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Abstract

A new description of the universal Whitham hierarchy in terms of a factorization
problem in the Lie group of canonical transformations is provided. This scheme
allows us to give a natural description of dressing transformations, string
equations and additional symmetries for the Whitham hierarchy. We show
how to dress any given solution and prove that any solution of the hierarchy
may be undressed, and therefore comes from a factorization of a canonical
transformation. A particularly important function, related to the r-function,
appears as a potential of the hierarchy. We introduce a class of string equations
which extends and contains previous classes of string equations considered
by Krichever and by Takasaki and Takebe. The scheme is also applied for
a convenient derivation of additional symmetries. Moreover, new functional
symmetries of the Zakharov extension of the Benney gas equations are given
and the action of additional symmetries over the potential in terms of linear
PDEs is characterized.

PACS number: 02.30.1k
Mathematics Subject Classification: 58B20

1. Introduction

Dispersionless integrable models, see [11, 14, 32, 33], appear in the analysis of various
problems in physics and applied mathematics from the theory of quantum fields, see [12] and
[2], to the theory of conformal and quasiconformal maps on the complex plane, see [5—10].
The new millennium brought new applications of these models, see [29, 30], in different areas,
as for example integrable deformations of conformal maps and interfacial processes.

The Krichever’s universal Whitham hierarchies, see [11, 12], are the integrable systems
involved in these applications. These hierarchies include as particular cases the dispersionless
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KP, dispersionless-modified KP and dispersionless Toda hierarchies, see [1, 17, 30] and
[8, 24]. The role of twistor or string equations for studying dispersionless integrable models
was emphasized by Takasaki and Takebe in [24-28]. Solutions of these string equations have
attractive mathematical properties as well as interesting physical meaning.

The objective of this paper is to formulate the factorization problem for the zero genus
Whitham hierarchy within the context of Lie groups of symplectic transformations and to
give a natural and general formalism for string equations and additional symmetries. In
particular, we characterize a special class of string equations, related to a Virasoro algebra.
It turns out that this class determines not only the solutions of the algebraic orbits of the
Whitham hierarchy [12] but also the solutions arising in the above-mentioned applications of
dispersionless integrable models [19, 20].

The layout of the paper is as follows. In section 2, we introduce the Lie algebraic splitting
for Hamiltonian vector fields and the corresponding factorization problem for canonical
transformations. Then, in section 3 we show how deformations of the factorization problem of
canonical transformations lead to solutions of the Whitham hierarchy. We remark a particular
system of equations within the hierarchy: the Boyer—Finley—Benney equations, which extend
the Boyer—Finley and the Benney equations, respectively. Here, we also introduce a potential
function of the hierarchy from which all the fields of the hierarchy are gotten by appropriate
derivations. In a forthcoming paper [21], we show that this function is the x-derivative of
—log 7, where 7 is the T-function of the hierarchy. We proof that any solution of the Whitham
hierarchy may be obtained from a factorization problem, i.e., it may be undressed. To conclude
the section, we extend the factorization scheme to get the dressing of any given solution of
the Whitham hierarchy. In section 4, we consider the string equations in the context of the
factorization problem. For that aim we introduce the Orlov—Schulman functions and show
that the factorization problem leads to string equations. Thus, all solutions of the Whitham
hierarchy fulfil certain set of string equations. In [21], we show that any solution of the string
equations is a solution of the Whitham hierarchy. We finish this section by introducing some
particular factorization problems and the corresponding string equations which generalize and
contain as particular cases the string equations of Krichever and of Takasaki—Takebe. Finally,
section 5 is devoted to the study of additional symmetries of the Whitham hierarchy. First, we
derive the additional symmetries from the factorization problem and then characterize its action
over the potential function of the hierarchy. We compute the additional symmetries of the
mentioned Boyer-Finley—Benney system and obtain a set of explicit functional symmetries.
In particular, for the Zakharov extension of the Benney system we get explicit functional
symmetries depending on three arbitrary functions of variable. We conclude by considering
the action of Virasoro type of additional symmetries on our extension of the Krichever and
Takasaki—Takebe string equations and showing that solutions of string equations are invariant
solutions under a Lie algebra of additional symmetries, which contain two set of Virasoro
algebras.

2. The factorization problem

2.1. Lie algebraic setting

We present a splitting which is inspired in [23] and in [15], where it was used for a better
understanding of harmonic maps and chiral models. The factorization problem technique
was applied to the dispersionless KP hierarchy in [7] and is inspired in the dressing method
proposed by Takasi and Takabe in the series of papers [24-28].
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Given the set {q flo) }Z;o cC, q(()o) = 00, of punctures in the extended complex plane, we
introduce the local parameters p;l where
12 w =0,

Pu= ( (0))—1’

P —q; nw=ig€s,

and
S:=1{1,..., M}.

For each set of punctures we consider the set R of rational functions in p with poles at the
punctures, i.e., the functions f = f(p) of the form

M Ny

f=Y_Y alp.

n=0 n=0

where N, € N. In this paper, we use Greek letters like u to denote an index that runs from 0
to M and italic letters like i, when it runs from 1 to M.

For each puncture ¢ we consider the set £, = C(p,,) of formal Laurent series in p,,
and the subset £, defined as

__|p'ClpT', for u =0,
L, = [ ©) .
P —q, ]], foru =i €S.

Here, C[[ p]] denotes the set of formal power series in p. Finally, we define

M M
L:=Pc. =P,
n=0 n=0

Given an element (fo, fi,..., fu) € L, let f(, 4+ be the polynomial in p;l such that
f; = fu — fww € L,. Then, there exists a unique rational function f € R whose
principal parts at g ,(40) are given by f(, +) (observe the normalization condition at co), namely,

M
f= Z S
n=0

Moreover, we have a unique splitting of f, of the form

Ju=Jfi+f
with
fo=F=)_F ek
VFEL
Therefore, we conclude that the following splitting
L=LTOR (1)
holds.

The above construction can be extended in the following manner. Let us consider, for
i € S, thedisc D; containing the point ql.(o) with border the clockwise-oriented circle y; := 9 D;,
and also the disc Dy, centred at 0, which contains all the other discs D;,i = 1, ..., M, with
border the counter-clockwise-oriented circle yo := 9Dg. Let D := DgU (Uf‘i ] D,~) and
y = UfLO Y, here Dj = C\ Dy is the complementary set of the disc Dy. We will consider
the completion of £ as the set of complex functions over I'. We complete the rational splitting
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C

Figure 1. Graphical illustration of the splitting.

by extending £, as those complex functions over y,, which admit analytic extensions to its

interior, and for ;. = O such that the extension vanishes at co. Then, L~ = eaﬁ”zoﬁ; and R
is the set of complex functions on I' such that they do have a holomorphic extension to C\ D.
In this context, (1) also holds. We refer to figure 1 for a graphical illustration of the rational
splitting and its completion. Now, we shall extend the above splitting to the Lie algebra of
symplectic vector fields. In spite that normally the coordinates (p, x) are real, here we will
consider that they take complex values. This extension does not affect the standard local
symplectic constructions.
The local Hamiltonian vector fields

) 0
X =A(p,x)— +B(p,x)—,
ap dax

are the divergence-free vector fields A, + B, = 0, and locally there exists a Hamiltonian
function H such that

oH oH
B —

Cox S oop
The Poisson bracket in the set F of differentiable functions of p and x is locally given by
OH 0H 9H0H

(H, iy = 00RO
ap 0x dx dp

and the pair h := (F, {-, -}) is a Lie algebra. The set of inner derivations of g

oH 9 oH o
adH ={H,}=—— - —— =Xy
dp 0x dx dp
may be locally identified with the set of Hamiltonian vector fields. In fact, the set of locally
Hamiltonian vector fields constitute a Lie algebra under the Lie bracket given by the Lie

derivative of vector fields, and we have that

[XH7X[:[] =X{H,[:[}7
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so that the mapping H — Xy is a Lie algebra homomorphism with kernel given by the
constant functions, i.e., the centre of the Lie algebra of Hamiltonian functions.

