ=0

g−
µ,

and realize that, modulo constants, the splitting (1) in this context is

ad g = ad g− � ad r

which in turn is equivalent to

g = g− � r.

The Lie algebras gi , for i = 1, . . . ,M , have a further splitting into three Lie subalgebras:

g
−
i = g0

i � g1
i � g>

i ,

where

g0
i := {hi0(x)}, g1

i = {hi1(x)(p − q
(0)
i )
}
,

g>
i := {hi2(x)

(
p − q

(0)
i

)2
+ hi3(x)

(
p − q

(0)
i

)3
+ · · · }

and
{
g0

i � g1
i , g

>
i

} ⊂ g>
i . The above splitting induces the following splitting into Lie

subalgebras of divergence-free vector fields

ad g
−
i = ad g0

i � ad g1
i � ad g>

i .
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2.2. Lie group setting

We now extend the previous construction from the context of Lie algebras to the corresponding
Lie groups of canonical transformations. Associated with each Hamiltonian vector field
XH = ad H we have the corresponding Hamilton’s equations ṗ = −Hx, ẋ = Hp, that when
integrated provides us with a flow �H

t , a one-parameter group of symplectic diffeomorphism,
(p(t), x(t)) = �H

t (p0, x0), for given initial conditions (p, x)|t=0 = (p0, x0). The exponential
mapping is just the evaluation at t = 1, i.e. exp XH = �H

t=1. The group of symplectic
diffeomorphism is a smooth regular Lie group with Lie algebra given by the set of Hamiltonian
vector fields [9]. Symplectic diffeormorphism are also known as canonical transformations.

It can be shown [9] that the adjoint action of the group of symplectic diffeomorphism
on its Lie algebra (i.e., the set of Hamiltonian vector fields) is given by the action of the
corresponding induced flow:

Ad exp(sXH )(XH̃ ) = (�H
−s

)∗
XH̃ = T �H

s ◦ XH̃ ◦ �H
−s = X(�H−s )

∗H̃ = XAd exp(sH)H̃ , (2)

where

Ad exp(sH)H̃ := (�H
−s

)∗
H̃ = esad H H̃ =

∞∑
l=0

(sad H)l

l!
H̃ .

That is, modulo constants, the adjoint action of a symplectic diffeomorphism of the form
exp(XH ) acts on the Hamiltonian functions as ead H :

exp(XH )
Ad−→ ead H .

The rational splitting of Lie algebras of Hamiltonian vector fields may be exponentiated to a
Birkhoff-type factorization problem

exp(Xµ) = exp(X−
µ)−1 ◦ exp(X)

with Xµ ∈ ad gµ,X−
µ ∈ ad g−

µ and X ∈ ad r, where we are now dealing with complex vector
fields.

We will consider a particular class of Hamiltonians, namely those of the following form:

Tµ := (1 − δµ0)tµ0 log pµ +
∞∑

n=1+δµ0

tµnp
n
µ. (3)

Given initial canonical transformations �µ, µ = 0, . . . , M , we consider deformations
exp
(
XTµ

)◦�µ which are new canonical transformations that now depend on the deformation
or time parameters

t := (tµn).

We will consider the factorization

exp
(
XTµ

) ◦ �µ = exp(X−
µ)−1 ◦ exp(X) with X−

µ ∈ ad g−
µ and X ∈ ad r. (4)

Equation (4) is fulfilled if the following factorization problem is satisfied

ead Tµead Gµ = e−ad H−
µ ead H with H−

µ ∈ g−
µ and H ∈ r, (5)

where

�µ = exp XGµ
, X−

µ = XH−
µ
, X = XH .

The existence problem for (5) will not be treated here. Anyhow, we will assume that all times
|tµn| and initial conditions are small enough to ensure that such factorization exists (note the
trivial existence for Tµ = 0 and Gµ = 0).
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Observe that given a set of initial conditions {Gµ}Mµ=0 the factorization problem (5)
consists in finding H−

µ , µ = 0, . . . ,M , and H as functions of t. Let us right multiply both
terms of the equality (5) by a term of the form ead G, where G ∈ r. On the left-hand term we
have ead Tµead G̃µ , where the new initial conditions are

G̃µ := C(Gµ,G) := Gµ + G + 1
2 {Gµ,G} + 1

12 ({Gµ, {Gµ,G} + {G, {G,Gµ}}) + · · · , (6)

and C(·, ·) is the Campbell–Hausdorff series in Dynkin form, so that

ead Gµ ead G = ead G̃µ . (7)

A solution of this new factorization problem is given by H̃−
µ = H−

µ and H̃ = C(H,G) ∈ r, so

that H−
µ remains invariant. Let us now left multiply both terms of the equality by ead c−

µ (p), with
c−
µ ∈ c−

µ, c−
µ ⊂ g−

µ being the Abelian subalgebra of Hamiltonians in g−
µ which only depend

on p. As {c−
µ , Tµ} = 0, we have ead c−

µ ead Tµ ead Gµ = ead Tµ ead G̃µ with G̃µ := C(c−
µ ,Gµ).

The solution of the transformed factorization problem (5) is given by H̃−
µ = C(c−

µ ,H−
µ ) and

H̃ = H .
Therefore, once we have a solution (H−

µ ,H) for an initial condition Gµ it is trivial to find

solutions (H̃−
µ, H̃ ) for initial conditions C(c−

µ, C(Gµ, r)). The orbits ead c−
µ ead Gµ ead r describe

the moduli space of solutions to the factorization problem (5). Thus, if we concentrate on the
right action of r, we may take Gµ ∈ g−

µ and the right coset ead Gµ ead r (or the Hamiltonian
C(Gµ, r)) as the point in the moduli.

As we will see the factorization problem (5) for the action of symplectic diffeomorphism on
the set of functions (observables) implies the Whitham hierarchy. Therefore, the factorization
problem (4) for symplectic diffeormorphism is also associated with the Whitham hierarchy.
To get these results we will use a well-known tool in the theory of regular Lie groups: the
right logarithmic derivative as defined in [9], see the appendix. If we have a smooth curve
H : T → C∞(N ), assuming that T is the time manifold with local coordinates given by
t = (tµn) and denoting ∂µm := ∂

∂tµn
, the right logarithmic derivative is

δ exp(XH )(∂µn) =
∫ 1

0

(
�H

−s

)∗
(TtXH (∂µn)) ds = Xδead H (∂µn),

where

δead H (∂µn) :=
∫ 1

0

(
�H

−s

)∗
(∂µnH) ds =

∞∑
l=0

(ad H)l

(l + 1)!
∂µnH̃ .

In particular,

δ exp
(
XTµ

)
(∂µn) = X ∂Tµ(p)

∂tµn

with
∂Tµ(p)

∂tµn

=
{

pn
µ, n �= 0,

log
(
p − q

(0)
i

)
, n = 0, µ = i.

Now, we are ready to take right logarithmic derivatives, using (A.1), of the factorization
problem (4),

δ exp(X−
ν )(∂µn) + δµνAd exp(X−

µ)
(
X ∂Tµ(p)

∂tµn

) = δ exp(X)(∂µn). (8)

Using the corresponding Hamiltonian generators

X−
µ = XH−

µ
, X = XH

we get, modulo constants, the following system:

δ ead H−
ν (∂µn) + δµν ead H−

µ

(
∂Tµ(p)

∂tµn

)
= δ eH (∂µn), (9)

which may be derived directly from (5) by taking right logarithmic derivatives.
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3. Dressing methods for the Whitham hierarchy

In this section, we analyse how the factorization problem (5) is related with the Whitham
hierarchy and its dressing transformations. We first show that (5) leads to the Whitham
hierarchy, defining the Lax functions a zero-curvature form. Then, we construct a potential
function h01 of this hierarchy, and as we shall show in the forthcoming paper [21],
h01 = −(log τ)x in terms of the τ -function of the hierarchy. We also proof that any solution
of the Whitham hierarchy is related to a factorization problem, via an undressing procedure.
Finally, we show how the factorization problem scheme can be extended to generate dressing
transformations of the Whitham hierarchy.

3.1. From the factorization problem to the Whitham hierarchy

We are now ready to proof that (5) is described differentially by the Whitham hierarchy.

Theorem 1. Given a solution of the factorization problem (5),

ead Tµ ead Gµ = e−ad H−
µ ead H , H−

µ ∈ g−
µ, H ∈ r,

then,

1. The Lax functions

zµ := ead H−
µ pµ (10)

are of the form

zµ =




p +
∑∞

l=1 d0lp
−l , µ = 0,

di−1

p − qi

+
∑∞

l=0 dil(p − qi)
l, µ = i ∈ S.

