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Abstract It is shown that there exist analytic self-maps ϕ of the unit disc D induc-
ing compact composition operators on the Hardy space Hp, 1 ≤ p < ∞ such
that the Hausdorff dimension of the set Eϕ = {eiθ ∈ ∂D : |ϕ(eiθ )| = 1} is one;
sharpening a classical result due to Schwartz. Moreover, the same holds in the
weighted Dirichlet spaces Dα with 0 < α < 1. As a consequence, we deduce that
there exist symbols ϕ inducing compact composition operators on Dα such that
the α-capacity of Eϕ is positive, which is no longer true for those just inducing
Hilbert-Schmidt composition operators on Dα .
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1 Introduction

Let D denote the open unit disk of the complex plane and ∂D its boundary. The
Hardy space Hp, 1 ≤ p < ∞, consists of holomorphic functions f on D for which
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the norm

‖ f ‖p =
(

sup
0≤r<1

∫ 2π

0
| f (reiθ )|p dθ

2π

)1/p

is finite. If p = ∞, H∞ is the space of holomorphic functions f on D such that

‖ f ‖∞ = sup
D

| f (z)| < ∞.

Fatou’s Theorem asserts that any Hardy function f has radial limit at eiθ ∈ ∂D

except on a set Lebesgue measure zero (see [4], for instance). Throughout this work,
f (eiθ ) will denote the radial limit of f at eiθ , i. e., f (eiθ ) = limr→1− f (reiθ ).

If ϕ is an analytic function on D which takes D into itself, Littlewood Subor-
dination Principle [8] ensures that the composition operator induced by ϕ

Cϕ f = f ◦ ϕ, ( f ∈ Hp)

is bounded on Hp, 1 ≤ p ≤ ∞.
On the other hand, compactness of composition operators have attracted the

attention of many experts in the area for decades. If p = ∞, Cϕ is compact on
H∞ if and only if ‖ϕ‖∞ < 1. When 1 ≤ p < ∞, compact composition operators
on Hp were characterized in terms of asymptotic properties of distribution values
of the inducing symbols in [14] (see also [13]). For a comprehensive treatment of
related problems concerning composition operators on spaces of analytic functions
we refer to Cowen and MacCluer’s book [3].

In this work, we focus on the relationship between the compactness of compo-
sition operators and the size of the boundary set

Eϕ = {eiθ ∈ ∂D : |ϕ(eiθ )| = 1}.
Observe that, since ϕ ∈ H∞, ϕ(eiθ ) is defined a. e. on ∂D and therefore, the set
Eϕ consists of those points eiθ ∈ ∂D such that ϕ(eiθ ) is defined and ϕ(eiθ ) ∈ ∂D.
Obviously, if Cϕ is compact on H∞, the set Eϕ is empty. The first result relating
compactness of Cϕ to the size of Eϕ was shown by Schwartz [12] in the sixties.
He proved that if Cϕ is compact on Hp, then the Lebesgue measure of Eϕ is zero.
We ask how sharp is Schwartz’s result in terms of Hausdorff dimension. Actually,
it is the best one could expect as our main result states:

Main Theorem There exists a compact composition operator Cϕ on Hp for all
1 ≤ p < ∞ such that the Hausdorff dimension of Eϕ is one.

So, our main theorem could be read as follows: there exist maps inducing compact
composition operators on Hp, 1 ≤ p < ∞, approaching to the boundary ∂D in a
huge set!

Section 2 is devoted to proving our main result. The proof will be accomplished
by constructing a simply connected domain � contained in D such that the Rie-
mann map that takes D onto � induces a compact composition operator on Hp

with the required behavior.
In section 3 we introduce the weighted Dirichlet spaces Dα , with α > −1. We

show that the composition operator Cϕ in our main result is actually compact on
Dα for any α > 0. In particular we deduce that the α-capacity of Eϕ is positive.
Nevertheless, this is no longer true for Hilbert-Schmidt composition operators on
Dα whenever α ≥ 0, as shown in [5] and [6].
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2 Proof of Main Result

This section is devoted to proving Main Theorem. The proof will be accomplished
by constructing a simply connected domain � contained in D such that the Rie-
mann map taking D onto � induces a compact composition operator on H2 and
furnishes the required conditions. From here, the statement of our Main Theorem
will follow just recalling the fact that if Cϕ is compact on Hp for some 1 ≤ p < ∞,
then it is compact on Hp for all 1 ≤ p < ∞ (see [15, Theorem 6]).

Before proceeding with the construction of the domain �, we recall the con-
cepts of the α-Hausdorff dimensional measure and the Hausdorff dimension of a
set, for the sake of completeness.