We denote by g,, g, and t, the Lie subalgebras of b such that the corresponding Lie
algebras of Hamiltonian vector fields ad g,,, ad g,, and ad v are built up from vector fields with
coefficients in £, £, and R, respectively. Here, we suppose that the coefficients of the vector
fields are complex-valued functions. Let us describe in more detail these Lie algebras:

1. The Lie algebra . The components A and B of a Hamiltonian vector field
ad 0
adH = A_+BB_ €adr

ap X
are A = —H, and B = H, with

o - 0y, 3~ i)
H= E h,(x)p" + E hiolog (p — g; )"'Z onJ |’
n=0 i=l1 j=l (p ~ 4 )

and h;0, = 0.
2. The Lie algebras g,,. The components A,, and B, of a Hamiltonian vector field
il 0
adH, = AM@ + B"La cadg,
are A, = —H, , and B, = H, , with

Hy = hyolog(p) + Y hu(x)p,", o = O.
n>>—00
3. The Lie algebra g~. The components A, and B, of a vector field

0 _
adHM = AM@ + Bua (S] gM,
are A//- = _H//.,x and BM = HM:P with
o 0
Ho=heologp+Y_ ha()p™,  Hi=Y ha)(p—q”)",
n=1 n=0
with /’l()(),x =0.

Now, we define the Lie algebras

M M
g:=Pa s =Ps,.
n=0 u=0

and realize that, modulo constants, the splitting (1) in this context is
adg=adg +adrt

which in turn is equivalent to
g=g9g +r.

The Lie algebras g;, fori = 1, ..., M, have a further splitting into three Lie subalgebras:
g =0 +g +o.

where

g = o), g = {haP -g)},

07 = [ho@)(p = ¢) +his)(p — ¢ ) + )
and {g) + g/,97} C g7. The above splitting induces the following splitting into Lie
subalgebras of divergence-free vector fields

adg; =adg) +adg; +adg; .



2354 M Maiias et al

2.2. Lie group setting

We now extend the previous construction from the context of Lie algebras to the corresponding
Lie groups of canonical transformations. Associated with each Hamiltonian vector field
X'y = ad H we have the corresponding Hamilton’s equations p = —H,, x = H),, that when
integrated provides us with a flow ®/7, a one-parameter group of symplectic diffeomorphism,
(p(), x(t)) = <I>[H (po, Xxo0), for given initial conditions (p, x)|;=0 = (po, Xo). The exponential
mapping is just the evaluation at # = 1, i.e. exp Xy = ®,. The group of symplectic
diffeomorphism is a smooth regular Lie group with Lie algebra given by the set of Hamiltonian
vector fields [9]. Symplectic diffeormorphism are also known as canonical transformations.

It can be shown [9] that the adjoint action of the group of symplectic diffeomorphism
on its Lie algebra (i.e., the set of Hamiltonian vector fields) is given by the action of the
corresponding induced flow:

Ad exp(s X ) (X ) = (@i’s)*Xg =To" o Xzo00" = X oty =Xadepemia: 2

where
(sad H)!
2 H\* 5 sad H T ~
Ad exp(sH)H = (" )'H =¢ H = E TH'
1=0

That is, modulo constants, the adjoint action of a symplectic diffeomorphism of the form
exp(X g) acts on the Hamiltonian functions as e*

exp(Xy) AL qudH

The rational splitting of Lie algebras of Hamiltonian vector fields may be exponentiated to a
Birkhoff-type factorization problem
exp(X,) = exp(X;)’1 o exp(X)

with X, € adg,, X, € adg, and X € adr, where we are now dealing with complex vector
fields.
We will consider a particular class of Hamiltonians, namely those of the following form:

o0
Tyi= (1= 8u0)tuolog pu+ Y tunpl. 3)
n=l+5,l()
Given initial canonical transformations ®,, u = 0,..., M, we consider deformations

exp (X 1,) o ®,, which are new canonical transformations that now depend on the deformation
or time parameters

t:= (tu).
We will consider the factorization
exp (X7,) o @, = exp(X;,) " oexp(X) with X, €adg, and X eadr. (4)
Equation (4) is fulfilled if the following factorization problem is satisfied
S with  H eg, and H e, )
where

@, =exp Xg,, X;:XH}:, X =Xy.

The existence problem for (5) will not be treated here. Anyhow, we will assume that all times
|#,,»| and initial conditions are small enough to ensure that such factorization exists (note the
trivial existence for 7), = 0 and G, = 0).
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Observe that given a set of initial conditions {Gu}fzo the factorization problem (5)

consists in finding H s M= 0,..., M, and H as functions of £. Let us right multiply both
terms of the equality (5) by a term of the form e*C where G € t. On the left-hand term we
have e 7xe2dGu where the new initial conditions are

ne
Gu:=C(Gu,G):=Gu+G+3{G,, G} + 151G 1. (G, G} +{G. (G, G} +--- . (6)
and C(-, -) is the Campbell-Hausdorff series in Dynkin form, so that
Gy qadG _ ad Gy @)

A solution of this new factorization problem is given by A . = H, and H=C(H,G)er,so0

that H,” remains invariant. Let us now left multiply both terms of the equality by e P with

¢, €¢,,¢c, Cg, being the Abelian subalgebra of Hamiltonians in g, which only depend
on p. As {c;;,T,} = 0, we have e g7 ed Gy = Ty eadCy with G, 1= Clc,, Gp).
The solution of the transformed factorization problem (5) is given by H L= C(c;, H " ) and
H=H.

Therefore, once we have a solution (H " H) for an initial condition G, it is trivial to find
solutions (H ;;, H) for initial conditions C(c,,, C(G, t)). The orbits e ead Gy eadt degeribe
the moduli space of solutions to the factorization problem (5). Thus, if we concentrate on the
right action of r, we may take G, € g, and the right coset e®d0u e4d* (or the Hamiltonian
C(G,, v)) as the point in the moduli.

As we will see the factorization problem (5) for the action of symplectic diffeomorphism on
the set of functions (observables) implies the Whitham hierarchy. Therefore, the factorization
problem (4) for symplectic diffeormorphism is also associated with the Whitham hierarchy.
To get these results we will use a well-known tool in the theory of regular Lie groups: the
right logarithmic derivative as defined in [9], see the appendix. If we have a smooth curve
H : T — C*®(V), assuming that 7 is the time manifold with local coordinates given by
t = (t4,) and denoting 9, := 0 the right logarithmic derivative is

oty ’

1
5 exp(X 1) () = / (®7 )" (T, X 1 (8p)) ds = X gty .
0

where
1 o0 I
. N (ad H) .
de dH(a//-n) = /(; (quIx) (OunH)ds = lgo: m un 11 .
In particular,
T, s 0,

Sexp (X7,) @) = X with  2LuP) _ Py o n# .

yan 0tyun log (p —gq; ), n=0, wu=Ii.

Now, we are ready to take right logarithmic derivatives, using (A.1), of the factorization
problem (4),

8exp(X ) (un) + 8uvAd exp(X ;) (X i (n,n) = 8exp(X) (). (8)
Using the corresponding Hamiltonian generators

X, =Xu,, X=Xy
we get, modulo constants, the following system:

8TM(P)

8™ (3,,) + 8, e
t/m

) =38e" (3., 9)

which may be derived directly from (5) by taking right logarithmic derivatives.
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3. Dressing methods for the Whitham hierarchy

In this section, we analyse how the factorization problem (5) is related with the Whitham
hierarchy and its dressing transformations. We first show that (5) leads to the Whitham
hierarchy, defining the Lax functions a zero-curvature form. Then, we construct a potential
function hg; of this hierarchy, and as we shall show in the forthcoming paper [21],
ho;1 = —(log 7), in terms of the t-function of the hierarchy. We also proof that any solution
of the Whitham hierarchy is related to a factorization problem, via an undressing procedure.
Finally, we show how the factorization problem scheme can be extended to generate dressing
transformations of the Whitham hierarchy.

