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Abstract

We prove that if the one-point compactification of a locally compact, noncompact Hausdorff space
L is the topological space called pseudoarc, then C0(L,C) is almost transitive. We also obtain two
necessary conditions on a metrizable locally compact Hausdorff space L for C0(L) being almost
transitive.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a Banach space. We denote by G(X) the group of all surjective linear isome-
tries on X. It is said that X is transitive if for every x, y ∈ SX there exists T ∈ G(X) such
that T x = y. It is said that X is almost transitive if for every x, y ∈ SX and ε > 0 there
exists T ∈ G(X) such that ‖T x − y‖ < ε.

If L is a locally compact Hausdorff space, C0(L,K) will be the space of continuous
functions from L into K which vanishes at infinity. We consider it as a Banach space over K

with the supremum norm; if we treat results that do not depend on the scalar field, we shall
simply write C0(L). L̂ is the one-point compactification of L, and we assume L ⊂ L̂. If L

is not compact, the only element of L̂ \ L is represented by the symbol ∞. If f ∈ C0(L),
f̂ is its only continuous extension to L̂. Likewise, if σ :L → L is a homeomorphism, we
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denote by σ̂ the extension of σ to L̂ given by σ̂ (∞) = ∞. It is easy to see σ̂ is also
a homeomorphism.

Wood’s conjecture, which first appeared in [14], is the following statement:

Conjecture 1.1. If L is a locally compact Hausdorff space with more than one point, then
C0(L) is not almost transitive.

Henceforth, L will be a locally compact Hausdorff space with more than one point. It is
known that the conjecture is true in the real case [7], and the next proposition summarizes
some of the most important results on the general case.

Proposition 1.2. Let K be R or C. The following statements are equivalent:

(1) There exists L such that C0(L,K) is almost transitive.
(2) There exists L such that C0(L,K) is almost transitive and L̂ is metrizable.
(3) There exists L such that C0(L,K) is transitive.

The proof of 1 ⇔ 2 is in [3], and that of 1 ⇔ 3 is in [7].
Following the terminology of [4] and [5], which is inspired in [7], we say that C0(L) is

almost positive transitive if given ε > 0 and f,g ∈ C0(L) with ‖f ‖ = ‖g‖ = 1 and f (L) ∪
g(L) ⊂ R+, there exists T ∈ G(C0(L)) such that ‖Tf − g‖ < ε. We say that C0(L) admits
almost polar decompositions if for every f ∈ C0(L) and ε > 0, there exists T ∈ G(C0(L))

such that ‖T (|f |) − f ‖ < ε, where |f |(t) = |f (t)|.
Of course, C0(L) is almost transitive if and only if it is almost positive transitive and

admits almost polar decompositions. We also should take into account that if C0(L) is
almost positive transitive, the isometry T mentioned in the definition can be chosen in the
form T h = h ◦ σ , where σ :L → L is a homeomorphism. This fact is an easy consequence
of Banach–Stone theorem.

In both [7] and [14] it is observed that if C0(L) is almost transitive then L cannot be
compact and L̂ must be connected. These results remain valid for the weaker property of
almost positive transitivity.

A generalization of Wood’s conjecture was raised in [1]: Is every almost transitive JB∗-
triple a Hilbert space? As in Proposition 1.2, here the word “almost” can be dropped from
the question without changing the answer. This was proved also in [1].

Recently, Lusky [11] proved that if a separable complex Banach space X is (isometri-
cally) the predual of an L1-space then it is contractively complemented in a C∗-algebra. In
particular, such X will be a JB∗-triple and therefore every separable complex almost tran-
sitive L1-predual is a non-Hilbertian JB∗-triple; examples of this are the complex Gurarij
space [8] and the complex M-space constructed in [3], thus both examples answer in the
negative the aforementioned question in [1].

2. Necessary conditions and continua theory

Concerning the basic facts about continua, the author followed the book [12], although
there are many specialized texts on the subject.
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A continuum (in the plural, continua) is a compact connected topological space. If K is a
continuum, it is said that K is indecomposable if there do not exist A,B proper subcontinua
of K such that K = A ∪ B . Equivalently, every proper subcontinuum of K has empty
interior in K . Finally, it is said that a continuum K is hereditarily indecomposable if every
subcontinuum of K is indecomposable (including K itself).