2.1 α-Hausdorff dimensional measure

Let 0 < α ≤ 1 be any real number and E a Borel set contained in ∂D. For any
ε > 0 we define

�ε
α(E) = inf

{ ∞∑
k=1

(diam Bk)
α : E ⊂

∞⋃
k=1

Bk, diam Bk ≤ ε

}

where diam Bk denotes the diameter of the set Bk , that is,

diam Bk = sup{|x − y| : x, y ∈ Bk}.
The α-dimensional Hausdorff measure of E is defined by

�α(E) = lim
ε→0+ �ε

α(E).

Observe that α = 1 corresponds to the Lebesgue measure of E , which will be
denoted by |E | in what follows. In addition, note that if �α1(E) = 0 then �α2(E) =
0 for any α2 > α1. Recall that the Hausdorff dimension of E is defined by

d(E) = inf{α : �α(E) = 0}.
It holds that �α(E) = ∞ whenever 0 < α < d(E), and �α(E) = 0 for α > d(E);
while 0 ≤ �d(E)(E) ≤ ∞. For more about Hausdorff measures, we refer the reader
to Pommerenke’s book [11].

The following definition will be also useful in the construction of the domain
� in the proof of our main theorem.

Definition 2.1 Let ε and δ be positive numbers. A bump of height ε supported on
the interval [−δ, δ] is the graph of the real function

f (x) =
{

ε exp
(

x2

x2−δ2

)
−δ < x < δ

0 x ∈ R \ (−δ, δ).

A word about notation. In the sequel, we will denote a 	 b whenever there exists
two universal constants c and C such that c a ≤ b ≤ C a.
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Fig. 1 Bump of height ε supported on [−δ, δ]

Proof of Main Theorem. First, we point out that the construction of the simply
connected domain � such that a Riemann map ϕ taking D onto � satisfies the
required condition will be carried out by constructing a Jordan curve contained in
D which will correspond to the boundary ∂�.

In order to do that, let {δn}n≥0 and {εn}n≥0 be two decreasing sequences of
positive numbers in [0, 1] such that limn δn = 0 and limn εn = 0. Throughout the
proof we will impose additional conditions on δn and εn so that the theorem holds.

Firstly, we construct a Cantor set E contained in the unit interval [0, 1] with
variable ratio of dissection depending on the sequence {δn}n≥0. For that purpose, let
I0 denote the unit interval [0, 1]. Let En be the n-th approximation of the Cantor set

E which consists of 2n open intervals obtained as follows: if En−1 = ⋃2n−1

k=1 I k
n−1,

the intervals in En are obtained from I k
n−1, 1 ≤ k ≤ 2n−1, by removing the middle

third closed interval J k
n of length δn|I k

n−1|. Thus, the Cantor set E is defined by

E =
⋂
n≥0

En .

Note that, by construction,

En−1 \ En =
2n−1⋃
k=1

J k
n .

In addition, we observe that the length of the two intervals obtained at the stage n
from I k

n−1, for 1 ≤ k ≤ 2n−1, is the same. Thus, in what follows, we will denote
by |I k

n | such a length. It is clear that

|I k
n | = |I k

n−1|(1 − δn)/2, 1 ≤ k ≤ 2n−1.

Now, for 1 ≤ k ≤ 2n−1, let 
k
n be a bump supported on the interval J k

n of height
εn |I k

n | (see Figure 2).
Set R = ⋃

n
⋃

k 
k
n (see Figure 3) and consider the natural identification of

the unit circle ∂D with [0, 1).
Let � be the simply connected domain contained in D whose boundary ∂� is

the curve R. Let ϕ be a Riemann map that takes D onto � satisfying ϕ(0) = 0. We
will show that, under certain restrictions on the sequences {εn} and {δn}, the map
ϕ has the desired behavior.

Claim 1 If δn = 1/ log(n + 2), then the Cantor set E has Lebesgue measure zero
and Hausdorff dimension one.
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Fig. 2

Fig. 3 Curve R

Proof of Claim 1. If En = ⋃2n

k=1 I k
n , by standard arguments to estimate the Haus-

dorff dimension of a Cantor set (see [11, Chapter 10] or [2], for instance), it is
enough to ensure that for any 1 ≤ k ≤ 2n

lim
n→∞ 2n |I k

n | = 0 (1)

along with

lim
n→∞ 2n |I k

n |α = ∞ (0 < α < 1). (2)

Condition (1) implies that the Lebesgue measure of E is zero, whereas from condi-
tion (2) follows that �α(E) = ∞ for any 0 < α < 1, and therefore the Hausdorff
dimension of E is one.