3.1. From the factorization problem to the Whitham hierarchy

We are now ready to proof that (5) is described differentially by the Whitham hierarchy.

Theorem 1. Given a solution of the factorization problem (5),

T Gy — o—ad Hy qadH H; eg,, Her,
then,
1. The Lax functions
Lu = e Pu (10)
are of the form
p+2 2 dup, w=0,
= dia an

P —q +Y 20 di(p — ai), w=ies.
for some functions q; and d ., defined in terms of the coefficients of H, .
2. The functions

(ZZ)(H&), n > 3#(),

Q1= (12)
" {—1og<p—ql->, n=0, p=iecs,

where () +) projects in the span {log(p — gq;), (p — q,-)_l}j’il and (-)(0,+) onto the span
of {p' 1120, satisfy the zero-curvature equations
0Qun 082y

dtyy 3tlm

+{Qpun, Qui} = 0; 13)

moreover,
Qun = 8™ (3,).
3. The Lax functions z,, are subject to the Whitham hierarchy:

a9z,
Otyun

= {Qum v} (14)

Proof. We now proceed to show that (9) implies the Whitham hierarchy. In the analysis of
(9) it is convenient to distinguish between the cases u =i # 0and u = 0.



On the Whitham hierarchy: dressing scheme, string equations and additional symmetries 2357

1. The case u =i € S.

We factor e?d #i- ad Hio gad Hiy oad Hi yyith

=e
Hip = hjo(x), H; =hi1(x)(l7—61,-(0)),
2 3
Hpo = hp@)(p — ;") + his@)(p —¢”) +--- .
Now, we study the cases m > 0 and m = 0:
(@ m=>0
We get
8 M0 (3y,) + et 0§ e (@y,) + ™M (8 M (8))) + 2 = 87 (B). (15)
It can be proved that
80 (@;,) = diuhio,
din X Xdx
S ad H;, ain — Jinsi _ FO) ith / _
SO =S o) i S
81 (8y) = inhia(p — 4{) + @iz + hiodinhinc = hiz dinhiz) (p— ") 4+,
0 (f@)(p—a”)") = F(p =4 = hior)",

ad Hy, oy _ Slexo o opyn
et (fo)(p — g ))_—(Xi,x)”(p q;")

and in particular e® "1 x = X;
1 1 !
ad Hi. _ ©)
e <( (0))n) = (—(0) +hiox + (hizy +hiohin)(p—q; ) + - ) .

pP—4q; pP—q;
Therefore, defining

11

0
qi == qi( '+ hig
we deduce that (15) can be written as

0in X (Binhi2)|x=x, ’ q
Oinhio + —qi)+ — —-q;) +---+ ’»ZIBaHam 16
0 X (p—aqi) (Xio)? (p—qi) b4 e (0in) (16)
with
- 1 di_1 >
ad H; i I
7 = et = +) du(p—aq),
(P—q,»“”) >
where, for example,
(hiz.x + hizhiz xx) |x=X,-
di—1 = Xix, dio '= hiox|x=x;> diy = .

Xi,x
We have assumed that 7, and G, are small enough to ensure that the function
qi = Xi,xqi(o) + hjp, . belongs to the interior of Uq_m) (sothat X; , ~ 1 and h;p . ~ 0).
Thus, (16) implies
©3 8¢ @) = (2") 1y = Qim-

For example,

dii d?| 2d;_1djo
Qi = , Qir = 5 .
P —qi (p—ai) P —qi
b)ym=0
In this case, we have
30 X; 8:0hi2) | r—x. ,
dohio + 0X0 gy Pt o egz = 56 (3). (1)

Xix (Xix)?
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Note that
log z; := —log(p — ¢;) +log (Xi,x +hioxl=x, (P — qi)
(hizx +hiohiz ) |i=x,
+ (p - qj)2 +- bl
Xi,x
and hence
t38e*H(9;0) = (logzi) i+ =: Rio
with
Qo = —log(p — qi).
2.0=0
In this case, we have
8¢ (3o,) + 26 = 8" (0n), (18)
with
eadH(; — eadHo>ead(tng logp)’ H0> — ho1p71 + h()2P72 -

where #(o, which is not a time parameter, does not depend on x. Note that

oo
2=e(p)=p+) dup™
=1
where, for example,
do1 := —ho1,x, dy == —hop,x.
An analysis of equation (18) allows us to write
ad n .
t38e*7 3y, = (zo)((“) =: Qon,
for example
902 = p2 + 2d01.
From
Qp.n = 8eadH(8y,n)
and (A.2), we deduce the zero-curvature conditions (13).
3. From (A.3), we have
92y dH-
— = {5 (0,,),
3tlm { ( n ) Zv)
that recalling (9) reads
0z
— = aeadH 0un), Zv
atun { ( m ), Zv}
and we deduce (14). 0

As a byproduct of the above proof we have the following:
Proposition 1. Given solutions H, and H of the factorization problem (5) such that

o0 -l
QT _ {ead (21 ho(x)p™) gad (1o log l’)7 w=0,

adhio(0) gad it (0 (p=4;") gad (72, hu () (p=4{")) nw=ieS,
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then
M
oo = —Zlio, 19)
i=1
and the coefficients of the Lax functions satisfy
X,
iodx
(0)
i =¢q; +hjox, =1,
qi q; i0,x ; hil(x)
di1 = Xix,
dii = (hizxa,x + fu(hizer, - .. hi2))lx=x, XL_,ZC, [1>0

doy = —hox + fa(ho-1, ..., hot),

where f,; are differential polynomials.

Proof. We only need to prove (19). We will consider the equations

al‘()()
8" (3,,) + ——log 20 + 8,020 = 8 € (3un),
€ ( m ) 8tun 0g 20 11020 € ( m ) (20)
8 €M (3, + 8, (1 — 8,0)2) +8p0log z;) = 87 (8,), i €S,

which are derived from (5) by taking right logarithmic derivatives.
We take the p-derivative of (20) to get

d 30 1 N\dz d
—[8 ™Mo (5,,)] + ( X ndu0z) 1> %20 _ @[8 e (8,1,

d Ofon d
(f o pl d d @h
a[5 e (8,1 + 8,4 (n(l — 8002 '+ 5n0—_) d_j; = @[8 e (3,1, i €8S.
Now,
d
18 adH 9 "
dp[ € ( m )]
is analytic in C\ D and therefore
d Yo od
0= f e @uldp = Zf 8¢ @1 dp
Y p u=0 Yu p
but from (21) we deduce
d . d , dtgo 1 1
e L I =f —— (8= (@, 1dp + f ( — +n8u075 ) dzo,
fi’o dp g Y0 dp g To Tun 20 Ko
d adH d adH;~ n—1 1
@[5 € (aun)] dp = @[56 ! (a;m)]dp + 6//,1' . n(l— anO)Z[ + 5110; dz;,
i Vi i L
i €S,
where we have changed of variables z, = z,,(p) with T";, = z,,(y,,). Now, recalling that
d
ol - (@,,)] = 0(p~), p — 0,
d adH~ . - .
E[Se i (0yn)] is holomorphic at D; for i€ S
we get
dtgo

=—(1—46,0)8n0.
D ( 110)810 .
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3.2. Some dispersionless systems within the Whitham hierarchy: the
Boyer—Finley—Benney system

We consider the equations involving the times {t;0 =: x;, t;1 =: ¥}, foo =: t}; j—es. Now, we
write

Qo =—log(p—q). Q= and Qo= p? - 2w,
P—4qi

with
v, i=d;_y and w = —do.

and the corresponding Whitham equations (13) are
%zﬂzi( vj ) 22)
0y; ox; ox \qi —q;
dg; v
dqi _ dvi. (23)
dy;  Ox;
aq; al i —q;
dqi _ _dloglg q,)’ 24)
0x; ax
0q; al ;
o4 _ _ﬂ’ (25)
0X; 0x
d 0q;
ow _ i’ (26)
0X; 0x
by _ Blgi = 2w) @7)
ot ox
dv; 9(qiv;
dvi _ 590G (28)
at ax
d av;
ow _ _v’ (29)
ay; ax

where i # j.