The intersection of a countable decreasing family of continua is a continuum. If K is
a continuum, for every x ∈ K we define the composant of x as

⋃{C ⊂ K: C is a proper
subcontinuum of K and x ∈ C}. It is well known that if K is an indecomposable metrizable
continuum, then every composant is dense in K and the set of all the composants forms an
uncountable partition of K .

The following lemma will be useful in what follows, yet it is not strictly necessary.

Lemma 2.1. [12] If K is a Hausdorff continuum, x ∈ K and there exists a continuum
D � K with int(D) �= ∅ and x ∈ ext(D), then there exists a continuum C � K with x ∈
int(C).

Proof. If K \ D is connected, it is enough to take C = K \ D, then C �= K since
int(D) �= ∅, and x ∈ K \ D ⊂ int(K \ D) = int(C).

If K \ D is not connected, then K \ D = U ∪ V with U and V open disjoint sets
and x ∈ U . Consider C = D ∪ U , we have that x ∈ int(C). Also, C = K \ V , so C is
compact. If C is not connected, there exist A and B compact disjoint nonempty sets with
A ∪ B = D ∪ U . Therefore, A ∩ D and B ∩ D are closed sets which partition D, and as
D is connected one of them must be empty. Suppose for instance that A ∩ D = ∅, then
A = U ∩ (K \ B) and therefore A is a compact open proper subset of K , which yields to a
contradiction. �
Lemma 2.2. Let T be a metric space, F a closed proper subset of T with non-
empty interior, A ⊂ int(F ) and B ⊂ ext(F ) nonempty sets such that min{d(A, ext(F )),

d(B, int(F ))} > 0. In this situation, given ε ∈ (0,1) there exists a continuous function
f :T → [0,1] with f (A) = 0, f −1([0, ε]) = F and f (B) = 1.

Proof. Take

f (x) = min

{
1,max

{
0, ε + d(x, int(F )) − d(x, ext(F ))

min{d(A, ext(F )), d(B, int(F ))}
}}

.

It is straightforward to check that f has the required properties. �
Next we present the theorem which was the guide to the counterexample. The necessary

conditions that we obtain for a space to be almost positive transitive are quite restrictive.

Theorem 2.3. If L̂ is metrizable and C0(L) is almost positive transitive, then:

(1) Given C and K subcontinua of L̂ with C � K ⊂ L̂ and ∞ /∈ frKC, we have
intKC = ∅. In particular, every subcontinuum of L is hereditarily indecomposable.
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(2) Given G1,G2 open subsets of L with ∞ /∈ G1 ∪ G2 and H ⊂ G2 with d(H, L̂ \
G2) > 0, there exists σ :L → L homeomorphism such that H ⊂ σ(G1) ⊂ G2. In par-
ticular, L is almost homogeneous (i.e., given x, y ∈ L and ε > 0 there exists τ :L → L

homeomorphism with d(τ(x), y) < ε).

Proof. (1) Let C and K be continua of L̂ with C � K ⊂ L̂ and ∞ /∈ frKC, and suppose
that intKC �= ∅. Due to Lemma 2.1, we can suppose that ∞ /∈ K or ∞ ∈ intKC. In both
cases, Lemma 2.2 allows us to obtain a continuous surjective function F :K → [0,1] such
that F−1([0,3/5]) = C and F has a continuous extension f to L̂ such that f |L ∈ C0(L)

with ‖f |L‖ = 1.
Besides, let G : [0,1] → [0,1] be a continuous function defined by G(1) = 1,G(1/2) =

2/5, G(1/3) = 4/5, G(0) = 0 and G is linear in the intervals (0,1/3), (1/3,1/2) and
(1/2,1). We can suppose max{d(x,∞): x ∈ L̂} = 1. Let g : L̂ → [0,1] be defined by
g(x) = G(d(x,∞)). We have g|L ∈ C0(L) and ‖g|L‖ = 1.

