

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 317 (2006) 659-667

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A counterexample to Wood's conjecture

F. Rambla

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz, apdo. 40, 11510 Puerto Real (Cádiz), Spain Received 29 September 2004 Available online 2 September 2005

Submitted by B. Sims

Abstract

We prove that if the one-point compactification of a locally compact, noncompact Hausdorff space L is the topological space called pseudoarc, then $C_0(L, \mathbb{C})$ is almost transitive. We also obtain two necessary conditions on a metrizable locally compact Hausdorff space L for $C_0(L)$ being almost transitive.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Almost transitivity; Pseudoarc; C(K) spaces

1. Introduction

Let *X* be a Banach space. We denote by $\mathcal{G}(X)$ the group of all surjective linear isometries on *X*. It is said that *X* is *transitive* if for every $x, y \in S_X$ there exists $T \in \mathcal{G}(X)$ such that Tx = y. It is said that *X* is *almost transitive* if for every $x, y \in S_X$ and $\varepsilon > 0$ there exists $T \in \mathcal{G}(X)$ such that $||Tx - y|| < \varepsilon$.

If *L* is a locally compact Hausdorff space, $C_0(L, \mathbb{K})$ will be the space of continuous functions from *L* into \mathbb{K} which vanishes at infinity. We consider it as a Banach space over \mathbb{K} with the supremum norm; if we treat results that do not depend on the scalar field, we shall simply write $C_0(L)$. \hat{L} is the one-point compactification of *L*, and we assume $L \subset \hat{L}$. If *L* is not compact, the only element of $\hat{L} \setminus L$ is represented by the symbol ∞ . If $f \in C_0(L)$, \hat{f} is its only continuous extension to \hat{L} . Likewise, if $\sigma : L \to L$ is a homeomorphism, we

E-mail address: fernando.rambla@uca.es.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.07.064

denote by $\hat{\sigma}$ the extension of σ to \hat{L} given by $\hat{\sigma}(\infty) = \infty$. It is easy to see $\hat{\sigma}$ is also a homeomorphism.

Wood's conjecture, which first appeared in [14], is the following statement:

Conjecture 1.1. If *L* is a locally compact Hausdorff space with more than one point, then $C_0(L)$ is not almost transitive.

Henceforth, L will be a locally compact Hausdorff space with more than one point. It is known that the conjecture is true in the real case [7], and the next proposition summarizes some of the most important results on the general case.

Proposition 1.2. Let \mathbb{K} be \mathbb{R} or \mathbb{C} . The following statements are equivalent:

- (1) There exists L such that $C_0(L, \mathbb{K})$ is almost transitive.
- (2) There exists L such that $C_0(L, \mathbb{K})$ is almost transitive and \hat{L} is metrizable.
- (3) There exists L such that $C_0(L, \mathbb{K})$ is transitive.

The proof of $1 \Leftrightarrow 2$ is in [3], and that of $1 \Leftrightarrow 3$ is in [7].

Following the terminology of [4] and [5], which is inspired in [7], we say that $C_0(L)$ is almost positive transitive if given $\varepsilon > 0$ and $f, g \in C_0(L)$ with ||f|| = ||g|| = 1 and $f(L) \cup g(L) \subset \mathbb{R}^+$, there exists $T \in \mathcal{G}(\mathcal{C}_0(L))$ such that $||Tf - g|| < \varepsilon$. We say that $\mathcal{C}_0(L)$ admits almost polar decompositions if for every $f \in \mathcal{C}_0(L)$ and $\varepsilon > 0$, there exists $T \in \mathcal{G}(\mathcal{C}_0(L))$ such that $||T(|f|) - f|| < \varepsilon$, where |f|(t) = |f(t)|.

Of course, $C_0(L)$ is almost transitive if and only if it is almost positive transitive and admits almost polar decompositions. We also should take into account that if $C_0(L)$ is almost positive transitive, the isometry *T* mentioned in the definition can be chosen in the form $Th = h \circ \sigma$, where $\sigma : L \to L$ is a homeomorphism. This fact is an easy consequence of Banach–Stone theorem.

In both [7] and [14] it is observed that if $C_0(L)$ is almost transitive then L cannot be compact and \hat{L} must be connected. These results remain valid for the weaker property of almost positive transitivity.