Observe that equations (23) and (25) imply
Pet e, ®; =1 (30)
=Y, i = 10gV;,

ox? | axdy; £

which is the Boyer—Finley equation, which appears in general relativity [4], or dispersionless
Toda equation for ®;, and that equations (27)—(29) form the Benney generalized gas system
[33].

Also note that from (24), (22), (26) and (29) we deduce the local existence of a potential
function W such that

ow ow ow
4= -—, v =——, =——.
ox; ay; 0x
Therefore, this system of equations may be simplified as follows:
Wy/‘ . .
Wxi}’/ - W i :07 l #]a (31)

Wiy, + (log (W, — W), =0, i#j, (32)



On the Whitham hierarchy: dressing scheme, string equations and additional symmetries 2361

W, + (log (Wy,)), =0, (33)
Weo+ (W, = W) =0, (34)
Wy —2(W, W,,), =0. (35)

We stress again that (33) is a form of the Boyer—Finley equation and that (34) and (35) is
a form of Benney system. Therefore, the whole system may be understood as an extension of
these equations. This fact has induced us to propose the name of Boyer—Finley—Benney for
the mentioned system.

3.3. On the existence of a potential for the Whitham hierarchy

In the previous section we have seen that the Boyer—Finley—Benney equations can be
reformulated in terms of a single field. We will now show that this is a general fact for
the Whitham hierarchy, being the potential the coefficient

hor =: —(log 7)x,
as we will see in a forthcoming paper this is essentially due to the existence of a T-function
for the Whitham hierarchy [21].
The Whitham hierarchy is determined in terms of the functions z,, or its coefficients d,,,
as given in (11). In fact, as was stated in proposition 1 the coefficients d,,, are determined in
terms of £, and its x-derivatives. We will consider inversion formulae for (11)

-1 -2 -1 )
P =20+0012, +00Zy +--, D =qi+0i1z; +0pz; "+, (36)
where the inversion coefficients o,,, are polynomials in d,,,,, for example,
2
oo1 = —do1, op = —dp, o3 = —(dos +dgy), (37)

o1 =di_1, oi2 = diod;_1, 03 = di_1djo + d,'z,ldil- (38)

In the following we will use the geometry illustrated in figure 1. We first show the
following:

Theorem 2. The following identity holds:
. 1 z
[8 0= (3,,)](p) = _Tf log <1 _ P& “)> n2 =t dz, + (1 = 800800 (log (1 - q—")
71 Jr, p p

1
~ 1§ 10g (1 _ (o)
P

2mwi To

)zgldz()) : p € C\Dy. (39)
In the above formula we must understand that when & = 0 the second term of the rhs vanishes
even if gy = oo.
Proof. We first introduce

) eadH0> (aun) = q);,m = qD/m,lp71 + ®un,2P72 +-

and observe that

L 7{ mdq’“”( )d P 1,2 (40)
= —m n.ms m=1,4,....
2ri yop dp p)ep -

Now we consider (20) with the explicit form for #y
8- (3,,) + 8,020 — (1 = 8,10)840 log zo = 8 € (8,),

_ 41
8 eadH,. (8,m) + 8/41‘ ((1 - SnO)Z? + 8n0 lOg Zi) =34 eadH (8//,11), i €S @b
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which are derived from (5) by taking right logarithmic derivatives. We act with p™ % on (41)
to get

m d a m n— — dZ m d a
P18 (3,01 + p" (n802 " — (1 = 8080025 ) o = P ——[6 € (3)],
dp dp dp 42)
m d . n— - dZi m d
P @[6&‘“*1 (@un)] + 8, (n2! ™" +8n02; 1))621’ @[Wd”(aun)].
We observe that
n dr c
—Ct
p dp
and therefore
d M d
— m dH _ m dH
0= f )4 @[862‘ (aun)]p = Z% )4 @[(Sea (all«n)]-
Y u=0 Yu
From (42) we derive
0= ’"i[s adto- (3,)1dp + (20)™ (8,025 — (1 = 8,10)8n025 ') d
= p d € un)1Ap P o 10,02 1£0)0n0% ) 20
) p To
l d
+ m—[5e M (9,,))1dp + 8 i% z)" (nz" " + 8,027 dzl).
;(yﬁpdp[ (8)1dp urip()(, 0z
43)
Therefore, recalling (40) and
mdg
p dp cg
we may write (43) as follows:
1 _ 1 p(z)" % p(z0)"
D@m= =— "n" ld + 80— H dz, — = d .
M pun, 27i Jr, Pl nz, - dzy 02ri (ﬁu Zu o ro 20 «
and (36) implies
m®,,m == p(z)" "z dz, + (1 — 8,0)800 | g™ — L p&o)” dzo ). (44)
H 27i Jr, " H " " koo 2mi Jr, 2o

where it must be understood that when © = 0 the second term of the rhs vanishes. Hence, as

q 1 g™ q
og(1-2)=-S"21_ 9121,
e(1-4)=-> 20|

p

we immediately derive (39). O
As a byproduct of the above proof, we get

Corollary 1. The following relation
1 d(log ),
Oun = —
n+(1—38,0)80 Oty

, oo1 = —(log ) (45)

holds.
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Proof. We prove the theorem in the following steps:
(1) If we put m = 1 in (44), we get

dho 1

_ n—1 —1
e = 3§ (15 (0= 300805 b (46)

where we have taken into account that
-1
?{ P(20)zg ' dzog = 0.
Ty

(i) We use the inversion formula (36) in (46) and get

dhoy 1 n—1 -1
7 > 3 7§r (nz "+ (1 = 8408002, )0y dzyu. (47)
I=—1,0,1,... n

and the desired result follows at once.
(iii) From the identity

- 0 -
8 et <£) =—(p)—p=—z0—p

we get

dho 1 dzo 1
=5=¢ p—dp=5=9¢ po)dz =o0.
0x 2ri J,," p 2mi Jr, -

Observe that all the coefficients o, are determined in terms of /¢ and its time derivatives.
Moreover, as all the coefficients d,,,, are rational functions of the o,,,, for example,

2
do1 = —ooy, doy = —0o02, doz = —o03 + 03,

2

02 0i30i1—0j

di_1 =o; dip = 22 dy = —+=2
i—1 ils i0 o’ i a,-3]

’

all the Lax functions may be written in terms of h¢; and its t-derivatives.
Finally, we may write the contents of theorem 2 as follows:

Corollary 2. The following identity holds:

1 dz”?
[8 €4~ (3,)](p) = ——.% log <1 - 2) —dg + (1 = 8,40)8u0 <10g < - q—ﬂ)
2mi Ya p/) dgq p

1 dl _
IR G (1 3 g) Og(z()(q))dq) 7 e C\Dy.
27i J,, p dg

For example, if we exclude the times 7;o from the discussion we get the suggesting formula

. 1 q dz"
§ e2Ho- (g3 =—— @ log{1-+)—Ldg.
[6e (0u)1(p) iy, og o) 4 q
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3.4. Undressing solutions of the Whitham hierarchy

In section 3.1 we have proved that the differential version of the factorization problem (5)
may be described in terms of the Whitham hierarchy. Here, we show the equivalence between
both descriptions by proving that any solution of the Whitham hierarchy may be formally
undressed, i.e., it comes from a convenient factorization problem.

Theorem 3. Any set of Lax functions z,, and zero-curvature functions 2, as in (11)—(12)
satisfying the Whitham hierarchy (14) may be obtained by a dressing procedure based on the
factorization problem (5) as described in theorem 1.