(11)

for some functions qi and dµm defined in terms of the coefficients of H−
µ .

2. The functions

�µn :=
{(

zn
µ

)
(µ,+)

, n > δµ0,

− log(p − qi), n = 0, µ = i ∈ S,
(12)

where (·)(i,+) projects in the span {log(p − qi), (p − qi)
−l}∞l=1 and (·)(0,+) onto the span

of {pl}∞l=0, satisfy the zero-curvature equations

∂�µn

∂tνl

− ∂�νl

∂tµn

+ {�µn,�νl} = 0; (13)

moreover,

�µn = δ ead H (∂µn).

3. The Lax functions zµ are subject to the Whitham hierarchy:

∂zν

∂tµn

= {�µn, zν}. (14)

Proof. We now proceed to show that (9) implies the Whitham hierarchy. In the analysis of
(9) it is convenient to distinguish between the cases µ = i �= 0 and µ = 0.
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1. The case µ = i ∈ S.
We factor ead H−

i = ead Hi0 ead Hi1 ead Hi> with

Hi0 = hi0(x), Hi1 = hi1(x)
(
p − q

(0)
i

)
,

Hi> = hi2(x)
(
p − q

(0)
i

)2
+ hi3(x)

(
p − q

(0)
i

)3
+ · · · .

Now, we study the cases m > 0 and m = 0:

(a) m > 0
We get

δ ead Hi0(∂in) + ead Hi0(δ ead Hi1(∂in) + ead Hi1(δ ead Hi>(∂in))) + zn
i = δ ead H (∂in). (15)

It can be proved that

δ ead Hi0(∂in) = ∂inhi0,

δ ead Hi1(∂in) = ∂inXi

Xi,x

(
p − q

(0)
i

)
with

∫ Xi

x

dx

hi1(x)
= 1,

δ ead Hi>(∂in)= ∂inhi2
(
p − q

(0)
i

)2
+(∂inhi3 +hi2∂inhi2,x −hi2,x∂inhi2)

(
p−q

(0)
i

)3
+ · · ·,

ead Hi0
(
f (x)

(
p − q

(0)
i

)n) = f (x)
(
p − q

(0)
i − hi0,x

)n
,

ead Hi1
(
f (x)

(
p − q

(0)
i

)n) = f |x=Xi

(Xi,x)n

(
p − q

(0)
i

)n
and in particular ead Hi1x = Xi

ead Hi>

(
1(

p − q
(0)
i

)n
)

=
(

1

p − q
(0)
i

+ hi2,x + (hi3,x + hi2hi2,xx)
(
p − q

(0)
i

)
+ · · ·

)n

.

Therefore, defining

qi := q
(0)
i + hi0,x,

we deduce that (15) can be written as

∂inhi0 +
∂inXi

Xi,x

(p − qi) +
(∂inhi2)|x=Xi

(Xi,x)2
(p − qi)

2 + · · · + zn
i = δ ead H (∂in) (16)

with

zi := ead H−
i

(
1

p − q
(0)
i

)
= di−1

p − qi

+
∞∑
l=0

dil(p − qi)
l,

where, for example,

di−1 := Xi,x, di0 := hi2,x |x=Xi
, di1 :=

(hi3,x + hi2hi2,xx)
∣∣
x=Xi

Xi,x

.

We have assumed that Tµ and Gµ are small enough to ensure that the function
qi = Xi,xq

(0)
i + hi0,x belongs to the interior of U

q
(0)
i

(so that Xi,x ≈ 1 and hi0,x ≈ 0).
Thus, (16) implies

r � δ ead H (∂im) = (zm
i

)
(i,+)

=: �im.

For example,

�i1 = di−1

p − qi

, �i2 = d2
i−1

(p − qi)2
+

2di−1di0

p − qi

.

(b) m = 0
In this case, we have

∂i0hi0 +
∂i0Xi

Xi,x

(p − qi) +
(∂i0hi2)|x=Xi

(Xi,x)2
(p − qi)

2 + · · · + log zi = δ ead H (∂i0). (17)
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Note that

log zi := −log(p − qi) + log

(
Xi,x + hi2,x |x=Xi

(p − qi)

+
(hi3,x + hi2hi2,x)|x=Xi

Xi,x

(p − qi)
2 + · · ·

)
,

and hence

r � δ ead H (∂i,0) = (log zi)(i,+) =: �i0

with

�i0 = −log(p − qi).

2. µ = 0
In this case, we have

δ ead H−
0 (∂0n) + zn

0 = δ ead H (∂0n), (18)

with

ead H−
0 = ead H0>ead (t00 log p), H0> = h01p

−1 + h02p
−2 + · · ·,

where t00, which is not a time parameter, does not depend on x. Note that

z0 = ead H−
0 (p) = p +

∞∑
l=1

d0lp
−l

where, for example,

d01 := −h01,x , d02 := −h02,x .

An analysis of equation (18) allows us to write

r � δ ead H (∂0n) = (zn
0

)
(0,+)

=: �0n,

for example

�02 = p2 + 2d01.

From

�µn = δ ead H (∂µn)

and (A.2), we deduce the zero-curvature conditions (13).
3. From (A.3), we have

∂zν

∂tµn

= {δ ead H−
ν (∂µn), zν}

that recalling (9) reads

∂zν

∂tµn

= {δ ead H (∂µn), zν}

and we deduce (14). �

As a byproduct of the above proof we have the following:

Proposition 1. Given solutions H−
µ and H of the factorization problem (5) such that

ead H−
µ =

{
ead (

∑∞
l=1 h0l (x)p−l ) ead (t00 log p), µ = 0,

ead hi0(x) ead hi1(x)(p−q
(0)
i ) ead (

∑∞
l=2 hil (x)(p−q

(0)
i )l ), µ = i ∈ S,
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then

t00 = −
M∑
i=1

ti0, (19)

and the coefficients of the Lax functions satisfy

qi = q
(0)
i + hi0,x,

∫ Xi

x

dx

hi1(x)
= 1,

di−1 = Xi,x,

dil = (hil+2,x + fil(hil+1, . . . , hi2))|x=Xi
X−l

i,x, l � 0

d0l = −h0l,x + f0l (h0l−1, . . . , h01),

where fµl are differential polynomials.

Proof. We only need to prove (19). We will consider the equations

δ ead H0>(∂µn) +
∂t00

∂tµn

log z0 + δµ0z
n
0 = δ ead H (∂µn),

δ ead H−
i (∂µn) + δµi

(
(1 − δn0)z

n
i + δn0 log zi

) = δ ead H (∂µn), i ∈ S,

(20)

which are derived from (5) by taking right logarithmic derivatives.
We take the p-derivative of (20) to get

d

dp
[δ eadH0>(∂µn)] +

(
∂t00

∂t0n

1

z0
+ nδµ0z

n−1
0

)
dz0

dp
= d

dp
[δ eadH (∂µn)],

d

dp
[δ eadH−

i (∂µn)] + δµi

(
n(1 − δn0)z

n−1
i + δn0

1

zi

)
dzi

dp
= d

dp
[δ eadH (∂µn)], i ∈ S.