A generalization of Wood's conjecture was raised in [1]: Is every almost transitive JB^* -triple a Hilbert space? As in Proposition 1.2, here the word "almost" can be dropped from the question without changing the answer. This was proved also in [1].

Recently, Lusky [11] proved that if a separable complex Banach space X is (isometrically) the predual of an L_1 -space then it is contractively complemented in a C^* -algebra. In particular, such X will be a JB^* -triple and therefore every separable complex almost transitive L_1 -predual is a non-Hilbertian JB^* -triple; examples of this are the complex Gurarij space [8] and the complex *M*-space constructed in [3], thus both examples answer in the negative the aforementioned question in [1].

2. Necessary conditions and continua theory

Concerning the basic facts about continua, the author followed the book [12], although there are many specialized texts on the subject.

A *continuum* (in the plural, *continua*) is a compact connected topological space. If K is a continuum, it is said that K is *indecomposable* if there do not exist A, B proper subcontinua of K such that $K = A \cup B$. Equivalently, every proper subcontinuum of K has empty interior in K. Finally, it is said that a continuum K is *hereditarily indecomposable* if every subcontinuum of K is indecomposable (including K itself).

The intersection of a countable decreasing family of continua is a continuum. If *K* is a continuum, for every $x \in K$ we define the *composant* of *x* as $\bigcup \{C \subset K : C \text{ is a proper subcontinuum of$ *K* $and <math>x \in C\}$. It is well known that if *K* is an indecomposable metrizable continuum, then every composant is dense in *K* and the set of all the composants forms an uncountable partition of *K*.

The following lemma will be useful in what follows, yet it is not strictly necessary.

Lemma 2.1. [12] If K is a Hausdorff continuum, $x \in K$ and there exists a continuum $D \subsetneq K$ with $int(D) \neq \emptyset$ and $x \in ext(D)$, then there exists a continuum $C \subsetneq K$ with $x \in int(C)$.

Proof. If $K \setminus D$ is connected, it is enough to take $C = \overline{K \setminus D}$, then $C \neq K$ since $int(D) \neq \emptyset$, and $x \in K \setminus D \subset int(\overline{K \setminus D}) = int(C)$.

If $K \setminus D$ is not connected, then $K \setminus D = U \cup V$ with U and V open disjoint sets and $x \in U$. Consider $C = D \cup U$, we have that $x \in int(C)$. Also, $C = K \setminus V$, so C is compact. If C is not connected, there exist A and B compact disjoint nonempty sets with $A \cup B = D \cup U$. Therefore, $A \cap D$ and $B \cap D$ are closed sets which partition D, and as D is connected one of them must be empty. Suppose for instance that $A \cap D = \emptyset$, then $A = U \cap (K \setminus B)$ and therefore A is a compact open proper subset of K, which yields to a contradiction. \Box

Lemma 2.2. Let \mathcal{T} be a metric space, F a closed proper subset of \mathcal{T} with nonempty interior, $A \subset int(F)$ and $B \subset ext(F)$ nonempty sets such that $min\{d(A, ext(F)), d(B, int(F))\} > 0$. In this situation, given $\varepsilon \in (0, 1)$ there exists a continuous function $f: \mathcal{T} \to [0, 1]$ with f(A) = 0, $f^{-1}([0, \varepsilon]) = F$ and f(B) = 1.

Proof. Take

$$f(x) = \min\left\{1, \max\left\{0, \varepsilon + \frac{d(x, \operatorname{int}(F)) - d(x, \operatorname{ext}(F))}{\min\{d(A, \operatorname{ext}(F)), d(B, \operatorname{int}(F))\}}\right\}\right\}.$$

It is straightforward to check that f has the required properties. \Box

Next we present the theorem which was the guide to the counterexample. The necessary conditions that we obtain for a space to be almost positive transitive are quite restrictive.

Theorem 2.3. If \hat{L} is metrizable and $C_0(L)$ is almost positive transitive, then:

(1) Given C and K subcontinua of \hat{L} with $C \subsetneq K \subset \hat{L}$ and $\infty \notin \text{fr}^K C$, we have $\text{int}^K C = \emptyset$. In particular, every subcontinuum of L is hereditarily indecomposable.