To check that both conditions (1) and (2) hold whenever δn = 1/ log(n + 2),
we observe that, by construction, all the intervals obtained at the same level have
the same length. So far, for any 1 ≤ k ≤ 2n we can assert that the length of I k

n is
|I 1

n−1|(1 − δn)/2. Thus, iterating we deduce that

lim
n→∞ 2n |I k

n | =
∞∏
j=1

(1 − δ j ),

and

lim
n→∞ 2n |I k

n |α = lim
n→∞ 2(1−α)n

n∏
j=1

(1 − δ j )
α.
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Therefore, it is enough to take into account that
∏

j (1 − δ j ) 	 exp(− ∑
j δ j ) to

get the desired conditions on the Cantor set E , and therefore, the statement of the
Claim 1.

Observe that the conditions required on E are actually those ones that the set
Eϕ must satisfy. Although Eϕ = ϕ−1(E) by construction, it is not possible to
guarantee straightforward that Eϕ satisfies such conditions. It will require a little
work.

Firstly, the fact that the Lebesgue measure of Eϕ is zero follows since E has
also Lebesgue measure zero and, by construction, the boundary ∂� is a rectificable
curve (see Riesz’s Theorem in [11, Chapter 6]).

Secondly, to show that the Hausdorff dimension of Eϕ is one, we will show
that, under certain restrictions for εn , the curve ∂� is smooth. Recall that a curve
is smooth if there is a parametrization w of the curve of class C1 (see [11, Chapter
3]). In particular, this implies that ∂� is asymptotically smooth, that is

max
w∈∂�(a,b)

|a − w| + |w − b|
|a − b| → 1 as a, b ∈ ∂�, |a − b| → 0,

where ∂�(a, b) denotes the smaller arc of ∂� between a and b (see [11, Chapter
11] for more about asymptotically smooth curves). Therefore, ϕ : D → � is α-
Hölder continuous for any 0 < α < 1 (see [11, Chapter 11, Exercise 11.2.1], for
instance). Thus, the α-Hausdorff measure is preserved for any 0 < α < 1, and
therefore we may deduce that Eϕ has Hausdorff dimension one since so does E .
We claim the following:

Claim 2 If the sequence {εn/δn} tends to zero, then ∂� is smooth.

Proof of Claim 2. First, note that ∂� = E
⋃ (⋃

n,k 
k
n

)
and each of the bumps 
k

n
is a C∞ curve. Even more, if the construction of the Cantor set stops at the stage
n0, and we consider �n0 = D \⋃n0

n=1

⋃
k 
k

n , the domain �n0 is bounded by a C∞
curve. So, roughly speaking, to show that ∂� is smooth, we only need to consider
the points in the Cantor set E which are limit of an infinite sequence of decreasing
bumps. Note that each of such bumps belongs to a different generation n.

Let n be fixed. For any 1 ≤ k ≤ 2n , the bump 
k
n , of height εn|I k

n |, is supported
on the interval J k

n , whose length is δn|I k
n−1|. Therefore, its slope mk

n is bounded by

mk
n ≤ εn |I k

n |
δn |I k

n−1|
≤ εn

δn

(see Figure 4). It is clear that if limn εn/δn = 0, then ∂� is smooth; which completes
the proof of Claim 2.

According to the above, we have constructed a domain � ⊂ D such that a
Riemann map ϕ taking D onto � satisfies that the set Eϕ has Lebesgue measure
zero but Hausdorff dimension one. The task is now to show that such a ϕ induces
a compact composition operator Cϕ on H2. The key point for that is the Angu-
lar Derivative Criterion (see [9, Theorem 5.3]), which states that for univalent
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Fig. 4

symbols ϕ, compactness of Cϕ is equivalent to the fact that the angular derivative
of ϕ at any point eiθ ∈ Eϕ is infinite (see also [3, Corollary 3.21]).

Let eiθ0 ∈ Eϕ be fixed. By construction, ϕ(eiθ0) belongs to the Cantor set E .
Recall that the angular derivative at eiθ0 is defined by the angular limit

ϕ′(eiθ0) = � lim
z→eiθ0

ϕ(z) − ϕ(eiθ0)

z − eiθ0
(z ∈ D). (3)

That is, z → eiθ0 through any non tangential approach region at eiθ0 . For more
about angular derivatives and composition operators see, for example, [3, Chapter
2]. In our case, by construction, to prove that ϕ′(eiθ0) = ∞, it is enough to show
that

lim
n

|I k
n |

|ϕ−1(I k
n )| = ∞, (4)

for any 1 ≤ k ≤ 2n .
Let us fix 1 ≤ k ≤ 2n . To estimate |ϕ−1(I k

n )|, first we consider the relation
between the Lebesgue measure of a set A ⊂ ∂D and the harmonic measure of a A
in the unit disc D at the origin ω(0, A, D), given by |A| = 2π ω(0, A, D). Now,
the invariance of the harmonic measure under conformal mappings yields that

ω(0, ϕ−1(I k
n ), D) = ω(0, I k

n , �),

and therefore the limit in (4) diverges if and only if

lim
n

|I k
n |

ω(0, I k
n , �)

= ∞. (5)

Assume, for the moment, that the following claim is already proved.