Proof. If we take as given the complex numbers qi(o) and the functions g;, d,, from
proposition 1 we may determine the coefficients X; and 4, up to x-independent terms.
This last fact is clear from the construction of z,, as a dressing of p,. Indeed, we have that
" p, = MueruP p, = M p, where f, € c,.

—adH;

We now undress, using the canonical transformation e «, the Lax functions and zero-

. 0 wi
curvature forms: z, — p, and 2, — @, with

Q0 =8 i (9, +e Q. (48)
Then,
0= dunpy = {Q),. p} (49)
and
990, 90
pn vl 0 0
— - —2+{Q, Q1 =0. 50
al‘vl atu.n { o VI} ( )
From (49) we deduce that
Q0. =0 (51
so that (50) implies
990, 900
— = (52)
datyy Bt,m

Moreover, for n > 0 we have
n _
Qun—2, €9,-

Thus, e~ # Qun — pﬁ €9, and (48) and (51) allow us to deduce

n - - 0 - -
Qb —plec, Ca,. QY +log(p—q¥) e co.
Hence, recalling (52) we get
ATy + fu) -
0
Q), = ——+=, for some f, € ¢,

0tun
and we can write
8 i (@) +e7 Q0= 8T (D).
Therefore, if
H, = C(I:I;, fu) €g, Lie., ey — gudHy gad fu
where C was introduced in (6), we have
Qun = 8™ (9,,) + i §e7(3,,) = (e e74)(3,,,), 7, = e edlup .

(53)
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Finally, from definition the zero-curvature connection €2, € v and there locally exists
H € tsuch that

Qun = 8 (3un), (54)
so that (53) and (54) lead us to the factorization (5) for some G,,. U

3.5. Dressing transformations for the Whitham hierarchy

In this section, we show how to dress any solution of the Whitham hierarchy by using
the factorization problem technique. Let z(" be Lax functions as described in (11), with
coefficients denoted by ¢ and dV), and Q) as defined in (12), so that the Whitham

i pum? wm?

hierarchy (14) is satisfied:

b2(h
v [ )

9t {Qun’zv }
un

Let us assume that qi(l) € D; so that there exists a Hamiltonian H" € t with
1 dH D
quz =38e" " (Oun).
Given new initial conditions G, u =0, 1, ..., M, the factorization problem
N _ - 2 _ _
! gudGr — madH, GudH™ H;eg,, HZ%er, (55)

will lead to a dressing procedure of the solution zf}) of the Whitham hierarchy as described
below.

Proposition 2. The new Lax functions

1)

Q) _ adH
z, =z,

are of the form (11) with new coefficients qi(z) and dl(j) determined by H, . The functions

(G
" —log(p—qi(z)), n=0, pu=i=1,...,M,

(in this case (-) +) projects in the span {log(p — qi(z)), (p — qi(z))_”}Oo and () +) onto the

n=1
span of {p™}or_,) have zero curvature. Moreover, the Whitham hierarchy

922 _

[ Re)]
atu,m - {Q }

pm> 2y
is satisfied.

Proof. We take right logarithmic derivative of (55) to obtain
§ & (3,) + € (QV) = 547 (3,,) = Q2. (56)

As Q) is holomorphic in D, for all & # v, we deduce that 2 is also holomorphic in
D,, ¥ # v. When u = v, we have a singular behaviour at p = ¢{! and we obtain Q2 with

the same structure as in (57). If we write the factor ¢*” as in proposition 1 and X; is defined

by
X; d
[ e
x hi(x)
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we get, for example, the following coefficients of zl(f):

2 1 2 1
q,-( ) = f],-( )|x=X,- + hio, d'(,)l =d" Xix

i i—1lx=X;

2 1 1 1 2 1
diy = (diy) + hizvd{ "y + 2hnd” dgy = dg — hoy.x.

l—lA,X) ‘x:Xi ’
Moreover, the analysis of (56) leads to the proof of all the other properties. For example, from
fo’f — §endH? (0,n) we deduce the zero-curvature condition for {Qgg } O

Now, we introduce

M
HO:=T(p) e, T:=)Y Tup)
n=0
for which
p", n=0,
o) adH© —log (P - qi(o)), w=i, n=0,
Q,,=3de Oum) = ) (57)
T o m n =1, n 2 17
0
(p— ai ))m
for this reason we say that e “ is a vacuum solution of the Whitham hierarchy. Indeed, its
dressing
eadH 2dGy _ o—ad Al eadH“)’ I:Iu_ €g,. HWY e,

giving H" and a new solution {Q{})} of the Whitham hierarchy, is just the factorization
problem (5) when we replace

eadH[ead(Zv#u n) _ eadH;’ H; c g;.

4. String equations in the Whitham hierarchy

In this section, we study the formulation of the Whitham hierarchy in terms of twistor or string
equations and the relation of this formulation with the dressing method described above.
We first introduce the Orlov—Schulman operators for the Whitham hierarchy in terms of the
factorization problem and then obtain the string equation formulation as a consequence of the
factorization problem. In the forthcoming paper [21], we will show that, in fact, the string
equations give all solutions of the Whitham hierarchy. Then, string equations and factorization
problem are equivalent tools to formulate the Whitham hierarchy. Finally, we introduce a very
special class of string equation whose construction is based on centreless Virasoro algebra
within the Hamiltonian functions, and therefore we refer to this as the Virasoro class of string
equations.

4.1. Lax and Orlov=Schulman functions of the Whitham hierarchy

The Lax functions (10) may be written as

ad H/I ead T,

Zu=¢€ DPu> w=0,1,..., M.

Observe that if we define (p, (p), x,(x, p)) by
(p, x), =0,

(P » X ) = (58)
T =) —x(p-a)). u=ies.
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we have
{pu, xu} =1
In terms of x,, the Orlov—Schulman function m,, is defined as follows:
m,, = e ey, (39)
so that it is canonically conjugated to z,,, i.e.,
{zy,m,} = 1.
Note that the quasi-classical Lax equations also hold for the Orlov—Schulman functions:
om,
Otun

= {Qu,na mv}~ (60)
We now give a closer look to these functions.

Proposition 3. The Orlov—Schulman functions have the form

o0
t
m, = Znt,mzz_l + 10 Z v,mz;”, where o) = x 61)
=1 p >2
n= nz
and
—X;, u=i=1,...,.M, n=0,
v,un+1 = _(nhin"'gin(hin—l,-‘-7hi2))|x:X,»y M=l = 19""M’ n >O’
—(nho, + gon(hon—1, - . -, hot)), u=0, nz=0,
8un being differential polynomials.
Proof. From (59) we deduce that
_ oT,
m”, — eadH,L (‘xll + _”') N
opu
so that
o0
m, = gtd H, X+ (1= SMO)IMUZ;I + Z ntunz:’fl.
n=1+8,10

Now, we evaluate

00 n—1
- 5 P —ai -
QdH (X; + > hin + Zin(hint. - hi2)le=x, ( Xi,xl) )Zi 2

n=2 . (62)
e x = x+100p™" = D (nhou + Bon(hon—1. ... ho)p ",
n=1
where g, are differential polynomials, but as
pX_iji =z +hitlexz; 2+ 0(27), P =2y +hyzg? + 0(zp")
we get (61). O

Observe that the first coefficients of m,, are

vi2 = —X;, Vi3 = —2h;2i=x,, vo2 = —hoy Vo3 = —2hg;.