(21)

Now,
d

dp
[δ eadH (∂µn)]

is analytic in C̄\D and therefore

0 =
∮

γ

d

dp
[δ eadH (∂µn)] dp =

M∑
µ=0

∮
γµ

d

dp
[δ eadH (∂µn)] dp

but from (21) we deduce∮
γ0

d

dp
[δ eadH (∂µn)] dp =

∮
γ0

d

dp
[δ eadH0>(∂µn)]dp +

∮
�0

(
∂t00

∂tµn

1

z0
+ nδµ0z

n−1
0

)
dz0,

∮
γi

d

dp
[δ eadH (∂µn)] dp =

∮
γi

d

dp
[δ eadH−

i (∂µn)]dp + δµi

∮
�i

(
n(1 − δn0)z

n−1
i + δn0

1

zi

)
dzi,

i ∈ S,

where we have changed of variables zµ = zµ(p) with �µ = zµ(γµ). Now, recalling that
d

dp
[δ eadH0>(∂µn)] = O(p−2), p → ∞,

d

dp
[δ eadH−

i (∂µn)] is holomorphic at Di for i ∈ S

we get
∂t00

∂tµn

= −(1 − δµ0)δn0. �
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3.2. Some dispersionless systems within the Whitham hierarchy: the
Boyer–Finley–Benney system

We consider the equations involving the times {ti0 =: xi, tj1 =: yj , t02 =: t}i,j=∈S. Now, we
write

�i0 = −log(p − qi), �i1 = vi

p − qi

and �02 = p2 − 2w,

with

vi := di−1 and w := −d01.

and the corresponding Whitham equations (13) are

∂qi

∂yj

= ∂vj

∂xj

= ∂

∂x

(
vj

qi − qj

)
, (22)

∂qi

∂yi

= ∂vi

∂xi

, (23)

∂qi

∂xj

= −∂ log(qi − qj )

∂x
, (24)

∂qi

∂xi

= −∂ log(vi)

∂x
, (25)

∂w

∂xi

= ∂qi

∂x
, (26)

∂qi

∂t
= ∂

(
q2

i − 2w
)

∂x
, (27)

∂vi

∂t
= 2

∂(qivi)

∂x
, (28)

∂w

∂yi

= ∂vi

∂x
, (29)

where i �= j .
Observe that equations (23) and (25) imply

∂2 e�i

∂x2
i

+
∂2�i

∂x∂yi

= 0, �i := log vi, (30)

which is the Boyer–Finley equation, which appears in general relativity [4], or dispersionless
Toda equation for �i , and that equations (27)–(29) form the Benney generalized gas system
[33].

Also note that from (24), (22), (26) and (29) we deduce the local existence of a potential
function W such that

qi = ∂W

∂xi

, vi = ∂W

∂yi

, w = ∂W

∂x
.

Therefore, this system of equations may be simplified as follows:

Wxiyj
−
(

Wyj

Wxi
− Wxj

)
x

= 0, i �= j, (31)

Wxixj
+
(

log
(
Wxi

− Wxj

))
x

= 0, i �= j, (32)
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Wxixi
+
(

log
(
Wyi

))
x

= 0, (33)

Wxit +
(
2Wx − W 2

xi

)
x

= 0, (34)

Wyit − 2
(
Wxi

Wyi

)
x

= 0. (35)

We stress again that (33) is a form of the Boyer–Finley equation and that (34) and (35) is
a form of Benney system. Therefore, the whole system may be understood as an extension of
these equations. This fact has induced us to propose the name of Boyer–Finley–Benney for
the mentioned system.

3.3. On the existence of a potential for the Whitham hierarchy

In the previous section we have seen that the Boyer–Finley–Benney equations can be
reformulated in terms of a single field. We will now show that this is a general fact for
the Whitham hierarchy, being the potential the coefficient

h01 =: −(log τ)x,

as we will see in a forthcoming paper this is essentially due to the existence of a τ -function
for the Whitham hierarchy [21].

The Whitham hierarchy is determined in terms of the functions zµ or its coefficients dµn

as given in (11). In fact, as was stated in proposition 1 the coefficients dµn are determined in
terms of hµm and its x-derivatives. We will consider inversion formulae for (11)

p = z0 + σ01z
−1
0 + σ02z

−2
0 + · · · , p = qi + σi1z

−1
i + σi2z

−2
i + · · · , (36)

where the inversion coefficients σµn are polynomials in dµm, for example,

σ01 = −d01, σ02 = −d02, σ03 = −(d03 + d2
01

)
, (37)

σi1 = di−1, σi2 = di0di−1, σi3 = di−1di0 + d2
i−1di1. (38)

In the following we will use the geometry illustrated in figure 1. We first show the
following:

Theorem 2. The following identity holds:

[δ eadH0>(∂µn)](p) = − 1

2π i

∮
�µ

log

(
1 − p(zµ)

p

)
nzn−1

µ dzµ + (1 − δµ0)δn0

(
log

(
1 − qµ

p

)

− 1

2π i

∮
�0

log

(
1 − p(z0)

p

)
z−1

0 dz0

)
, p ∈ C̄\D0. (39)

In the above formula we must understand that when µ = 0 the second term of the rhs vanishes
even if q0 = ∞.

Proof. We first introduce

δ eadH0>(∂µn) =: �µn = �µn,1p
−1 + �µn,2p

−2 + · · ·
and observe that

1

2π i

∮
γ0

pm d�µn

dp
(p) dp = −m�µn,m, m = 1, 2, . . . . (40)

Now we consider (20) with the explicit form for t00

δ eadH0>(∂µn) + δµ0z
n
0 − (1 − δµ0)δn0 log z0 = δ eadH (∂µn),

δ eadH−
i (∂µn) + δµi

(
(1 − δn0)z

n
i + δn0 log zi

) = δ eadH (∂µn), i ∈ S
(41)
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which are derived from (5) by taking right logarithmic derivatives. We act with pm d
dp

on (41)
to get

pm d

dp
[δ eadH0>(∂µn)] + pm

(
nδµ0z

n−1
0 − (1 − δµ0)δn0z

−1
0

)dz0

dp
= pm d

dp
[δ eadH (∂µn)],

pm d

dp
[δ eadH−

i (∂µn)] + δµi

(
nzn−1

i + δn0z
−1
i

)
)
dzi

dp
= pm d

dp
[δ eadH (∂µn)].

(42)

We observe that

pm dr

dp
⊂ r

and therefore

0 =
∮

γ

pm d

dp
[δ eadH (∂µn)]p =

M∑
µ=0

∮
γµ

pm d

dp
[δ eadH (∂µn)].

From (42) we derive

0 =
∮

γ0

pm d

dp
[δ eadH0>(∂µn)]dp +

∮
�0

p(z0)
m
(
nδµ0z

n−1
0 − (1 − δµ0)δn0z

−1
0

)
dz0

+
M∑
i=1

(∮
γi

pm d

dp
[δ eadH−

i (∂µn)]dp + δµi

∮
�i

p(zi)
m
(
nzn−1

i + δn0z
−1
i

)
dzi

)
.

(43)

Therefore, recalling (40) and

pm dg
−
i

dp
⊂ g

−
i ,

we may write (43) as follows:

m�µn,m = 1

2π i

∮
�µ

p(zµ)mnzn−1
µ dzµ + δn0

1

2π i

(∮
�µ

p(zµ)m

zµ

dzµ −
∮

�0

p(z0)
m

z0
dz0

)
.

and (36) implies

m�µn,m = 1

2π i

∮
�µ

p(zµ)mnzn−1
µ dzµ + (1 − δµ0)δn0

(
qm

µ − 1

2π i

∮
�0

p(z0)
m

z0
dz0

)
. (44)

where it must be understood that when µ = 0 the second term of the rhs vanishes. Hence, as

log

(
1 − q

p

)
= −

∞∑
m=1

1

m

qm

pm
,

∣∣∣∣ qp
∣∣∣∣ > 1,

we immediately derive (39). �

As a byproduct of the above proof, we get

Corollary 1. The following relation

σµn = − 1

n + (1 − δµ0)δn0

∂(log τ)x

∂tµn

, σ01 = −(log τ)xx (45)

holds.



On the Whitham hierarchy: dressing scheme, string equations and additional symmetries 2363

Proof. We prove the theorem in the following steps:

(i) If we put m = 1 in (44), we get

∂h01

∂tµn

= 1

2π i

∮
�µ

(
nzn−1

µ + (1 − δµ0)δn0z
−1
µ

)
p(zµ) dzµ, (46)

where we have taken into account that∮
�0

p(z0)z
−1
0 dz0 = 0.

(ii) We use the inversion formula (36) in (46) and get

∂h01

∂tµn

=
∑

l=−1,0,1,...

1

2π i

∮
�µ

(
nzn−1

µ + (1 − δµ0)δn0z
−1
µ

)
σµl dzµ, (47)

and the desired result follows at once.

(iii) From the identity

δ eadH−
0

(
∂

∂x

)
= −eadH−

0 (p) − p = −z0 − p

we get

∂h01

∂x
= 1

2π i

∮
γ0

p
dz0

p
dp = 1

2π i

∮
�0

p(z0) dz0 = σ01.