(2) Given G_1, G_2 open subsets of L with $\infty \notin \overline{G_1 \cup G_2}$ and $H \subset G_2$ with $d(H, \hat{L} \setminus G_2) > 0$, there exists $\sigma : L \to L$ homeomorphism such that $H \subset \sigma(G_1) \subset G_2$. In particular, L is almost homogeneous (i.e., given $x, y \in L$ and $\varepsilon > 0$ there exists $\tau : L \to L$ homeomorphism with $d(\tau(x), y) < \varepsilon$).

Proof. (1) Let *C* and *K* be continua of \hat{L} with $C \subsetneq K \subset \hat{L}$ and $\infty \notin \operatorname{fr}^K C$, and suppose that $\operatorname{int}^K C \neq \emptyset$. Due to Lemma 2.1, we can suppose that $\infty \notin K$ or $\infty \in \operatorname{int}^K C$. In both cases, Lemma 2.2 allows us to obtain a continuous surjective function $F: K \to [0, 1]$ such that $F^{-1}([0, 3/5]) = C$ and *F* has a continuous extension *f* to \hat{L} such that $f|_L \in \mathcal{C}_0(L)$ with $||f|_L|| = 1$.

Besides, let $G:[0, 1] \rightarrow [0, 1]$ be a continuous function defined by G(1) = 1, G(1/2) = 2/5, G(1/3) = 4/5, G(0) = 0 and G is linear in the intervals (0, 1/3), (1/3, 1/2) and (1/2, 1). We can suppose max $\{d(x, \infty): x \in \hat{L}\} = 1$. Let $g: \hat{L} \rightarrow [0, 1]$ be defined by $g(x) = G(d(x, \infty))$. We have $g|_L \in C_0(L)$ and $||g|_L|| = 1$.

By the almost positive transitivity of $C_0(L)$, there exists $\sigma: L \to L$ homeomorphism such that $|f(t) - g(\sigma(t))| < 1/5$ for every $t \in L$. Choose $t_1 \in K$ such that $f(t_1) = 1$, then $g(\sigma(t_1)) > 4/5$ and this implies $d(\sigma(t_1), \infty) > 1/2$. Choose $t_2 \in K$ such that $f(t_2) =$ 1/5, then $g(\sigma(t_2)) < 2/5$ and this implies $d(\sigma(t_2), \infty) < 1/3$. As $\hat{\sigma}(K)$ is connected and $\{\sigma(t_1), \sigma(t_2)\} \subset \hat{\sigma}(K)$, there exists $t_3 \in K$ such that $d(\sigma(t_3), \infty) = 1/2$. Then $g(\sigma(t_3)) =$ 2/5, which implies $t_3 \in C$. As $\hat{\sigma}(C)$ is connected and $\{\sigma(t_2), \sigma(t_3)\} \subset \hat{\sigma}(C)$, there exists $t_4 \in C$ such that $d(\sigma(t_4), \infty) = 1/3$. This implies $g(\sigma(t_4)) = 4/5$ and $f(t_4) > 3/5$, which leads to a contradiction.

(2) By using Lemma 2.2 twice, we can construct continuous surjective functions $f, g: \hat{L} \to [0, 1]$ such that $f^{-1}([0, 2/3]) = \hat{L} \setminus G_1$, $f(\infty) = 0$, $g^{-1}([0, 1/3]) = \hat{L} \setminus G_2$, $g(\infty) = 0$ and g(H) = 1. Let $\sigma: L \to L$ be a homeomorphism such that $|f(t) - g(\sigma(t))| < 1/3$ for every $t \in L$. If $t \in G_1$ then f(t) > 2/3 and $g(\sigma(t)) > 1/3$, therefore $\sigma(t) \in G_2$. If $t \in H$ then g(t) = 1 and $f(\sigma^{-1}(t)) > 2/3$, which implies $\sigma^{-1}(t) \in G_1$, i.e., $t \in \sigma(G_1)$. \Box

The most famous example of hereditarily indecomposable continuum is a subset of \mathbb{R}^2 called *pseudoarc*. Actually, the construction can be done in a great family of metric spaces, but we shall work in the plane to give a small support to the intuition. We introduce first some concepts we shall need.