By the almost positive transitivity of C0(L), there exists σ :L → L homeomorphism
such that |f (t) − g(σ (t))| < 1/5 for every t ∈ L. Choose t1 ∈ K such that f (t1) = 1, then
g(σ (t1)) > 4/5 and this implies d(σ (t1),∞) > 1/2. Choose t2 ∈ K such that f (t2) =
1/5, then g(σ (t2)) < 2/5 and this implies d(σ (t2),∞) < 1/3. As σ̂ (K) is connected and
{σ(t1), σ (t2)} ⊂ σ̂ (K), there exists t3 ∈ K such that d(σ (t3),∞) = 1/2. Then g(σ (t3)) =
2/5, which implies t3 ∈ C. As σ̂ (C) is connected and {σ(t2), σ (t3)} ⊂ σ̂ (C), there exists
t4 ∈ C such that d(σ (t4),∞) = 1/3. This implies g(σ (t4)) = 4/5 and f (t4) > 3/5, which
leads to a contradiction.

(2) By using Lemma 2.2 twice, we can construct continuous surjective functions
f,g : L̂ → [0,1] such that f −1([0,2/3]) = L̂ \ G1, f (∞) = 0, g−1([0,1/3]) = L̂ \ G2,
g(∞) = 0 and g(H) = 1. Let σ :L → L be a homeomorphism such that |f (t) −
g(σ (t))| < 1/3 for every t ∈ L. If t ∈ G1 then f (t) > 2/3 and g(σ (t)) > 1/3, therefore
σ(t) ∈ G2. If t ∈ H then g(t) = 1 and f (σ−1(t)) > 2/3, which implies σ−1(t) ∈ G1, i.e.,
t ∈ σ(G1). �

The most famous example of hereditarily indecomposable continuum is a subset of R2

called pseudoarc. Actually, the construction can be done in a great family of metric spaces,
but we shall work in the plane to give a small support to the intuition. We introduce first
some concepts we shall need.

A chain is an n-uple D = (d1, d2, . . . , dn) of open bounded sets such that di ∩ dj �= ∅
if and only if |i − j | � 1. Every di is called link, and we denote #D = n, mesh(D) =
max{diam(di): i ∈ {1,2, . . . ,#D}} and D∗ = ⋃#D

i=1 di . If a ∈ d1 and b ∈ d#D , we say that
D is a chain from a to b. If we work with a sequence of chains (Dn)n∈N, the links of the
chain Dq are denoted d(q)1, d(q)2, . . . , d(q)#Dq .

Given two chains D and E, it is said that D is contained in E if every link of D is
included in a link of E. It is said that E is a consolidation of D if D is contained in E and
every link of E is union of links of D. It is said that D is crooked in E if D is contained
in E and for every eh, ek links of E with |h − k| > 2 and di, dj links of D with i < j and
such that di ⊂ eh and dj ⊂ ek , there exist r, s with i < r < s < j such that dr is contained
in ek−1 or in ek+1 and ds is contained in eh−1 or in eh+1.
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Given r, s ∈ N, a map N : {1, . . . , r} → {1, . . . , s} is a pattern if |N(i + 1) − N(i)| � 1
for every i ∈ {1, . . . , r − 1}. It is said that a chain D follows the pattern N in a chain E if
r = #D, s = #E and for every i ∈ {1, . . . , r} we have di ⊂ eN(i).

Let us construct now the pseudoarc. Let a, b ∈ R2 be different points, and (Dn)n∈N

a sequence of chains from a to b with (mesh(Dn))n∈N convergent to zero, and such that
for every n ∈ N the links of Dn are connected, the chain Dn+1 is crooked in Dn, and
every link of Dn+1 has its closure included in a link of Dn. Our space is the continuum
P = ⋂∞

n=1 D∗
n .

In [2] it is proved that all the spaces which follow the construction above are homeo-
morphic, and that P is hereditarily indecomposable and homogeneous. The author of that
article also proves there the four following results.

Theorem 2.4. If D, E and F are chains such that E contains D and E is crooked in F ,
then D is crooked in F .

By the previous theorem, if (an)n∈N is an increasing sequence of natural numbers then
P = ⋂∞

n=1 D∗
an

and the chain Dan+1 is crooked in Dan , being Dn as above. This fact will
be used without further reference to it.

Theorem 2.5. If D, E and F are chains such that F is a consolidation of E and D is
crooked in E, then D is crooked in F .

Theorem 2.6. Let N : {1, . . . , r} → {1, . . . , s} be a pattern with N(1) = 1 and N(r) = s,
and (Dn)n∈N a sequence of chains from the point a to the point b, such that #D1 = s

and for every n ∈ N the chain Dn+1 is crooked in Dn, every link of Dn+1 has its closure
included in a link of Dn, and mesh(Dn) � 1/n. Then there exist j ∈ N and a chain E from
a to b such that E is a consolidation of Dj and follows the pattern N in D1.