�

Observe that all the coefficients σµn are determined in terms of h01 and its time derivatives.
Moreover, as all the coefficients dµn are rational functions of the σµm, for example,

d01 = −σ01, d02 = −σ02, d03 = −σ03 + σ 2
01,

di−1 = σi1, di0 = σi2
σi1

, di1 = σi3σi1−σ 2
i2

σ 3
i1

,

all the Lax functions may be written in terms of h01 and its t-derivatives.
Finally, we may write the contents of theorem 2 as follows:

Corollary 2. The following identity holds:

[δ eadH0>(∂µn)](p) = − 1

2π i

∮
γµ

log

(
1 − q

p

)
dzn

µ

dq
dq + (1 − δµ0)δn0

(
log

(
1 − qµ

p

)

− 1

2π i

∮
γ0

log

(
1 − q

p

)
d log(z0(q))

dq
dq

)
, p ∈ C̄\D0.

For example, if we exclude the times ti0 from the discussion we get the suggesting formula

[δ eadH0>(∂µn)](p) = − 1

2π i

∮
γµ

log

(
1 − q

p

)
dzn

µ

dq
dq.
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3.4. Undressing solutions of the Whitham hierarchy

In section 3.1 we have proved that the differential version of the factorization problem (5)
may be described in terms of the Whitham hierarchy. Here, we show the equivalence between
both descriptions by proving that any solution of the Whitham hierarchy may be formally
undressed, i.e., it comes from a convenient factorization problem.

Theorem 3. Any set of Lax functions zµ and zero-curvature functions �µm as in (11)–(12)
satisfying the Whitham hierarchy (14) may be obtained by a dressing procedure based on the
factorization problem (5) as described in theorem 1.

Proof. If we take as given the complex numbers q
(0)
i and the functions qi, dµn from

proposition 1 we may determine the coefficients Xi and hµn up to x-independent terms.
This last fact is clear from the construction of zµ as a dressing of pµ. Indeed, we have that
eadH−

µ pµ := eadH̃−
µ eadfµ(p)pµ = eadH̃−

µ pµ, where fµ ∈ c−
µ .

We now undress, using the canonical transformation e−adH̃−
µ , the Lax functions and zero-

curvature forms: zµ → pµ and �µn → �0
µn with

�0
µn = δ e−ad H̃−

µ (∂µn) + e−ad H̃−
µ �µn. (48)

Then,

0 = ∂µnpν = {�0
µn, pν

}
(49)

and
∂�0

µn

∂tνl

− ∂�0
νl

∂tµn

+
{
�0

µn,�
0
νl

} = 0. (50)

From (49) we deduce that

�0
µn,x = 0 (51)

so that (50) implies

∂�0
µn

∂tνl

= ∂�0
νl

∂tµn

. (52)

Moreover, for n > 0 we have

�µn − zn
µ ∈ g−

µ .

Thus, e−ad H−
µ �µn − pn

µ ∈ g−
µ and (48) and (51) allow us to deduce

�0
µn − pn

µ ∈ c−
µ ⊂ g−

µ, �0
i0 + log

(
p − q

(0)
i

) ∈ c
−
i ⊂ g

−
i .

Hence, recalling (52) we get

�0
µn = ∂(Tµ + fµ)

∂tµn

, for some fµ ∈ c−
µ,

and we can write

δ e−ad fµ(∂µm) + e−ad fµ�0
µm = δ ead Tµ(∂µm).

Therefore, if

H−
µ = C(H̃−

µ, fµ) ∈ g−
µ , i.e., ead H−

µ = eadH̃−
µ ead fµ,

where C was introduced in (6), we have

�µn = δ ead H−
µ (∂µn) + ead H−

µ δ ead Tµ(∂µn) = δ(ead H−
µ ead Tµ)(∂µn), zµ = ead H−

µ eadTµpµ.

(53)
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Finally, from definition the zero-curvature connection �µn ∈ r and there locally exists
H ∈ r such that

�µn = δ eadH (∂µn), (54)

so that (53) and (54) lead us to the factorization (5) for some Gµ. �

3.5. Dressing transformations for the Whitham hierarchy

In this section, we show how to dress any solution of the Whitham hierarchy by using
the factorization problem technique. Let z(1) be Lax functions as described in (11), with
coefficients denoted by q

(1)
i and d(1)

µm, and �(1)
µm, as defined in (12), so that the Whitham

hierarchy (14) is satisfied:

∂z(1)
ν

∂tµn

= {�(1)
µn, z

(1)
ν

}
.

Let us assume that q
(1)
i ∈ Di so that there exists a Hamiltonian H(1) ∈ r with

�(1)
µn = δ eadH(1)

(∂µn).

Given new initial conditions Gµ,µ = 0, 1, . . . ,M , the factorization problem

eadH(1)

eadGµ = e−adH−
µ eadH(2)

, H−
µ ∈ g−

µ, H (2) ∈ r, (55)

will lead to a dressing procedure of the solution z(1)
µ of the Whitham hierarchy as described

below.

Proposition 2. The new Lax functions

z(2)
µ = eadH−

µ z(1)
µ

are of the form (11) with new coefficients q
(2)
i and d

(2)
µl determined by H−

µ . The functions

�(2)
µm =



((

z(2)
µ

)n)
(µ,+)

, n > δµ0,

−log
(
p − q

(2)
i

)
, n = 0, µ = i = 1, . . . ,M,

(in this case (·)(i,+) projects in the span {log(p − q
(2)
i ), (p − q

(2)
i )−n}∞n=1 and (·)(0,+) onto the

span of {pm}∞m=0) have zero curvature. Moreover, the Whitham hierarchy

∂z(2)
ν

∂tµm

= {�(2)
µm, z(2)

ν

}
is satisfied.

Proof. We take right logarithmic derivative of (55) to obtain

δ eadH−
µ (∂νn) + eadH−

µ

(
�(1)

νn

) = δ eadH(2)

(∂νn) =: �(2)
νn . (56)

As �(1)
νn is holomorphic in Dµ, for all µ �= ν, we deduce that �(2)

νn is also holomorphic in
Dµ,∀µ �= ν. When µ = ν, we have a singular behaviour at p = q(1)

ν and we obtain �(2)
νn with

the same structure as in (57). If we write the factor eadH−
µ as in proposition 1 and Xi is defined

by ∫ Xi

x

dx

hi1(x)
= 1,
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we get, for example, the following coefficients of z(2)
µ :

q
(2)
i = q

(1)
i

∣∣
x=Xi

+ hi0, d
(2)
i−1 = d

(1)
i−1

∣∣
x=Xi

Xi,x,

d
(2)
i0 = (d(1)

i0 + hi2,xd
(1)
i−1 + 2hi2d

(1)
i−1,x

)∣∣
x=Xi

, d
(2)
01 = d

(1)
01 − h01,x .

Moreover, the analysis of (56) leads to the proof of all the other properties. For example, from
�(2)

µn = δ eadH(2)

(∂µn) we deduce the zero-curvature condition for
{
�(2)

µn

}
. �

Now, we introduce

H(0) := T (p) ∈ r, T :=
M∑

µ=0

Tµ(p)

for which

�(0)
µn := δ eadH(0)

(∂µm) =




pn, µ = 0,

−log
(
p − q

(0)
i

)
, µ = i, n = 0,

1(
p − q

(0)
i

)m , µ = i, n � 1,

(57)

for this reason we say that eadH(0)

is a vacuum solution of the Whitham hierarchy. Indeed, its
dressing

ead H(0)

ead Gµ = e−ad H̃−
µ ead H(1)

, H̃−
µ ∈ g−

µ, H (1) ∈ r,

giving H(1) and a new solution
{
�(1)

µn

}
of the Whitham hierarchy, is just the factorization

problem (5) when we replace

ead H̃−
µ ead(

∑
ν �=µ tν ) = ead H−

µ , H−
µ ∈ g−

µ .

4. String equations in the Whitham hierarchy

In this section, we study the formulation of the Whitham hierarchy in terms of twistor or string
equations and the relation of this formulation with the dressing method described above.
We first introduce the Orlov–Schulman operators for the Whitham hierarchy in terms of the
factorization problem and then obtain the string equation formulation as a consequence of the
factorization problem. In the forthcoming paper [21], we will show that, in fact, the string
equations give all solutions of the Whitham hierarchy. Then, string equations and factorization
problem are equivalent tools to formulate the Whitham hierarchy. Finally, we introduce a very
special class of string equation whose construction is based on centreless Virasoro algebra
within the Hamiltonian functions, and therefore we refer to this as the Virasoro class of string
equations.

4.1. Lax and Orlov–Schulman functions of the Whitham hierarchy

The Lax functions (10) may be written as

zµ = ead H−
µ ead Tµpµ, µ = 0, 1, . . . ,M.