A *chain* is an *n*-uple $D = (d_1, d_2, ..., d_n)$ of open bounded sets such that $d_i \cap d_j \neq \emptyset$ if and only if $|i - j| \leq 1$. Every d_i is called *link*, and we denote #D = n, mesh $(D) = \max\{\text{diam}(d_i): i \in \{1, 2, ..., \#D\}\}$ and $D^* = \bigcup_{i=1}^{\#D} d_i$. If $a \in d_1$ and $b \in d_{\#D}$, we say that D is a chain from a to b. If we work with a sequence of chains $(D_n)_{n \in \mathbb{N}}$, the links of the chain D_q are denoted $d(q)_1, d(q)_2, ..., d(q)_{\#D_q}$.

Given two chains *D* and *E*, it is said that *D* is *contained* in *E* if every link of *D* is included in a link of *E*. It is said that *E* is a *consolidation* of *D* if *D* is contained in *E* and every link of *E* is union of links of *D*. It is said that *D* is *crooked* in *E* if *D* is contained in *E* and for every e_h , e_k links of *E* with |h - k| > 2 and d_i , d_j links of *D* with i < j and such that $d_i \subset e_h$ and $d_j \subset e_k$, there exist *r*, *s* with i < r < s < j such that d_r is contained in e_{k-1} or in e_{k+1} and d_s is contained in e_{h-1} .

Given $r, s \in \mathbb{N}$, a map $N : \{1, ..., r\} \rightarrow \{1, ..., s\}$ is a *pattern* if $|N(i + 1) - N(i)| \leq 1$ for every $i \in \{1, ..., r - 1\}$. It is said that a chain *D* follows the pattern *N* in a chain *E* if r = #D, s = #E and for every $i \in \{1, ..., r\}$ we have $d_i \subset e_{N(i)}$.

Let us construct now the pseudoarc. Let $a, b \in \mathbb{R}^2$ be different points, and $(D_n)_{n \in \mathbb{N}}$ a sequence of chains from a to b with $(\operatorname{mesh}(D_n))_{n \in \mathbb{N}}$ convergent to zero, and such that for every $n \in \mathbb{N}$ the links of D_n are connected, the chain D_{n+1} is crooked in D_n , and every link of D_{n+1} has its closure included in a link of D_n . Our space is the continuum $P = \bigcap_{n=1}^{\infty} D_n^*$.

In [2] it is proved that all the spaces which follow the construction above are homeomorphic, and that P is hereditarily indecomposable and homogeneous. The author of that article also proves there the four following results.

Theorem 2.4. If D, E and F are chains such that E contains D and E is crooked in F, then D is crooked in F.

By the previous theorem, if $(a_n)_{n \in \mathbb{N}}$ is an increasing sequence of natural numbers then $P = \bigcap_{n=1}^{\infty} D_{a_n}^*$ and the chain $D_{a_{n+1}}$ is crooked in D_{a_n} , being D_n as above. This fact will be used without further reference to it.

Theorem 2.5. If D, E and F are chains such that F is a consolidation of E and D is crooked in E, then D is crooked in F.

Theorem 2.6. Let $N : \{1, ..., r\} \rightarrow \{1, ..., s\}$ be a pattern with N(1) = 1 and N(r) = s, and $(D_n)_{n \in \mathbb{N}}$ a sequence of chains from the point a to the point b, such that $\#D_1 = s$ and for every $n \in \mathbb{N}$ the chain D_{n+1} is crooked in D_n , every link of D_{n+1} has its closure included in a link of D_n , and mesh $(D_n) \leq 1/n$. Then there exist $j \in \mathbb{N}$ and a chain E from a to b such that E is a consolidation of D_j and follows the pattern N in D_1 .

Theorem 2.7. Let a_i, b_i, c_i (i = 1, 2) be points of P such that a_i and c_i belong to the same composant of P and b_i belongs to a different composant. Then there exists a homeomorphism $H: P \rightarrow P$ which maps a_1 to a_2 , b_1 to b_2 and c_1 to c_2 .

Corollary 2.8. If a_i , b_i (i = 1, 2) are points of P, for every $\varepsilon > 0$ there exists a homeomorphism $H : P \to P$ such that $H(a_1) = a_2$ and $||H(b_1) - b_2|| < \varepsilon$.