Theorem 2.7. Let ai, bi, ci (i = 1,2) be points of P such that ai and ci belong to the same
composant of P and bi belongs to a different composant. Then there exists a homeomor-
phism H :P → P which maps a1 to a2, b1 to b2 and c1 to c2.

Corollary 2.8. If ai, bi (i = 1,2) are points of P , for every ε > 0 there exists a homeomor-
phism H : P → P such that H(a1) = a2 and ‖H(b1) − b2‖ < ε.

Proof. Just consider the previous theorem and that every composant is dense in P . �
If T is a completely regular topological space, we use dimT to denote its covering

dimension (see [6], for instance). It is known that if A ⊂ Rn has empty interior then
dimA � n − 1. Therefore, dimP � 1 (actually, it is equal to 1, but we do not need this
fact).

The interested reader can find a thorough survey of the pseudoarc in [10].

3. The counterexample

The following statement is easily deduced from the results in [13, pp. 42, 44 and 61–64].
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Theorem 3.1. Let T be a normal topological space with dimT � 1. If F ⊂ T is closed
and f :F → SC is continuous, there exists f̄ :T → SC continuous extension of f .

The next theorem appears as an observation, in the case of L̂ being metrizable, in
[5, p. 315]. The proof given here is slightly different and we include it for completeness.

Theorem 3.2. If L is a locally compact Hausdorff space with dim L̂ � 1, then C0(L,C)

admits almost polar decompositions.

Proof. Take g ∈ SC0(L,C) and ε ∈ (0,2). The set K = {t ∈ L: |g(t)| � ε/2} is com-

pact and nonempty. Consider f :K → SC given by f (t) = g(t)
|g(t)| , by Theorem 3.1 there

exists f̄ : L̂ → SC continuous extension of f . We define T :C0(L,C) → C0(L,C) by
T h(t) = f̄ (t)h(t), T is a surjective linear isometry and we have that if t ∈ K then
|T (|g|)(t) − g(t)| = |f (t)|g(t)| − g(t)| = 0, and if t /∈ K then |T (|g|)(t) − g(t)| �
2|g(t)| � ε. Therefore, ‖T (|g|) − g‖ � ε. �

In particular, if L̂ is the pseudoarc then C0(L,C) admits almost polar decomposi-
tions.

Lemma 3.3. Let a, b ∈ R2 be different points, and (Dn)n∈N a sequence of chains from a

to b such that (mesh(Dn))n∈N is convergent to zero and for every n ∈ N the chain Dn+1 is
contained in Dn. Given i ∈ N and a continuous function g :D∗

1 → [0,1] with g(a) = 0 and
g(b) > 1 − 1/#Di , there exist q ∈ N and N : {1, . . . ,#Dq} → {1, . . . ,#Di} which verify:

(1) N is a pattern with N(1) = 1 and N(#Dq) = #Di .

(2) For every r ∈ {1,2, . . . ,#Dq}, d(q)r ⊂ g−1(
N(r)−2

#Di
,

N(r)
#Di

].

Proof. Let δ > 0 be such that if ‖x − y‖ < δ then |g(x) − g(y)| < 1/#Di . Take q ∈ N

with mesh(Dq) < δ, for each r ∈ {1, . . . ,#Dq} there exist α ∈ [0,1] and k ∈ {1, . . . ,#Di}
verifying d(q)r ⊂ g−1[α,α + 1

#Di
] ⊂ g−1( k−2

#Di
, k

#Di
].

Let us construct N inductively. Define N(1) = 1. As a ∈ d(q)1, we can assure that
d(q)1 ⊂ g−1( −1

#Di
, 1

#Di
]. Let r ∈ {1, . . . ,#Dq − 1} be such that N(1),N(2), . . . ,N(r)

have already been defined, verifying that N : {1, . . . , r} → {1, . . . ,#Di} is a pattern and
d(q)r ⊂ g−1(

N(r)−2
#Di

,
N(r)
#Di

]. Choose k ∈ {1, . . . ,#Di} such that d(q)r+1 ⊂ g−1( k−2
#Di

, k
#Di

].
As d(q)r ∩ d(q)r+1 �= ∅, necessarily |N(r) − k| � 1. Define N(r + 1) = k, it is clear that
N : {1, . . . , r + 1} → {1, . . . ,#Di} is a pattern.