Observe that if we define (pµ(p), xµ(x, p)) by

(pµ, xµ) :=



(p, x), µ = 0,((
p − q

(0)
i

)−1
,−x

(
p − q

(0)
i

)2)
, µ = i ∈ S,

(58)
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we have

{pµ, xµ} = 1.

In terms of xµ the Orlov–Schulman function mµ is defined as follows:

mµ := ead H−
µ ead Tµxµ, (59)

so that it is canonically conjugated to zµ, i.e.,

{zµ,mµ} = 1.

Note that the quasi-classical Lax equations also hold for the Orlov–Schulman functions:

∂mν

∂tµn

= {�µn,mν}. (60)

We now give a closer look to these functions.

Proposition 3. The Orlov–Schulman functions have the form

mµ =
∞∑

n=1

ntµnz
n−1
µ +

tµ0

zµ

+
∑
n�2

vµnz
−n
µ , where t01 := x (61)

and

vµn+1 =



−Xi, µ = i = 1, . . . ,M, n = 0,

−(nhin + gin(hin−1, . . . , hi2))|x=Xi
, µ = i = 1, . . . , M, n > 0,

−(nh0n + g0n(h0n−1, . . . , h01)), µ = 0, n � 0,

gµn being differential polynomials.

Proof. From (59) we deduce that

mµ = ead H−
µ

(
xµ +

∂Tµ

∂pµ

)
,

so that

mµ = ead H−
µ xµ + (1 − δµ0)tµ0z

−1
µ +

∞∑
n=1+δµ0

ntµnz
n−1
µ .

Now, we evaluate

ead H−
i xi = −

(
Xi +

∞∑
n=2

(nhin + g̃in(hin−1, . . . , hi2))|x=Xi

(
p − qi

Xi,x

)n−1
)

z−2
i ,

(62)

eadH−
0 x = x + t00p

−1 −
∞∑

n=1

(nh0n + g̃0n(h0n−1, . . . , h01))p
−n−1,

where g̃µn are differential polynomials, but as

p − qi

Xi,x

= z−1
i + hi1|x=Xi

z−2
i + O

(
z−3
i

)
, p−1 = z−1

0 + h′
01z

−3
0 + O

(
z−4

0

)
we get (61). �

Observe that the first coefficients of mµ are

vi2 = −Xi, vi3 = −2hi,2|x=Xi
, v02 = −h01 v03 = −2h02.



2368 M Mañas et al

4.2. The factorization problem and strings equations

Let us define new canonical pairs (ẑµ, m̂µ) and (P̂ µ, Q̂µ) given by

ẑµ := ead H−
µ ead Tµp, m̂µ := ead H−

µ ead Tµx,
(63)

P̂ µ := ead Gµp, Q̂µ := ead Gµx.

Observe that

zµ = pµ(ẑµ), mµ = xµ(m̂µ, ẑµ),

where the functions are defined in (58).
Now, we are ready to give a first version of the string or twistor equations for the Whitham

hierarchy:

Proposition 4. For any given solution of the factorization problem (5) with associated
canonical pairs (ẑµ, m̂µ), (P̂ µ, Q̂µ), as defined in (63), the following string equations hold:

P̂ ν(ẑν, m̂ν) = P̂ µ(ẑµ, m̂µ) ∈ r, Q̂ν(ẑν, m̂ν) = Q̂µ(ẑµ, m̂µ) ∈ r. (64)

Proof. The factorization (5) implies

P̂ µ(ẑµ, m̂µ) = ead H−
µ ead Tµ ead Gµp = ead Hp = �,

(65)
Q̂µ(ẑµ, m̂µ) = ead H−

µ ead Tµ ead Gµx = ead Hx = �.

Note that

φ̂µ(p, x) := (P̂ µ(p, x), Q̂µ(p, x)) (66)

is a canonical transformation, i.e.,

{P̂ µ, Q̂µ} = 1,

that together with (65) ensures that

φ̂µ(ẑµ, m̂µ) = φ̂ν(ẑν, m̂ν) = (�,�), (67)

and (64) follows. �

The string equations (67) have an interesting interpretation in terms of transition functions
between different canonical pairs

(ẑµ, m̂µ) = φ̂µν(ẑν, m̂ν), φ̂µν := φ̂−1
µ ◦ φ̂ν . (68)

Now, we define the canonical transformation

ψµ(p, x) := (pµ(p), xµ(p, x))

in terms of which the associated solutions of the Whitham hierarchy are

(zµ,mµ) = ψµ(ẑµ, m̂µ).

We also introduce

φµ = (Pµ,Qµ) := φ̂µ ◦ ψ−1
µ , ψ−1

µ = (πµ, θµ) =
{(

p−1 + q
(0)
i ,−p2x

)
, µ = i ∈ S,

(p, x), µ = 0,

so that

Pµ := P̂ µ(πµ(p, x), θµ(p, x)), Qµ := Q̂µ(πµ(p, x), θµ(p, x)) (69)

and

{Pµ,Qµ} = 1.
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Observe that this definition is equivalent to

Pµ(pµ, xµ) = P̂ µ(p, x), Qµ(pµ, xµ) = Q̂µ(p, x).

Then, the connection among the different Lax and Orlov–Schulman functions is given by

(zµ,mµ) = φµν(zν,mν), φµν := ψµ ◦ φ̂µν ◦ ψ−1
ν = φ−1

µ ◦ φν.

Therefore,

φµ(zµ,mµ) = φν(zν,mν) = (�,�)

and

Proposition 5. Given a solution of (5) and functions (Pµ,Qµ) as defined in (69), the string
equations

Pν(zν,mν) = Pµ(zµ,mµ) ∈ r, Qν(zν,mν) = Qµ(zµ,mµ) ∈ r, (70)

hold ∀µ, ν = 0, 1, . . . , M .

Note that new initial conditions G̃µ of the form

ead G̃µ = ead Gead Gµ or G̃µ = C(G,Gµ),

lead to

P̃µ = P(Pµ,Qµ), Q̃µ = Q(Pµ,Qµ).

Thus, the corresponding string equations are constructed in terms of the initial non-tilded ones.

4.3. A special class of string equations related to a centreless Virasoro algebra

Consider the Hamiltonian

G(0)
µ = x

ξ̂ ′
µ(p)

, (71)

which generate the canonical transformation

(p, x) → (f̂ µ(p), x/f̂ ′
µ(p)), f̂ µ := ξ̂−1

µ (1 + ξ̂µ(p)).

Observe that these Hamiltonians close a Lie subalgebra vir := {xf (p), f : C → C} as
{xf (p), xg(p)} = x(f ′(p)g(p) − f (p)g′(p)) ⊂ vir. In fact, vir is a centreless Virasoro
algebra with generators

ln := xpn−1 (72)

satisfying

{ln, lm} = (n − m)ln+m.

The functions ξ̂µ, f̂ µ corresponding to the Virasoro generators (72) are

ξ̂µ =



p2−n

2 − n
, n �= 2,

log p, n = 2,

f̂ µ =




(2 − n)

(
1 +

p2−n

2 − n

) 1
2−n

, n �= 2,

ep, n = 2.

We will also use the harmonic Hamiltonian

R := 1
2 (p2 + x2)

which generates the canonical transformation

(p, x) → (−x, p).
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Let us consider a splitting S = I ∪ J, I ∩ J = ∅, and define the initial conditions

ead Gµ :=
{

ead G
(0)
i ead R, i ∈ I,

ead G(0)
µ , µ ∈ J ∪ {0}, (73)

in terms of G(0)
µ as defined in (71). It is easy to realize that

(P̂ 0, Q̂0) =
(

f̂ 0(p),
x

f̂ ′
0(p)

)
,

(P̂ i , Q̂i) =




(
− x

f̂ ′
i (p)

, f̂ i(p)

)
, i ∈ I,

(
f̂ i(p),

x

f̂ ′
i (p)

)
, i ∈ J,

(74)

and the corresponding string equations are

f̂ 0(ẑ0) = − m̂i

f̂ ′
i (ẑi )

∈ r, f̂ i(ẑi ) = m̂0

f̂ ′
0(ẑ0)

∈ r, i ∈ I,

f̂ 0(ẑ0) = f̂ i (ẑi) ∈ r,
m̂i

f̂ ′
i (ẑ0)

= m̂0

f̂ ′
0(ẑ0)

∈ r, i ∈ J.