Proof. Just consider the previous theorem and that every composant is dense in P. \Box

If \mathcal{T} is a completely regular topological space, we use dim \mathcal{T} to denote its covering dimension (see [6], for instance). It is known that if $A \subset \mathbb{R}^n$ has empty interior then dim $A \leq n - 1$. Therefore, dim $P \leq 1$ (actually, it is equal to 1, but we do not need this fact).

The interested reader can find a thorough survey of the pseudoarc in [10].

3. The counterexample

The following statement is easily deduced from the results in [13, pp. 42, 44 and 61–64].

Theorem 3.1. Let \mathcal{T} be a normal topological space with dim $\mathcal{T} \leq 1$. If $F \subset \mathcal{T}$ is closed and $f: F \to S_{\mathbb{C}}$ is continuous, there exists $\overline{f}: \mathcal{T} \to S_{\mathbb{C}}$ continuous extension of f.

The next theorem appears as an observation, in the case of \hat{L} being metrizable, in [5, p. 315]. The proof given here is slightly different and we include it for completeness.

Theorem 3.2. If *L* is a locally compact Hausdorff space with dim $\hat{L} \leq 1$, then $C_0(L, \mathbb{C})$ admits almost polar decompositions.

Proof. Take $g \in S_{\mathcal{C}_0(L,\mathbb{C})}$ and $\varepsilon \in (0, 2)$. The set $K = \{t \in L: |g(t)| \ge \varepsilon/2\}$ is compact and nonempty. Consider $f: K \to S_{\mathbb{C}}$ given by $f(t) = \frac{g(t)}{|g(t)|}$, by Theorem 3.1 there exists $\overline{f}: \hat{L} \to S_{\mathbb{C}}$ continuous extension of f. We define $T: \mathcal{C}_0(L, \mathbb{C}) \to \mathcal{C}_0(L, \mathbb{C})$ by $Th(t) = \overline{f}(t)h(t)$, T is a surjective linear isometry and we have that if $t \in K$ then |T(|g|)(t) - g(t)| = |f(t)|g(t)| - g(t)| = 0, and if $t \notin K$ then $|T(|g|)(t) - g(t)| \le 2|g(t)| \le \varepsilon$. Therefore, $||T(|g|) - g|| \le \varepsilon$.

In particular, if \hat{L} is the pseudoarc then $\mathcal{C}_0(L, \mathbb{C})$ admits almost polar decompositions.

Lemma 3.3. Let $a, b \in \mathbb{R}^2$ be different points, and $(D_n)_{n \in \mathbb{N}}$ a sequence of chains from a to b such that $(\operatorname{mesh}(D_n))_{n \in \mathbb{N}}$ is convergent to zero and for every $n \in \mathbb{N}$ the chain D_{n+1} is contained in D_n . Given $i \in \mathbb{N}$ and a continuous function $g: \overline{D_1^*} \to [0, 1]$ with g(a) = 0 and $g(b) > 1 - 1/\#D_i$, there exist $q \in \mathbb{N}$ and $N: \{1, \ldots, \#D_q\} \to \{1, \ldots, \#D_i\}$ which verify:

(1) N is a pattern with N(1) = 1 and $N(\#D_q) = \#D_i$.

(2) For every $r \in \{1, 2, ..., \#D_q\}, d(q)_r \subset g^{-1}(\frac{N(r)-2}{\#D_i}, \frac{N(r)}{\#D_i}].$

Proof. Let $\delta > 0$ be such that if $||x - y|| < \delta$ then $|g(x) - g(y)| < 1/\#D_i$. Take $q \in \mathbb{N}$ with mesh $(D_q) < \delta$, for each $r \in \{1, \dots, \#D_q\}$ there exist $\alpha \in [0, 1]$ and $k \in \{1, \dots, \#D_i\}$ verifying $d(q)_r \subset g^{-1}[\alpha, \alpha + \frac{1}{\#D_i}] \subset g^{-1}(\frac{k-2}{\#D_i}, \frac{k}{\#D_i}]$. Let us construct N inductively. Define N(1) = 1. As $a \in d(q)_1$, we can assure that