2368 M Maiias et al

4.2. The factorization problem and strings equations

Let us define new canonical pairs (Z,,, 7iz,,) and (P 1w 0 «) given by

2# = eadH“’ ead TMP’ ﬁlﬂ = eadH,: ead T”x,

}A’M = e™0up, QM =80y, (63)
Observe that

Zu = pulZp), my = x, (M, 2),

where the functions are defined in (58).
Now, we are ready to give a first version of the string or twistor equations for the Whitham
hierarchy:

Proposition 4. For any given solution of the factorization problem (5) with associated
canonical pairs (Z,,m,), (P, Q,.), as defined in (63), the following string equations hold:

Po(Gy, ) = PG,y e, 0,Gu i) = 0, y) €t (64)

Proof. The factorization (5) implies

Pﬂ(2M7 ”hu) — eadHI: eadTM eadG”p — eade — 1—[’

A _ (65)
Qﬂ(zu’ ﬁ/lM) — eadH# CadT” eadG”x — eade - 0.
Note that
$u(p, x) == (Pu(p, x), Qu(p, x)) (66)
is a canonical transformation, i.e.,
{pﬂv Qll.} = 1,
that together with (65) ensures that
b Gun i) =y (v, ) = (I1, ©), (67)
and (64) follows. U

The string equations (67) have an interesting interpretation in terms of transition functions
between different canonical pairs

G ) = Py By 1), b =" 0. (68)
Now, we define the canonical transformation

Vu(p, x) := (pu(p), xu(p, X))
in terms of which the associated solutions of the Whitham hierarchy are

(Zua mu) = wlt(flu ﬁ’lﬂ)
We also introduce

(Pt +q” —p¥x), u=ies,

= (P,, = b o _l, = ,Ou) =
u = (Pu, Qu) buoy wu (T O0) (p,x), w=0,
so that
P, = pu(”u(l?»x)’eﬂ(ﬂax))a Q# = Qu(nﬂ(p,x),eﬂ(]?,x)) (69)
and

{P/u Q[l.} =1
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Observe that this definition is equivalent to
PPy %) = Pu(p, ), Qu(pus 1) = Qu(p, x).
Then, the connection among the different Lax and Orlov—Schulman functions is given by
(@ M) = G (20, my), bu = VYo duwot, =¢, o,
Therefore,
Gz my) = ¢y (20, my) = (11, ©)
and

Proposition 5. Given a solution of (5) and functions (P,, Q,) as defined in (69), the string
equations

P,(zy,m,) = PM(Zus mu) €T, 0,(zy, my) = Q/L(Z;u mu) SRS (70)
holdVu,v=0,1,..., M.

Note that new initial conditions G, of the form

eadG adGeadG,L or G/_L — C(G, G,u)7

L e
lead to
i)p, = P(P;u Qu)’ Q[L = Q(Pp_’ Qu)-

Thus, the corresponding string equations are constructed in terms of the initial non-tilded ones.

4.3. A special class of string equations related to a centreless Virasoro algebra

Consider the Hamiltonian
GO = (71)
g
which generate the canonical transformation
(P, x) = (Fu(p) x/ f},(p)), Fu=&"(1+&,(p)).
Observe that these Hamiltonians close a Lie subalgebra vit := {xf(p), f : C — C} as

{xf(p), xg(p)} = x(f'(P)g(p) — f(p)g'(p)) C vir. In fact, vit is a centreless Virasoro
algebra with generators

L, :=xp"! 72)
satisfying
{lna lm} =0 - m)l,,+m.

The functions & 0 f . corresponding to the Virasoro generators (72) are

2-n 2on \
D 3
£ ) n 29 7 2_ 1+ 5 2,
logp, n=2, ep, n=2.

We will also use the harmonic Hamiltonian
1,22
R:=5(p"+x7)
which generates the canonical transformation

(P’x) - (—X, P)
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Let us consider a splitting S = I U J, I N J = @, and define the initial conditions

eadeo’eadR’ iel,
edGu .= g (73)
e, w € J U{0},
in terms of fo’) as defined in (71). It is easy to realize that
(Po. Qo) = ( Fo(p). =
0, Qo) =\ Jo(p)y=—2),
Fo(p)
( SRt )) el (74)
> Jilp) ), l )
PN Jfi(p)
(Pi, Qi) = B
fi(p)9 e E i€J,
< fi(l?)
and the corresponding string equations are
N m; A . m .
foZo) = e er, fi@)= 7 (? ) €, iel,
i \Zi <
i . 0\k0 (75)

mi 1o
f@)  foko

Taking into account the invariance described in (7) we deduce that the string
equations (75) also appear for the following set of initial conditions:

Gl iel,
el .= [ (76)

Foo) = fiG) e,

€, ielJ.

eade?) g R we JUu{o},

where now

X ~
s ( ))’
AR

i(p), ﬁ) i€l (77)

X A
X _hp), e
(f;(m f””) ‘<

We introduce the functions f}, subject to

e e
~

X fo(p) = fo(p), n=0
fulp) = Futp) = ﬁ(p)zﬂewlrw), p=ies
so that
X

P’ =|—-——, s
(Po, Qo) ( IR0 fo(P))

(ﬁ-(m,—%), el
(P, Q) = L

- s, Qe
( o f(p)> i€
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Therefore, we get the string equations

Jo(zo) = —fn—i e, fiz) = Tno er, iel,
fi (zi) fo(ZO) (78)
m; mo

fo(zo) = fi(z) €, ) er, iel

These string equations reduce to Krichever type of string equations considered in [12] for
J =S and to the Takasaki—Takebe type [28] for J = .

5. Additional symmetries for the Whitham hierarchy

This section is devoted to the analysis of the additional or master symmetries of the Whitham
hierarchy. For that aim we characterize the additional symmetries in terms of deformations
of the factorization problem (5). We then compute some explicit examples of additional
symmetries leading to functional symmetries of the generalized Benney gas equations. Finally,
we study its action on Virasoro string equations.

5.1. Deformation of the factorization problem and additional symmetries

The treatment of functional symmetries of dispersionless hierarchies as additional symmetries
was first given in [18] for the dispersionless KP hierarchy. Then, its formulation as a
deformation of a factorization problem for the rth dispersionless Toda hierarchy was considered
in [16].

In this section, we allow each initial condition Hamiltonian G, to depend on an external
parameter s

G, = G,(s).
Then, the factorization problem (5) also depends on s
e Tugad Gu(s) — gmad Hy (s)pad H(s) with  H, (s) € g, and H(s)et. (79)

Thus, we deduce that

Theorem 4. Additional symmetries of the Whitham hierarchy are characterized by functions
F,(zy, m,) as follows:

M
8Zu aF\;
9s _8_’”1; " Z{(Fu(zw M) 45 o s
M:O
M
8m,, 8Fv
SN B
as 82\) u=0

Proof. Taking the right logarithmic derivative of (79) with respect to s we get

) , 9
§ e i <a> + Fu(zmy) = §e47 (g) ) (80)
where
. . ) 9
Fu(zuomy) = F (2. M), F, :=8e"0 (5) :

Observe that from the splitting

M
F,=F, +F, F:=Y Fuy
v=0
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with
FM‘ S g;, Fer,

and from (80) we get that

s ety <i> =-F, =F—F,,

3 0
’ (81)
sen (L) Z F
as '
Therefore, from
0z, - (0 om - (0
ind 8eadH" —, , [ — (SeadH“ —).m
as { <8s ) % } as as .
we get the desired result. ]
An important reduction is given by 7, = 0 forn > N,. If we assume that
F,(zy,m,) =c,logz, + Z cu,,-jzjtmlf;, (82)
i,jJEZ
and
N, ;
n— 10 —n
my=Y bz =Y vz (83)
n=1 T n>2

imposing F},(z,, m,) to have no terms proportional to zj, for n > N,, we ensure that the

constraints are preserve. We request this for each of the products sz,’;:

i i N, —1 -1 -2 -3 J
i J o i '
z,my, —ZM(N;J/LN,LZM ot 102, V02, 03T, +)

= (Nutun,) 2™ W 4o = ¢ =0ifi + (N, —1)j > N,
Hence,
Ny
m
Fo(z,, my) :culogzM+Za,w % zZ, (84)
n=1 Nyuzy"

with o, being analytic functions.
Sometimes it is convenient to consider that only one of the initial conditions is deformed,
say the o-component:

G, G, Vi = 0.1 M
9s = Oua as» mw=0,1,..., .
In this case, we get the following symmetry equations:
a9z, dFy
= 81}0[ +{(Fot(zav m(}())(;l,,+)7 ZV}7

as Mg,

om, oF,

as - _Svayz + {(Fot(zou ma))(u,+)’ mv}‘

(85)
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5.2. Action of additional symmetries on the potential function

Observe that if we express m, = m,(t,z,), we get F,(z,,m,(z,)) =: fu.(z,). Then,
inspired by theorem 1, we get

Theorem 5. The following relation

M
d(log 7), 1 fﬁ dfy
Ve It dz,,
3s i /;) - P(zu) dz,, o
holds.
Proof. From (80) and

But

is holomorphic in D; and
d wdp- [ O oh ot d
P [5 - <_>] =y o(p Yy + B0 S0
dp s s
and the stated result follows. O
Let us assume the expansion

fu = Z f;mZZ

n=—00

and perform a change of variables p — z,, to get

oh
851 - 2mZ?§ (Z Sunnz), 1)( ) Uﬂlzul> dzy.

n=-—00 I=-1,0,1,...