(75)

Taking into account the invariance described in (7) we deduce that the string
equations (75) also appear for the following set of initial conditions:

ead Gµ :=
{

ead G
(0)
i , i ∈ I,

ead G(0)
µ e−ad R, µ ∈ J ∪ {0}, (76)

where now

(P̂ 0, Q̂0) =
(

x

f̂ ′
0(p)

,−f̂ 0(p)

)
,

(P̂ i , Q̂i) =




(
f̂ i(p),

x

f̂ ′
i (p)

)
, i ∈ I,

(
x

f̂ ′
i (p)

,−f̂ i(p)

)
, i ∈ J.

(77)

We introduce the functions fµ subject to

fµ(pµ) = f̂ µ(p) ⇒



f0(p) = f̂ 0(p), µ = 0

fi(p) = f̂ i

(
1

p
+ q

(0)
i

)
, µ = i ∈ S

so that

(P0,Q0) =
(

− x

f ′
0(p)

, f0(p)

)
,

(Pi,Qi) =




(
fi(p),− x

f ′
i (p)

)
, i ∈ I,(

− x

f ′
i (p)

, fi(p)

)
, i ∈ J.
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Therefore, we get the string equations

f0(z0) = − mi

f ′
i (zi)

∈ r, fi(zi) = m0

f ′
0(z0)

∈ r, i ∈ I,

(78)
f0(z0) = fi(zi) ∈ r,

mi

f ′
i (z0)

= m0

f ′
0(z0)

∈ r, i ∈ J.

These string equations reduce to Krichever type of string equations considered in [12] for
J = S and to the Takasaki–Takebe type [28] for J = ∅.

5. Additional symmetries for the Whitham hierarchy

This section is devoted to the analysis of the additional or master symmetries of the Whitham
hierarchy. For that aim we characterize the additional symmetries in terms of deformations
of the factorization problem (5). We then compute some explicit examples of additional
symmetries leading to functional symmetries of the generalized Benney gas equations. Finally,
we study its action on Virasoro string equations.

5.1. Deformation of the factorization problem and additional symmetries

The treatment of functional symmetries of dispersionless hierarchies as additional symmetries
was first given in [18] for the dispersionless KP hierarchy. Then, its formulation as a
deformation of a factorization problem for the rth dispersionless Toda hierarchy was considered
in [16].

In this section, we allow each initial condition Hamiltonian Gµ to depend on an external
parameter s

Gµ := Gµ(s).

Then, the factorization problem (5) also depends on s

ead Tµead Gµ(s) = e−ad H−
µ (s)ead H(s) with H−

µ (s) ∈ g−
µ and H(s) ∈ r. (79)

Thus, we deduce that

Theorem 4. Additional symmetries of the Whitham hierarchy are characterized by functions
Fµ(zµ,mµ) as follows:

∂zν

∂s
= − ∂Fν

∂mν

+
M∑

µ=0

{(Fµ(zµ,mµ))(µ,+), zν},

∂mν

∂s
= −∂Fν

∂zν

+
M∑

µ=0

{(Fµ(zµ,mµ))(µ,+), mν}.

Proof. Taking the right logarithmic derivative of (79) with respect to s we get

δ ead H−
µ

(
∂

∂s

)
+ Fµ(zµ,mµ) = δ ead H

(
∂

∂s

)
, (80)

where

Fµ(zµ,mµ) = F̂ µ(ẑµ, m̂µ), F̂µ := δ ead Gµ

(
∂

∂s

)
.

Observe that from the splitting

Fµ = F−
µ + F, F :=

M∑
ν=0

F(ν,+)
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with

F−
µ ∈ g−

µ, F ∈ r,

and from (80) we get that

δ ead H−
µ

(
∂

∂s

)
= −F−

µ = F − Fµ,

δ ead H

(
∂

∂s

)
= F.

(81)

Therefore, from

∂zµ

∂s
=
{
δ ead H−

µ

(
∂

∂s

)
, zµ

}
,

∂mµ

∂s
=
{
δ ead H−

µ

(
∂

∂s

)
,mµ

}

we get the desired result. �

An important reduction is given by tµn = 0 for n > Nµ. If we assume that

Fµ(zµ,mµ) = cµ log zµ +
∑
i,j∈Z

cµ,ij z
i
µmj

µ, (82)

and

mµ =
Nµ∑
n=1

ntµnz
n−1
µ +

tµ0

zµ

+
∑
n�2

vµnz
−n
µ , (83)

imposing Fµ(zµ,mµ) to have no terms proportional to zn
µ for n > Nµ, we ensure that the

constraints are preserve. We request this for each of the products zi
µm

j
µ:

zi
µmj

µ = zi
µ

(
NµtµNµ

z
Nµ−1
µ + · · · + tµ1 + tµ0z

−1
µ + vµ2z

−2
µ + vµ3z

−3
µ + · · · )j

= (NµtµNµ

)j
z
i+(Nµ−1)j
µ + · · · ⇒ cµ,ij = 0 if i + (Nµ − 1)j > Nµ.

Hence,

Fµ(zµ,mµ) = cµ log zµ +
Nµ∑
n=1

αµn

(
mµ

Nµz
Nµ−1
µ

)
zn
µ (84)

with αn being analytic functions.
Sometimes it is convenient to consider that only one of the initial conditions is deformed,

say the α-component:

∂Gµ

∂s
= δµα

∂Gα

∂s
, ∀µ = 0, 1, . . . , M.

In this case, we get the following symmetry equations:

∂zν

∂s
= δνα

∂Fα

∂mα

+ {(Fα(zα,mα))(µ,+), zν},
∂mν

∂s
= −δνα

∂Fα

∂zα

+ {(Fα(zα,mα))(µ,+), mν}.
(85)
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5.2. Action of additional symmetries on the potential function

Observe that if we express mµ = mµ(t, zµ), we get Fµ(zµ,mµ(zµ)) =: fµ(zµ). Then,
inspired by theorem 1, we get

Theorem 5. The following relation

∂(log τ)x

∂s
= − 1

2π i

M∑
µ=0

∮
�µ

p(zµ)
dfµ

dzµ

dzµ,

holds.

Proof. From (80) and

0 =
∮

γ

p
d

dp

[
δ ead H

(
∂

∂s

)]
dp =

M∑
ν=0

∮
γν

p
d

dp

[
δ ead H

(
∂

∂s

)]
dp,

we conclude that

0 =
M∑

ν=0

[∮
γν

p
d

dp

[
δ ead H−

ν

(
∂

∂s

)]
dp +

∮
γν

p
d

dp
[fν(zν)] dp

]
.

But

p
d

dp

[
δ ead H−

i

(
∂

∂s

)]
∈ g

−
i

is holomorphic in Di and

p
d

dp

[
δ ead H−

0

(
∂

∂s

)]
= −∂h01

∂s
p−1 + O(p−2) +

∂t00

∂s
z−1

0 p
dz0

dp
,

and the stated result follows. �

Let us assume the expansion

fµ =
∞∑

n=−∞
fµnz

n
µ

and perform a change of variables p → zµ to get

∂h01

∂s
= 1

2π i

M∑
µ=0

∮
�µ

( ∞∑
n=−∞

fµnnzn−1
µ

)( ∑
l=−1,0,1,...

σµlz
−l
µ

)
dzµ

=
∑

µ=0,...,M
n=−1,0,1,...

nfµnσµn = −f0−1 +
∑

µ=0,...,M
n�1

nfµnσµn.

Therefore, (47) gives
∂h01

∂s
= −f0−1 + f01

∂h01

∂x
+
∑

µ=0,...,M
n�1+δµ0

fµn

∂h01

∂tµn

. (86)

This will be a linear PDE for h01 if we ensure that the dependence of the coefficients fµn

on the functions vµn is restricted to v02 = −h01, i.e., do not depend on rational functions of
h01 and its derivatives. This is the case always for the time reduction tµn = 0 for n > Nµ,
∀µ = 0, 1, . . . , M . For example, we take

Fµ = αµ

(
mµ

Nµz
Nµ−1
µ

)
zn
µ, n = 1, . . . , Nµ.
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Then,
mµ

Nµz
Nµ−1
µ

= tµNµ
+

Nµ − 1

Nµ

tµNµ−1z
−1
µ + · · · +

1

Nµ

tµ0z
−Nµ

µ +
1

Nµ

vµ2z
−Nµ−1
µ + · · · ,

and therefore

αµ

(
mµ

Nµz
Nµ−1
µ

)
= Aµ0 + Aµ1z

−1
µ + · · ·

with

Aµ0 = αµ(tµNµ
),

Aµ1 = α′
µ(tµNµ

)
Nµ − 1

Nµ

tµNµ−1,

Aµ2 = α′
µ(tµNµ

)
Nµ − 2

Nµ

tµNµ−2 +
1

2
α′′

µ(tµNµ
)
(Nµ − 1)2

N2
µ

t2
µNµ−1,

...