Let us construct N inductively. Define N(1) = 1. As $a \in d(q)_1$, we can assure that $d(q)_1 \subset g^{-1}(\frac{-1}{\#D_i}, \frac{1}{\#D_i}]$. Let $r \in \{1, \dots, \#D_q - 1\}$ be such that $N(1), N(2), \dots, N(r)$ have already been defined, verifying that $N:\{1, \dots, r\} \to \{1, \dots, \#D_i\}$ is a pattern and $d(q)_r \subset g^{-1}(\frac{N(r)-2}{\#D_i}, \frac{N(r)}{\#D_i}]$. Choose $k \in \{1, \dots, \#D_i\}$ such that $d(q)_{r+1} \subset g^{-1}(\frac{k-2}{\#D_i}, \frac{k}{\#D_i}]$. As $d(q)_r \cap d(q)_{r+1} \neq \emptyset$, necessarily $|N(r) - k| \leq 1$. Define N(r+1) = k, it is clear that $N:\{1, \dots, r+1\} \to \{1, \dots, \#D_i\}$ is a pattern.

 $N: \{1, \dots, r+1\} \to \{1, \dots, \#D_i\} \text{ is a pattern.}$ Finally, $b \in d(q)_{\#D_q} \subset g^{-1}(\frac{N(\#D_q)-2}{\#D_i}, \frac{N(\#D_q)}{\#D_i}] \text{ implies } N(\#D_q) = \#D_i. \square$

Theorem 3.4. Let P be a pseudoarc from the point a to the point b. Given $\varepsilon > 0$, there exists $j: P \to [0, 1]$ such that for every continuous surjective function $f: P \to [0, 1]$ and every $x \in f^{-1}(0)$ there exists $\varphi: P \to P$ homeomorphism such that $\varphi(x) = a$ and $|j(\varphi(t)) - f(t)| < \varepsilon$ for each $t \in P$.

Proof. Let $(D_n)_{n \in \mathbb{N}}$ be a sequence of chains from the point *a* to the point *b* with $P = \bigcap_{n \in \mathbb{N}} D_n^*$ and such that for every $n \in \mathbb{N}$ the links of D_n are connected, $\operatorname{mesh}(D_n) < 1/n$, the chain D_{n+1} is crooked in D_n , and every link of D_{n+1} has its closure included in a link of D_n . Also, we can suppose without loss of generality that for every $n \in \mathbb{N}$ we have $d(n + 1)_1 \subset d(n)_1$, $d(n+1)_{\#D_{n+1}} \subset d(n)_{\#D_n}$, $d(n)_1$ is the only link of D_n which includes $\{a\}$ and $d(n)_{\#D_n}$ is the only link of D_n which includes $\{b\}$.

Choose $i \in \mathbb{N}$ such that $\#D_i > 2/\varepsilon$. Take any function $j: D_i^* \to [0, 1]$ verifying $j(d(i)_k) \subset (\frac{k-2}{\#D_i}, \frac{k}{\#D_i}]$ for every $k \in \{1, 2, ..., \#D_i\}$ (it is easy to construct such a function).

Let $f: P \to [0, 1]$ be a continuous surjective function and $x \in f^{-1}(0)$, by virtue of Corollary 2.8 there exists a homeomorphism $H: P \to P$ with H(a) = x and $H(b) \in f^{-1}(1 - 1/\#D_i, 1]$. Let $g: \overline{D_1^*} \to [0, 1]$ be any continuous extension of $f \circ H$, g verifies g(a) = 0 and $g(b) > 1 - 1/\#D_i$.

Let *N* and *q* be as in Lemma 3.3. By Theorem 2.6, there exist $t_1 \in \mathbb{N}$, $t_1 \ge i$, and a chain C_1 from *a* to *b* which is a consolidation of D_{t_1} and follows the pattern *N* in D_i . By Theorem 2.5, D_{t_1+1} is crooked in C_1 . Taking into account the construction of the pseudoarc we have made and the properties of C_1 , we can deduce $d(t_1 + 1)_1 \subset c(1)_1$ and $d(t_1 + 1)_{\#D_{t_1+1}} \subset c(1)_{\#C_1}$. Thus, there exists a pattern *N'* which D_{t_1+1} follows in C_1 and such that N'(1) = 1, $N'(\#D_{t_1+1}) = \#C_1 = \#D_q$. By Theorem 2.6, there exists $s_1 \in \mathbb{N}$, $s_1 \ge q$, and a chain B_2 which is a consolidation of D_{s_1} and follows the pattern N' in D_q . Carrying on inductively, we get to the following situation:

N7

where the vertical arrows indicate the direction in which patterns are induced, an expression like $B_2 \longleftrightarrow D_{s_1+1}$ indicates that the chain D_{s_1+1} is crooked in B_2 , and one such as $C_3 (\geq D_{t_2})$ means that C_3 is a consolidation of D_{t_2} .