Finally, b ∈ d(q)#Dq ⊂ g−1(
N(#Dq)−2

#Di
,

N(#Dq)

#Di
] implies N(#Dq) = #Di . �

Theorem 3.4. Let P be a pseudoarc from the point a to the point b. Given ε > 0, there
exists j :P → [0,1] such that for every continuous surjective function f :P → [0,1]
and every x ∈ f −1(0) there exists ϕ :P → P homeomorphism such that ϕ(x) = a and
|j (ϕ(t)) − f (t)| < ε for each t ∈ P .
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Proof. Let (Dn)n∈N be a sequence of chains from the point a to the point b with P =⋂
n∈N

D∗
n and such that for every n ∈ N the links of Dn are connected, mesh(Dn) < 1/n,

the chain Dn+1 is crooked in Dn, and every link of Dn+1 has its closure included in a link
of Dn. Also, we can suppose without loss of generality that for every n ∈ N we have d(n+
1)1 ⊂ d(n)1, d(n + 1)#Dn+1 ⊂ d(n)#Dn , d(n)1 is the only link of Dn which includes {a}
and d(n)#Dn is the only link of Dn which includes {b}.

Choose i ∈ N such that #Di > 2/ε. Take any function j :D∗
i → [0,1] verifying

j (d(i)k) ⊂ ( k−2
#Di

, k
#Di

] for every k ∈ {1,2, . . . ,#Di} (it is easy to construct such a function).

Let f :P → [0,1] be a continuous surjective function and x ∈ f −1(0), by virtue of
Corollary 2.8 there exists a homeomorphism H :P → P with H(a) = x and H(b) ∈
f −1(1 − 1/#Di,1]. Let g :D∗

1 → [0,1] be any continuous extension of f ◦ H , g verifies
g(a) = 0 and g(b) > 1 − 1/#Di .

Let N and q be as in Lemma 3.3. By Theorem 2.6, there exist t1 ∈ N, t1 � i, and a
chain C1 from a to b which is a consolidation of Dt1 and follows the pattern N in Di .
By Theorem 2.5, Dt1+1 is crooked in C1. Taking into account the construction of the
pseudoarc we have made and the properties of C1, we can deduce d(t1 + 1)1 ⊂ c(1)1

and d(t1 + 1)#Dt1+1 ⊂ c(1)#C1 . Thus, there exists a pattern N ′ which Dt1+1 follows in C1

and such that N ′(1) = 1, N ′(#Dt1+1) = #C1 = #Dq . By Theorem 2.6, there exist s1 ∈ N,
s1 � q , and a chain B2 which is a consolidation of Ds1 and follows the pattern N ′ in Dq .
Carrying on inductively, we get to the following situation:

g
N−→ B1 (= Dq) ←−↩ B2 (� Ds1) ←−↩ B3 (= Ds1+1) ←−↩ . . .

⇓ ⇑ ⇓ ⇑
Di ←−↩ C1 (� Dt1) ←−↩ C2 (= Dt1+1) ←−↩ C3 (� Dt2) ←−↩ . . .

where the vertical arrows indicate the direction in which patterns are induced, an expres-
sion like B2 ←−↩ Ds1+1 indicates that the chain Ds1+1 is crooked in B2, and one such as
C3(� Dt2) means that C3 is a consolidation of Dt2 .

As well as the facts explicitly stated in the figure, we should note that #Bn = #Cn

for every n ∈ N, P = ⋂
n∈N

B∗
n = ⋂

n∈N
C∗

n and (mesh(Bn))n∈N, (mesh(Cn))n∈N are se-
quences convergent to zero.