AµNµ
= α′

µ(tµNµ
)
tµ0

Nµ

+ α′′
µ(tµNµ

)

∑′
r+s=Nµ

tµr tµs

Nµ

+ · · · + α
(Nµ)
µ (tµNµ

)
(Nµ − 1)Nµ

Nµ!N
Nµ

µ

t
Nµ

µNµ−1,

AµNµ+1 = α′
µ(tµNµ

)
vµ2

Nµ

+ α′′
µ(tµNµ

)

∑′
r+s=Nµ+1 tµr tµs

Nµ

+ · · · + α
(Nµ+1)
µ (tµNµ

)
(Nµ − 1)Nµ+1

(Nµ + 1)!N
Nµ+1
µ

t
Nµ+1
µNµ−1,

...

(87)

Here,
∑′ means that if r = s then we multiply this contribution by 1/2. We see that all

the coefficients Aµ0, . . . , AµNµ
do not depend on the functions vµ2, for all the others the

coefficients vµn contribute. In particular, A0N0+1 depends on v02.
We have the formula

fµm = Aµn−m,

and (86) reads
∂h01

∂s
= −f0−1 + f01

∂h01

∂x
+

∑
µ=0,...,M

1+δµ0�m�n

Aµn−m

∂h01

∂tµn

. (88)

For n = 1, . . . , Nµ − 1, the coefficients As that appear in the above equations do not
depend on any vs, v02 = −h01, and for µ = 0, n = N0, the coefficient A0N0+1 do linearly
depend on v02 = −h01.

Note that (88) and (87) allow us to describe the motion of the potential h01 of the Whitham
hierarchy under additional symmetries via a linear PDEs.

5.3. Functional symmetries of the Boyer–Finley–Benney system

Let us take N0 = 2 and Ni = 1, so that the involved times are {ti0 =: xi, tj1 =: yj , t02 =: t}Mi,j=1
and the PDE system is the one presented in section 3.2. Now, we have

m0 = 2tz0 + x + t00z
−1
0 + v02z

−2
0 + · · · , t00 = x1 + · · · + xM

mi = yi + xiz
−1
i + vi2z

−2
i + · · · ,
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so that

α0

(
m0

2z0

)
= α0(t) + α′

0(t)
x

2
z−1

0 +

(
α′

0(t)
t00

2
+ α′′

0 (t)
x2

8

)
z−2

0 + · · · ,

αi(mi) = αi(yi) + α′
i (yi)xiz

−1
i +

(
α′

i (yi)vi2 + α′′
i (yi)

x2
i

2

)
z−2
i + · · · .

We put Cµ = 0 as these symmetries correspond to the first flows ∂
∂xi

. Then, in the context of
(85) we have three different types of generators:

F
(1)
0 = α0

(
m0

2z0

)
z0 = α0(t)z0 + α′

0(t)
x

2
+

(
α′

0(t)
t00

2
+ α′′

0 (t)
x2

8

)
z−1

0 + · · · ,

F
(2)
0 = α0

(
m0

2z0

)
z2

0 = α0(t)z
2
0 + α′

0(t)
x

2
z0 +

(
α′

0(t)
t00

2
+ α′′

0 (t)
x2

8

)
+ · · · ,

Fi = αi(mi)zi = αi(yi)zi + α′
i (yi)xiz

−1
i +

(
α′

i (yi)vi2 + α′′
i (yi)

x2
i

2

)
z−2
i + · · · .

Therefore,

∂F
(1)
0

∂m0
= 1

2
α′

0

(
m0

2z0

)
,

∂F
(2)
0

∂m0
= 1

2
α′

0

(
m0

2z0

)
z0,

∂Fi

∂mi

= α′
i (mi)zi,

and (
F

(1)
0

)
(0,+)

= α0(t)�01 + α′
0(t)

x

2
,

(
F

(2)
0

)
(0,+)

= α0(t)�02 + α′
0(t)

x

2
�01 + α′

0(t)
t00

2
+ α′′

0 (t)
x2

8
,(

Fi

)
(i,+)

= αi(yi)�i1.

Hence, the evolution of the Lax functions under these three types of symmetries is characterized
by the following PDE system:

S
(1)
0 :




∂z0

∂s
(1)
0

= 1

2
α′

0

(
m0

2z0

)
+ α0(t)

∂z0

∂x
− 1

2
α′

0(t)
∂z0

∂p
,

∂zi

∂s
(1)
0

= α′
0(t)

∂zi

∂x
− 1

2
α′

0(t)
∂zi

∂p
,

(89)

S
(2)
0 :




∂z0

∂s
(2)
0

= 1

2
α′

0

(
m0

2z0

)
z0 + α0(t)

∂z0

∂t
+

1

2
α′

0(t)x
∂z0

∂x
− 1

2
α′

0(t)p
∂z0

∂p
− α′′

0 (t)
x

4

∂z0

∂p
,

∂zi

∂s
(2)
0

= α0(t)
∂zi

∂t
+

1

2
α′

0(t)x
∂zi

∂x
− 1

2
α′

0(t)p
∂zi

∂p
− α′′

0 (t)
x

4

∂zi

∂p
,

(90)



2376 M Mañas et al

Si :




∂z0

∂si

= αi(yi)
∂z0

∂yi

,

∂zj

∂si

= αi(yi)
∂zj

∂yi

, j �= i,

∂zi

∂si

= α′
i (mi)zi + αi(yi)

∂zi

∂yi

.

(91)

We now analyse how the dependent variables {w, vi, qi}Mi=1 evolve under these symmetries:

• The S
(1)
0 equations (89) implies a transformation that only involves the independent

variables (x, t) characterized by the following PDEs:

∂w

∂s
(1)
0

− α0(t)
∂w

∂x
+

x

4
α′′

0 (t) = 0,

∂vi

∂s
(1)
0

− α0(t)
∂vi

∂x
= 0,

∂qi

∂s
(1)
0

− α0(t)
∂qi

∂x
+

1

2
α′

0(t) = 0,

and the symmetry transformation is

w(x, t) → w(x + f (t), t) − f ′′(t)
4

(
x +

f (t)

2

)
,

vi(x, t) → vi(x + f (t), t),

qi(x, t) → qi(x + f (t), t) − f ′(t)
2

with f := s
(1)
0 α0. For the potential W this symmetry reads

W(x, t) → W(x + f (t), t) − f ′′(t)
8

x(x + f (t)) − f ′(t)
2

M∑
i=1

xi.

• In this case, the S
(2)
0 equations (90) implies a transformation characterized by the following

PDEs:

∂w

∂s
(2)
0

− α0(t)
∂w

∂t
− 1

2
α′

0(t)x
∂w

∂x
− α′

0(t)w +
t00

4
α′′

0 (t) +
x2

16
α′′′

0 (t) = 0,

∂vi

∂s
(2)
0

− α0(t)
∂vi

∂t
− 1

2
α′

0(t)x
∂vi

∂x
− 1

2
α′

0(t)vi = 0,

∂qi

∂s
(2)
0

− α0(t)
∂qi

∂t
− 1

2
α′

0(t)x
∂qi

∂x
− 1

2
α′

0(t)qi − 1

4
α′′

0 (t)x = 0,

and the symmetry transformation is

w(x, t) → T ′(t)w(
√

T ′(t)x, T (t)) − t00

4

T ′′(t)
T ′(t)

+
1

16
{T , t}Sx

2,

vi(x, t) →
√

T ′(t)vi(
√

T ′(t)x, T (t)),

qi(x, t) →
√

T ′(t)qi(
√

T ′(t)x, T (t)) +
1

4

T ′′(t)
T ′(t)

x,
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with T := T
(
s
(2)
0 , t

)
characterized by the following relation:∫ T

t

dt

α0(t)
= s

(2)
0 ,

and we have used the Schwarztian derivative

{T , t}S :=
(

T ′′(t)
T ′(t)

)′
− 1

2

(
T ′′(t)
T ′(t)

)2

= T ′′′(t)
T ′(t)

− 3

2

(
T ′′(t)
T ′(t)

)2

,

which must not be confused with the Poisson bracket.
For the potential W this symmetry reads

W(x, t) →
√

T ′(t)W(
√

T ′(t)x, T (t)) +
1

4

T ′′(t)
T ′(t)

x

M∑
i=1

xi +
1

48
{T , t}Sx

3.