As well as the facts explicitly stated in the figure, we should note that $\#B_n = \#C_n$ for every $n \in \mathbb{N}$, $P = \bigcap_{n \in \mathbb{N}} B_n^* = \bigcap_{n \in \mathbb{N}} C_n^*$ and $(\operatorname{mesh}(B_n))_{n \in \mathbb{N}}$, $(\operatorname{mesh}(C_n))_{n \in \mathbb{N}}$ are sequences convergent to zero.

Now we shall construct a homeomorphism $\psi: P \to P$. Given $x \in P$, there exist a sequence of natural numbers $(r_1, r_2, ...)$ such that $\{x\} = \bigcap_{n \in \mathbb{N}} b(n)_{r_n}$. We define the image of x by ψ by means of $\{\psi(x)\} = \bigcap_{n \in \mathbb{N}} c(n)_{r_n}$. It is straightforward to see that ψ is well defined and bijective. To see that ψ is continuous, let $x_0 \in P$ and V be an open subset of P which contains $\{\psi(x_0)\}$. Let $(r_1, r_2, ...)$ be a sequence of natural numbers such that $\{x_0\} = \bigcap_{n \in \mathbb{N}} b(n)_{r_n}$. There exists $n \in \mathbb{N}$ such that for every r with $\psi(x_0) \in c(n)_r$ we have $c(n)_r \cap P \subset V$. Take $U = b(n)_{r_n} \cap P$, $x_0 \in U$ and for each $x \in U$, we have $\psi(x) \in c(n)_{r_n} \cap P$, therefore $\psi(U) \subset V$.

Besides, let us see that ψ verifies, relative to g, the required inequality. Let $t \in P$. Take (r_1, r_2, \ldots) sequence of natural numbers such that $\{t\} = \bigcap_{n \in \mathbb{N}} b(n)_{r_n}$, and thus $\{\psi(t)\} = \bigcap_{n \in \mathbb{N}} c(n)_{r_n}$. In particular, $\psi(t) \in c(1)_{r_1}$ for some $r_1 \in \{1, \ldots, \#C_1\} = \{1, \ldots, \#D_q\}$. By the previous lemma, $b(1)_{r_1} = d(q)_{r_1} \subset g^{-1}(\frac{N(r_1)-2}{\#D_i}, \frac{N(r_1)}{\#D_i}]$. So $g(t) \in g(b(1)_{r_1}) \subset (\frac{N(r_1)-2}{\#D_i}, \frac{N(r_1)}{\#D_i}]$ and, on the other hand, as C_1 follows the pattern N in D_i , we have $c(1)_{r_1} \subset d(i)_{N(r_1)}$, which implies $j(\psi(t)) \in j(c(1)_{r_1}) \subset (\frac{N(r_1)-2}{\#D_i}, \frac{N(r_1)}{\#D_i}]$. We deduce that $|j(\psi(t)) - g(t)| < \frac{2}{\#D_i} < \varepsilon$. It is also clear that $\psi(a) = a$. Finally, take $\varphi = \psi \circ H^{-1}$. \Box

The map j that appears in the previous theorem could be constructed being continuous, but it is not necessary.

Corollary 3.5. If *L* is a locally compact, noncompact Hausdorff space such that \hat{L} is the pseudoarc then $C_0(L, \mathbb{C})$ is almost transitive.