Now we shall construct a homeomorphism ψ :P → P . Given x ∈ P , there exist a
sequence of natural numbers (r1, r2, . . .) such that {x} = ⋂

n∈N
b(n)rn . We define the im-

age of x by ψ by means of {ψ(x)} = ⋂
n∈N

c(n)rn . It is straightforward to see that ψ

is well defined and bijective. To see that ψ is continuous, let x0 ∈ P and V be an open
subset of P which contains {ψ(x0)}. Let (r1, r2, . . .) be a sequence of natural numbers
such that {x0} = ⋂

n∈N
b(n)rn . There exists n ∈ N such that for every r with ψ(x0) ∈ c(n)r

we have c(n)r ∩ P ⊂ V . Take U = b(n)rn ∩ P , x0 ∈ U and for each x ∈ U , we have
ψ(x) ∈ c(n)rn ∩ P , therefore ψ(U) ⊂ V .

Besides, let us see that ψ verifies, relative to g, the required inequality. Let t ∈ P . Take
(r1, r2, . . .) sequence of natural numbers such that {t} = ⋂

n∈N
b(n)rn , and thus {ψ(t)} =⋂

n∈N
c(n)rn . In particular, ψ(t) ∈ c(1)r1 for some r1 ∈ {1, . . . ,#C1} = {1, . . . ,#Dq}.

By the previous lemma, b(1)r1 = d(q)r1 ⊂ g−1(
N(r1)−2

#Di
,

N(r1)
#Di

]. So g(t) ∈ g(b(1)r1) ⊂
(
N(r1)−2

,
N(r1) ] and, on the other hand, as C1 follows the pattern N in Di , we have
#Di #Di
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c(1)r1 ⊂ d(i)N(r1), which implies j (ψ(t)) ∈ j (c(1)r1) ⊂ (
N(r1)−2

#Di
,

N(r1)
#Di

]. We deduce that

|j (ψ(t)) − g(t)| < 2
#Di

< ε.

It is also clear that ψ(a) = a. Finally, take ϕ = ψ ◦ H−1. �
The map j that appears in the previous theorem could be constructed being continuous,

but it is not necessary.

Corollary 3.5. If L is a locally compact, noncompact Hausdorff space such that L̂ is the
pseudoarc then C0(L,C) is almost transitive.

Proof. We have already seen that C0(L,C) admits almost polar decompositions, next
we shall prove that it is almost positive transitive. Take ε > 0 and f,g ∈ C0(L,C) with
‖f ‖ = ‖g‖ = 1 and f (L) ∪ g(L) ⊂ R+. By the previous theorem, there exist a map
j : L̂ → [0,1] and two homeomorphisms ϕf ,ϕg : L̂ → L̂ such that ϕf (∞) = ϕg(∞) and
for every t ∈ L̂, we have |j (ϕf (t)) − f (t)| < ε/2 and |j (ϕg(t)) − g(t)| < ε/2. Let us
observe that σ :L → L given by σ(t) = ϕ−1

f (ϕg(t)) is a well-defined homeomorphism.
Let T :C0(L,C) → C0(L,C) be the surjective linear isometry given by T h = h ◦ σ ,
for every t ∈ L, we have |Tf (t) − g(t)| = |f (ϕ−1

f (ϕg(t))) − g(t)| � |f (ϕ−1
f (ϕg(t))) −

j (ϕf (ϕ−1
f (ϕg(t))))| + |j (ϕg(t)) − g(t)| < ε. �

4. Final remarks

The author has recently known that the same counterexample to Wood’s conjecture has
been independently given by Kawamura [9], however his proof and the path leading to
the results are substantially different to the ones followed here. As a consequence, the
necessary conditions stated in Theorem 2.3 do not appear in [9].

We have obtained essentially one counterexample, since by the homogeneity of the
pseudoarc, if L and L′ are locally compact, noncompact Hausdorff spaces such that L̂ and
L̂′ are the pseudoarc then L is homeomorphic to L′.

Anyway, we can easily deduce the existence of another counterexample from the
results already mentioned. By Proposition 1.2, there exists a locally compact Haus-
dorff space L with more than one point and such that C0(L,C) is transitive. Moreover,
in [7] it is also proved that such L cannot be first countable; therefore, it is not metriz-
able.

As Theorem 2.3 gives us some restrictions on L, it is not too crazy to ask for a topolog-
ical characterization of the locally compact Hausdorff spaces L such that L̂ is metrizable
and C0(L,C) is almost transitive.

Perhaps a good starting point to look for another metrizable counterexample would
be the pseudocircle, which is a topological space closely related to the pseudoarc
(for example, every proper subcontinuum of the pseudocircle is homeomorphic to the
pseudoarc).
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