= Z nfunau,n = _f()—l + Z nfunaun-

n=0,...M n=0,....M
n=-1,0,1,... nzl
Therefore, (47) gives
3]101 8hOl
=—fo1+ f01— Yo e (86)
35 Otyn
n=0,....M
n>=1+8,0

This will be a linear PDE for h¢,; if we ensure that the dependence of the coefficients f,,
on the functions v, is restricted to vo = —hoy, i.e., do not depend on rational functions of
ho and its derivatives. This is the case always for the time reduction #,, = 0 forn > N,
Yu=0,1,..., M. For example, we take

F,=a, | —2 ) =1,...,N
W=y N A Zy n=1,...,N,.
ulp
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Then,
my n 1 —1 1 =Ny 1 —N,—1
———— =tyn + ———1tuN 12, -+ —1,0Z + —v,n7 +oeee,
No—1 N, WN, no<p u2ip
N.z," / Ny o Ny Ny
and therefore
my -1
o, m :AM0+AM1ZM + .-
Nuzp
with
A,LLO = apt(tpLNu)7
N,—1
A= a;(tuN,l)MN—tp.Nu—ls
m
N,—2 (N, — 1)?
A = (tun,) ———tyn,—2 + = (tyn, ) 12
NNy Uy w\ R 2 uN,—1°
! N, ! 2 " N; !
!
1.0 ZH—S:N tll-rt/l-s (N,) (N — 1)N“ N
Auy. = (v )=+ o (tyy ) ———— ety M () ——
N, /,,( /LN,L) N;/, M( ;LN,,) Nu i ( MNu) NM!NLVM UN,—1
7
V2 Zrﬂ‘:N +1 tlu'tl”
Aunnt = o (tun,) == + o) (tyy,) —————
i NN NN
» I NM I Nu_
N, — 1 N,+1
PN S PP (N, — 1) N+l
te " uNy) — N +1%uN,—1
"N+ DIN
(87)
Here, ' means that if » = s then we multiply this contribution by 1/2. We see that all
the coefficients Ao, ..., A,y, do not depend on the functions v, for all the others the
coefficients v, contribute. In particular, Agy,+1 depends on v;.
We have the formula
fum = A;mfm7
and (86) reads
0ho dho 0ho
— = —fo_1+ foo— + A ——. 88
9s fO fO 9x Z un mat/m ( )
n=0,....M
1+8,0<m<n
Forn =1,..., N, — 1, the coefficients As that appear in the above equations do not
depend on any vs, v, = —ho1, and for u = 0,n = Ny, the coefficient Agy,+1 do linearly
depend on vy = —ho;.

Note that (88) and (87) allow us to describe the motion of the potential /¢; of the Whitham
hierarchy under additional symmetries via a linear PDEs.

5.3. Functional symmetries of the Boyer—Finley—Benney system

M

Letustake No = 2and N; = 1, sothatthe involved times are {fio =: x;, £j1 =: y;, too =1 t};";_,

and the PDE system is the one presented in section 3.2. Now, we have
—1 -2
m0=2tzo+x+t00zo +v0229 " 0, foo=x1+---+xpy
-1 -2
mi=}’i+xiZ,- +UiZZi +eeey,
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so that

mo X too x? _n
o <%> = o) +a6(t)§z0 + (aé(r); +a(’)’(l)§> o H

_ l —1 ’ ” 'xi2 -2
ai(m;) = a;(y;) +o;(yi)xiz;  + | o (yi)vio + (yi)7 IARE T
3

We put C;, = 0 as these symmetries correspond to the first flows 7°-. Then, in the context of
(85) we have three different types of generators:

2
(1 o X ;.\ foo o X _1
FO = (2—20) 20 = ()lo(l)Zo +Ol(/)(l‘)§ + <(¥0(l)7 +O(0(l)§) Zg too,
2
?2) mo / X / Too P
Fy7 = <_2ZO) z(z) = 0{0([)2(2) + oto(t)zzo + (ao(t)? + o (t)§> +ee,

2
_ X; _
F = a;(m)z = o (y)zi + ) (y)xiz | + (“f(Yi)Uiz +051{/()’i)?l> SRR

Therefore,
IR 1, (mo
—_— = —, JEE— s
amo 2 2\ 2z
IFY 1, (mg

= — _ 0>

amg 270\ 25, )
oF;
— =o;(m)z;,
3]’)’1,‘

and

F") 0 = @0(t) Q01 + ()~
(Fy )(0&) = op(?) 01+(x0(t)§,

F@ _ Q 'nra NS
(Fo )(O&)—Olo(f) 02+a0(1)§ 01+a0(t)?+a0(t)§,

(Fi)(m_) = a; (yi) 1.

Hence, the evolution of the Lax functions under these three types of symmetries is characterized
by the following PDE system:

9 1 9z 1, 9
= o <@> +ao() =0 — o (1) =2
ds, 2 229 ax 2

ap’
1),
SO ’ 8Z,‘ , 32,‘ 1 , BZ,‘ (89)
5 =) — S
s, ox 2 ap
aZO 1 , my 310 1 , aZO 1 , 820 ” X 310
— = —a)| =— )20+ ao(t) — + () x— — —a)(t) p— — & (1)~ —,
o oy T2 () e 5+ o = oo i3 3
0 82,‘ Bz,- 1 azi 1 82,‘ X 8Zi
— = =ap(t)— + o) ()x— — —aj () p— —ag (1)~ —,
70 ao(t) ==+ S (Dx - — Sag()p op O o

(90)
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97¢ 97¢
_] = (yl)_)
as; ay;
07 a9z ..
Si: —j—az()’z 19 ];ﬁl, (91)
as; dyi
0z; 0z;
i o (my)z; + o (}’i)i-
as; dyi

We now analyse how the dependent variables {w, v;, qi}f‘i , evolve under these symmetries:

e The S((,l) equations (89) implies a transformation that only involves the independent
variables (x, t) characterized by the following PDEs:

ow ow x
—— —ap(t)— + —af(t) =0,
a0 T
aU,' BU,-
— —a(t)— =0,
as(()l) Bx
Dai (r) Ly L) =
— O U
a5 2%

and the symmetry transformation is

2
vi(x, 1) = vi(x + f(1), 1),
'@

2

gi(x, 1) = qi(x + f(1),1) —
with f := s0 )ag. For the potential W this symmetry reads

” M
W(x, 1) > W+ £(1), r)—% (x +f(;))_MZ

o In this case, the S(()Z) equations (90) implies a transformation characterized by the following
PDEs:

dw dw L, dw foo x? "

— — () — — —al(t — @y + et + g (1) =0,
3sy” @005 = 3% O¥ g —aoOw + Zray(1) + Trag (1) =