Proof. We have already seen that $C_0(L, \mathbb{C})$ admits almost polar decompositions, next we shall prove that it is almost positive transitive. Take $\varepsilon > 0$ and $f, g \in C_0(L, \mathbb{C})$ with ||f|| = ||g|| = 1 and $f(L) \cup g(L) \subset \mathbb{R}^+$. By the previous theorem, there exist a map $j: \hat{L} \to [0, 1]$ and two homeomorphisms $\varphi_f, \varphi_g: \hat{L} \to \hat{L}$ such that $\varphi_f(\infty) = \varphi_g(\infty)$ and for every $t \in \hat{L}$, we have $|j(\varphi_f(t)) - f(t)| < \varepsilon/2$ and $|j(\varphi_g(t)) - g(t)| < \varepsilon/2$. Let us observe that $\sigma: L \to L$ given by $\sigma(t) = \varphi_f^{-1}(\varphi_g(t))$ is a well-defined homeomorphism. Let $T: C_0(L, \mathbb{C}) \to C_0(L, \mathbb{C})$ be the surjective linear isometry given by $Th = h \circ \sigma$, for every $t \in L$, we have $|Tf(t) - g(t)| = |f(\varphi_f^{-1}(\varphi_g(t))) - g(t)| \leq |f(\varphi_f^{-1}(\varphi_g(t))) - j(\varphi_f(\varphi_f^{-1}(\varphi_g(t))))| + |j(\varphi_g(t)) - g(t)| < \varepsilon$. \Box

4. Final remarks

The author has recently known that the same counterexample to Wood's conjecture has been independently given by Kawamura [9], however his proof and the path leading to the results are substantially different to the ones followed here. As a consequence, the necessary conditions stated in Theorem 2.3 do not appear in [9].

We have obtained essentially one counterexample, since by the homogeneity of the pseudoarc, if L and L' are locally compact, noncompact Hausdorff spaces such that \hat{L} and $\hat{L'}$ are the pseudoarc then L is homeomorphic to L'.

Anyway, we can easily deduce the existence of another counterexample from the results already mentioned. By Proposition 1.2, there exists a locally compact Hausdorff space L with more than one point and such that $C_0(L, \mathbb{C})$ is transitive. Moreover, in [7] it is also proved that such L cannot be first countable; therefore, it is not metrizable.

As Theorem 2.3 gives us some restrictions on L, it is not too crazy to ask for a topological characterization of the locally compact Hausdorff spaces L such that \hat{L} is metrizable and $C_0(L, \mathbb{C})$ is almost transitive.

Perhaps a good starting point to look for another metrizable counterexample would be the pseudocircle, which is a topological space closely related to the pseudoarc (for example, every proper subcontinuum of the pseudocircle is homeomorphic to the pseudoarc).

Acknowledgments

The author thanks Professors Antonio Aizpuru and Michel Smith, and friend Óscar Aragón for their generous help.

References

- J. Becerra-Guerrero, A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces having a Jordan structure, Manuscripta Math. 102 (2000) 111–127.
- [2] R.H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948) 729-742.
- [3] F. Cabello, Transitivity of *M*-spaces and Wood's conjecture, Math. Proc. Cambridge Philos. Soc. 124 (1998) 513–520.
- [4] F. Cabello, Nearly variants of properties and ultrapowers, Glasg. Math. J. 42 (2000) 275-281.
- [5] F. Cabello, The covering dimension of Wood spaces, Glasg. Math. J. 44 (2002) 311-316.
- [6] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [7] P. Greim, M. Rajagopalan, Almost transitivity in $C_0(L)$, Math. Proc. Cambridge Philos. Soc. 121 (1997) 75–80.
- [8] V.I. Gurarij, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Math. Z. 7 (1966) 1002–1013 (in Russian).
- [9] K. Kawamura, On a conjecture of Wood, Glasg. Math. J. 47 (2005) 1-5.
- [10] W. Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999) 25-77.
- [11] W. Lusky, Every separable L_1 -predual is complemented in a C^* -algebra, Studia Math. 160 (2004) 103–116.
- [12] J. Margalef Roig, E. Outerelo Domínguez, J.L. Pinilla Ferrando, Topología, vol. 5, Alhambra, 1982 (in Spanish).
- [13] J.C. Navarro Pascual, Estructura extremal de la bola unidad en espacios de Banach (Extremal structure of the unit ball in Banach spaces), doctoral thesis, University of Granada, 1994 (in Spanish).
- [14] G.V. Wood, Maximal symmetry in Banach spaces, Proc. Roy. Irish Acad. 82A (1982) 177-186.