• The Si-symmetry characterized by equations (91) implies a transformation that only
involves the independent variables (x, yi) as follows:

∂w

∂si

− αi(yi)
∂w

∂yi

= 0,

∂vj

∂si

− αi(yi)
∂vj

∂yi

= 0, j �= i,

∂vi

∂si

− αi(yi)
∂vi

∂yi

− α′
i (yi)vi = 0,

∂qj

∂si

− αi(yi)
∂qj

∂yi

= 0.

Thus, if Yi(si, yi) is defined by∫ Yi

yi

dyi

αi(yi)
= si,

then, we have

w(yi) → w(Yi(yi)),

vj (yi) → vj (Yi(yi)), j �= i

vi(yi) → Y ′
i (yi)vi(Yi(yi)),

qi(yi) → qi(Yi(yi)),

which in terms of the potential W reads

W(yi) → W(Yi(yi)).

If we put M0 = 1, i.e., we not consider the t-flow, the transformation is

vi → X′(x)vi(X(x)),

qi → X′(x)qi(X(x)) + t00
X′′

X′
where ∫ X

x

dx

α0(x)
= s0.

That in potential form is

W → X′(x)W(X(x)) +
t2
00

2

X′′

X′ .
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This symmetry together with the Si symmetries described above constitutes the well-known
conformal symmetries of the extended Boyer–Finley system. When the t-flow is plugged in,
and the extended Benney system appears, then this x-conformal symmetry disappears.

Nevertheless, these additional symmetries, to the knowledge of the authors, are not known
for the generalized Benney system [33]

∂q

∂t
= ∂(q2 − 2w)

∂x
,

∂v

∂t
= 2

∂(qv)

∂x
,

∂w

∂y
= ∂v

∂x
. (92)

In fact, we have proven

Proposition 6. Given any three functions Y (y), f (t), T (t) and a solution (w, q, v) of (92),
then we have a new solution (w̃, q̃, ṽ) given by

w̃ = T ′(t)w(
√

T ′(t)(x + f (t)), Y (y), T (t)) − t00

4

T ′′(t)
T ′(t)

+
1

16
{T , t}S(x + f (t))2 − f ′′(t)

4

(
x +

f (t)

2

)
,

q̃ =
√

T ′(t)q(
√

T ′(t)(x + f (t)), Y (y), T (t)) +
1

4

T ′′(t)
T ′(t)

(x + f (t)) − f ′(t)
2

,

ṽ =
√

T ′(t)Y ′(y)v(
√

T ′(t)(x + f (t)), Y (y), T (t)).

We must note that the above functional symmetries do not respect the shallow water
reduction that appears in the limit x = −y.

5.4. Additional symmetries of Virasoro type and its action on string equations

As we have seen in section 5.1, additional symmetries appear when deformations of the initial
conditions are considered. Here, we will consider initial conditions as in (73) and (71) with
G(0)

µ depending on an s parameter as follows:

G(0)
µ = x

ξ̂ ′
µ(p, s)

, (93)

so that in the string equations (78) we will have functions

fµ = fµ(s).

Note that (93) describes a curve in the Virasoro algebra vir, and therefore describes the more
general motion for the set of initial conditions Gµ.

The right logarithmic derivative of the initial conditions (73) with respect to the additional
parameter s is

δ ead Gµ

(
∂

∂s

)
= βµ(pµ)xµ, βµ := − fs(pµ, s)

fpµ
(pµ, s)

,

and the corresponding additional symmetry generator is

Fµ = βµ(zµ)mµ

so that

∂zν

∂s
= βν(zν) +

M∑
µ=0

{F(µ,+), zν}.
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Now, if we freeze times tµn = 0 for n > Nµ so that

mµ =
Nµ∑
n=1

ntµnz
n−1
µ + tµ0z

−1
µ +

∞∑
n=2

vµnz
−n
µ

and we require the additional symmetry to leave those times invariant, we must have

βµ(zµ) =
∞∑

l=−1

bµlz
−l
µ .

Let us take, for simplicity, Virasoro-type generators

βν = cνz
1−nν

ν , nν = 1, . . . , Nν, cν ∈ C

so that
∂zν

∂s
= cνz

1−nµ

ν +
∑

µ=0,...,M
n=1,...,Nµ−nµ

(n + nµ)tµn+nµ
cµ

∂zν

∂tµn

.

whose integration leads to

zν(s) =
nµ√

cνnνs + zν(t(s))nµ .

where

tµ1(s) := tµ1 + (nµ + 1)scµtµnµ+1,

...

tµNµ−nµ
(s) := tµNµ−nµ

+ NµscµtµNµ
,

tµNµ−nµ+j (s) := tµNµ−nµ+j , j � 1.

Integrating
∂fµ

∂s
+ βµ(zµ)

∂fµ

∂zµ

= 0,

we get

fµ(zµ, s) = fµ

( nµ

√
−cµnµs + z

nµ

µ (s)
) = fµ(zµ(t(s))).

5.5. Invariance conditions for additional symmetries and string equations

We note from (81) that the invariance condition under an additional symmetry

F−
µ =

M∑
ν=0

(Fν)(ν,+) − Fµ = 0, ∀µ. (94)

Thus, all the functions Fµ must reduce to a unique function Fµ = F ∈ r. Given a solution
of the string equations (70), we may take

Fµ = P 1+r
µ Q1+s

µ ,

and conclude that Fµ = F ∈ r,∀µ. Hence, string equations determine solutions invariant
under additional symmetries characterized by the generators

Vµ,rs = P 1+r
µ Q1+s

µ ,

which close a Poisson algebra

{Vµ,rs, Vµ,r ′s ′ } = ((r + 1)(s ′ + 1) − (r ′ + 1)(s + 1))Vr+r ′s+s ′ .

In particular, the functions Vr0 generate a Virasoro algebra.
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Appendix. The right logarithmic derivative

Here, we follow [9]. Given a manifold T , a Lie group G with Lie algebra g and a map
ψ : T → G, we define the right logarithmic derivative δψ ∈ �1(T , g) as the following
g-valued 1-form:

δψ(ξ) = Tψ(t)

(
µψ(t)−1) ◦ Ttψ(ξ) ∀ ξ ∈ TtT , t ∈ T ,

where µg(h) = g · h is the left multiplication in the Lie group. Recall that the right Maurer–
Cartan form κ ∈ �1(G, g) is a g-valued 1-form over G given by

κg := Tg

(
µg−1)

,

in terms of which

δψ = ψ∗κ.

Given two maps ψ, φ : T → G, then

δ(ψ · φ) = δψ + Ad ψ(δφ) (A.1)

and therefore

δ(ψ−1) = −Ad ψ(δψ).

It also holds for ω := δψ and z = Ad ψ(Z) that

dω + 1
2 [ω,ω] = 0, (A.2)

dz = [δψ, z] + Ad ψ(dZ). (A.3)

If there is an exponential mapping exp : g → G, we have the formula

TX exp(Y ) = Teµ
exp X ·

∫ 1

0
Ad(exp(sX))Y ds.

Thus, if ψ = exp X with X : T → g, we have

δψ(ξ) = Tψµψ−1
(TX exp)TtX(ξ) = Tψµψ−1 ◦ Teµ

ψ ·
∫ 1

0
Ad(exp(sX))(TtX(ξ)) ds

=
∫ 1

0
Ad(exp(sX))(TtX(ξ)) ds, ∀ξ ∈ TtT ,

that when we are allowed to write Ad exp X = ∑∞
n=0(adX)n/n!, for example if G is a

Banach–Lie group, which reads

δψ =
∞∑

n=0

(ad X)nTtX

(n + 1)!
.

Given a smooth curve X : R → g, we consider the problem

δψ(∂t ) = X(t), ψ : R → G

ψ(0) = e.
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One can prove uniqueness of solutions and that local existence of solutions implies global
existence of solutions. We write evol : C∞(R, g) → G, with evol(X(t)) = g(1) and say,
following Milnor, that the Lie group is regular and smooth if evol exists. That is smooth curves
in the Lie algebra integrate, in terms of the right logarithmic derivative, to smooth curves in
the Lie group.
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