Bv,» (t)8vi 1 /(t) V; 1 /(t) 0

0 U - — =« X— — < v, =0,

os® U er 20 T ax 20

ag; aq; 1 , 0q; 1 , 1 , B
as(()Z) - 010(1‘)5 - an(l)xa—x — an(l‘)qi — Zao(t)x =0,

and the symmetry transformation is

, - B t()_O //(t) 5
w(x, 1) > T"Ow/T'()x, T (1)) 2T 16{ S tlsx”,
vi(x, 1) > VT O (VT (0)x, T (1)),
T//(t)

gi(x, 1) = JT'(Oq:(VT'()x, T (1)) + 0"
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with T := T(s0 , ) characterized by the following relation:

T
_SO .
¢ ag(t)

and we have used the Schwarztian derivative

"\ 1 /TN T"@) 3 (T' "\
() 2\ 170 @) 2\T'@)

which must not be confused with the Poisson bracket.
For the potential W this symmetry reads

// M
W(x, 1) = JT' OWT (0)x T(t))+— @ in+%{T,t}sx3.
i=1

4T'(t)

e The S;-symmetry characterized by equations (91) implies a transformation that only

involves the independent variables (x, y;) as follows:

Jw ow

1 1 O’
s, Ot(y)8
AT ik e [ #i
— — , i,
ds; ™ J
av; av;
B_:l —sz(}’z)a —q; (yl)vl —0
8qj qu _
o5, a;(y )

Thus, if Y;(s;, y;) is defined by

/Yi dy;
= Si,
y, Qi ()’z)

i

then, we have
w(y) = w(¥i(yi)),
vi(yi) = v;(Y;(3)), J#i
vi(yi) = Y] (v (Y (i),
qi (i) = qi(Yi(yi)),
which in terms of the potential W reads
W(yi) = WTi(yi).
If we put My = 1, i.e., we not consider the #-flow, the transformation is
v = X' (D)vi (X (x)),

1

gi — X' (x)g: (X (x)) + tooy

/x dx
= 350.
. ax)

That in potential form is

where

2 ”

W — X' (x)W(X(x))+ foo £
2 X
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This symmetry together with the S; symmetries described above constitutes the well-known
conformal symmetries of the extended Boyer—Finley system. When the #-flow is plugged in,
and the extended Benney system appears, then this x-conformal symmetry disappears.

Nevertheless, these additional symmetries, to the knowledge of the authors, are not known
for the generalized Benney system [33]

8_q _ A(g* —2w) v 28(qv) ow _ 8_v ©92)
ot ax

ot ax 5 ox
In fact, we have proven

)

Proposition 6. Given any three functions Y (y), f(t), T (t) and a solution (w, q, v) of (92),
then we have a new solution (W, g, 0) given by

T//
0= T OUW T+ ). V0. T0) - P

b (T sn pp? - 0 (x - @) ,

1 =TT+ 0. Y0). T+ 30 s = 0,

=VI'OY WMo T' O (x + f(1), Y (), T(1).

We must note that the above functional symmetries do not respect the shallow water
reduction that appears in the limit x = —y.

5.4. Additional symmetries of Virasoro type and its action on string equations

As we have seen in section 5.1, additional symmetries appear when deformations of the initial
conditions are considered. Here, we will consider initial conditions as in (73) and (71) with
G'? depending on an s parameter as follows:

GO = __* (93)
E(ps)

so that in the string equations (78) we will have functions
by nw = f " (s).

Note that (93) describes a curve in the Virasoro algebra vit, and therefore describes the more
general motion for the set of initial conditions G ,.

The right logarithmic derivative of the initial conditions (73) with respect to the additional
parameter s is

fV (Pua S)

adG, i — —_ g 7
de (8s) = Bu(pu)Xu, Bu = o (Pre 5y

and the corresponding additional symmetry generator is

Fy = Bu(zmy,
so that

azv

- IBU(ZU) + Z{F(M +) Zv

n=0
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Now, if we freeze times t,,, = 0 forn > N, so that

N, o0
m, = iz + 0z + Vyn2 "
w = unly o<y, unly
n=1 n=2

and we require the additional symmetry to leave those times invariant, we must have

,B;I.(Zu) = Z b;/.lz;l~

I=—1
Let us take, for simplicity, Virasoro-type generators

1-n, —
ﬂvz(;vzv", l’lv—l,...,N\,, CVE(C
so that
aZV 17;1# aZu
P) = Cvly + E (n+ nu)tun+nucua_~
§ =0,...M Tun
n=l1,..., N,—n,

whose integration leads to

20(s) = Jounys + 2o (£(5))".

where
tu1(s) i=ty1 + (ny + Dscptyn,+1,
tlLNu*"u (s) := IMN#*V!# + NIJ«SCIJ«II/-NH’
tp,Nﬂfn,ﬁj(s) = t;LN,lfn,ﬁj’ ] > 1.
Integrating
3 3fu
— +Buz)— =0,
ds Putzy 9z,
we get

Fu@n ) = fu(V—cunus + 21 (8)) = fu(zu(#(5))).

5.5. Invariance conditions for additional symmetries and string equations

We note from (81) that the invariance condition under an additional symmetry

M
Fr =Y (F)ow—F.=0. Vu. (94)
=0

Thus, all the functions F,, must reduce to a unique function F,, = F' € t. Given a solution
of the string equations (70), we may take
1+ 1+
F,=P,"0,",
and conclude that F,, = F' € t,Vu. Hence, string equations determine solutions invariant

under additional symmetries characterized by the generators
Vﬂ’rs — Pll+r' Q}:J,
which close a Poisson algebra
{V/J.,rsy Vp.,r’s’} = ((r + 1)(5/ + 1) - (r/ + 1)(5 + 1))Vr+r’s+s’~

In particular, the functions V,( generate a Virasoro algebra.



2380 M Maiias et al

Acknowledgments

Partial economical support from Direccién General de Ensefianza Superior e Investigacion
Cientifica no FIS2005-00319, from European Science Foundation, MISGAM, and from Marie
Curie FP6 RTN ENIGMA is acknowledged.

Appendix. The right logarithmic derivative

Here, we follow [9]. Given a manifold 7, a Lie group G with Lie algebra g and a map
V¥ : T — G, we define the right logarithmic derivative ¥ € Q'(7, g) as the following
g-valued 1-form:

SY(E) = Tywy(W® o Thy(5)  VEeT,T, teT,

where uf(h) = g - h is the left multiplication in the Lie group. Recall that the right Maurer—
Cartan form x € Q!(G, g) is a g-valued 1-form over G given by

Kg = Tg(“gil)*
in terms of which
Sy = Yk,
Given two maps ¥, ¢ : 7 — G, then
(Y - @) =08y +Ady(5¢) (A.1)

and therefore

S = —Ady ().
It also holds for w := §¥ and z = Ad ¢ (Z) that

do + 3[w, 0] =0, (A.2)
dz = [8¢, z] + Ad ¥ (d2Z). (A.3)
If there is an exponential mapping exp : g — G, we have the formula
1
Tx exp(Y) = T,uP¥ . / Ad(exp(sX))Y ds.
0

Thus, if Y = exp X with X : 7 — g, we have

1
Sy (&) = Ty (Tx exp) T X (§) = Typ o Tou - / Ad(exp(s X)) (T: X (€)) ds
0

1
= / Ad(exp(s X)) (T X (§)) ds, V& e T
0

that when we are allowed to write AdexpX = ) - (adX)"/n!, for example if G is a
Banach-Lie group, which reads

ad X)"T: X
v = Z ( (n +) 1)f
Given a smooth curve X : R — g, we consider the problem
3y (9,) = X (@), v:R—>G
Y(0) =e.
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One can prove uniqueness of solutions and that local existence of solutions implies global
existence of solutions. We write evol : C*(R, g) — G, with evol(X(¢)) = g(1) and say,
following Milnor, that the Lie group is regular and smooth if evol exists. That is smooth curves
in the Lie algebra integrate, in terms of the right logarithmic derivative, to smooth curves in
the Lie group.
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