Claim 3 Let ε and δ be positive numbers. Let 
 be a bump supported on the inter-
val J = [−δ, δ] of height ε(1 − δ). Let R

2+ = {(x, y) : y > 0} and �̃ ⊂ R
2+ be

the domain �̃ = R
2+ \ 
. If I is the interval (δ, 1), then

ω(i, I, �̃) ≤ (1 − C0 ε δ)|I |, (6)

where C0 is a universal constant (see Figure 5).
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Then, with Claim 3 at hand and iterating formula (6) normalized at each stage,
it follows that

ω(0, I k
n , �) ≤


 n∏

j=1

(1 − C0ε j δ j )


 |I k

n |.

Therefore, it follows that the limit in (5) diverges if the series

∞∑
j=1

ε j δ j = ∞. (7)

Now, since δn = 1/ log(n + 2) by Claim 1, it is enough to chose εn = 1/(n + 2)
so that the conditions imposed by the Claim 2 and equation (7) are satisfied. Thus,
the proof of Main Theorem will be completed whenever we prove Claim 3.

Proof of Claim 3. Let � be a Riemann mapping from R
2+ onto �̃ with �(i) = i .

We assert that there exists a universal constant C1 such that

|�′(x)| ≥ 1 + C1ε δ (8)

for all x ∈ �−1(I ). If this is the case, observe that

|I | =
∫

�−1(I )
|�′(x)| dx ≥ (1 + C1ε δ)|�−1(I )|,

and therefore, inequality (6) follows since |�−1(I )| 	 ω(i, I, �̃). So, to get Claim
3 proved, it is enough to show that equation (8) holds.

For this purpose, recall that the Hilbert transform of a function g ∈ L2(R) is
given by

(Hg)(x) = lim
η→0+

1

π

∫
|x−t |>η

g(t)

(x − t)
dt,

and it represents the boundary values of the harmonic conjugate of the harmonic
extension of g to R

2+. For more on this topic, we refer to Garnett’s book [7].
Since i log �′ = − arg �′+i log |�′| represents an analytic function in R

2+, we
can write log |�′(x)| as the Hilbert transform of the function g(x) = − arg �′(x),
for x ∈ R. Note that g(x) is odd and vanishes outside an interval which will be
denoted by J1 = (−δ1, δ1).

Let x ∈ �−1(I ) be fixed. Then,

log |�′(x)| = lim
η→0+

1

π

∫
|t | < δ1|x − t | > η

g(t)

x − t
dt

≥ lim
η→0+

1

π

∫
0 < t < δ1|x − t | > η

g(t)

(
1

x − t
− 1

x + t

)
dt. (9)
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Fig. 5

Now, we observe that g(t) ≥ 0 if t ∈ [0, δ1]. Moreover, there exists an open inter-
val J2 ⊂ [0, δ1] such that g(t) 	 ε/δ for any t ∈ J2. Therefore, it follows that (9)
is bigger than or equal to

lim
η→0+

1

π

∫
J2|x − t | > η

g(t)
t

x2 − t2 dt � ε

δ
|J2|2. (10)

Using the conformal invariance of the harmonic measure, we may conclude from
(9) and (10) that

log |�′(x)| � ε

δ
(ω(i,�(J2), �))2 . (11)

The last ingredient in the proof comes from the observation that, for any set
E ⊂ J1 = (−δ1, δ1) holds the following inequality

ω(i,�(E), �) ≥ ω(i,�(E)∗, R
2+), (12)

where �(E)∗ denotes the projection of �(E) on to R. Note that, actually, �(E)
is a piece of the bump 
 (see Figure 6).

Once again the conformal invariance of the harmonic measure along with the
fact that �(J2)

∗ are just the points x ∈ (0, δ) for which the slope of the bump 
 is
comparable to ε/δ, yields that

ω(i,�(J2)
∗, R

2+) 	 |�(J2)
∗| 	 δ. (13)

Then, combining (12) and (13) in (11), it follows

log |�′(x)| � ε δ

for any x ∈ �−1(I ). From here, equation (8) follows, which completes the Claim 3.
Therefore, the proof of our Main Theorem is now complete.
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Fig. 6

3 Compact composition operators on Dα

In this section, we overtake some previous results which allow us, along with our
main result, to analyze the size of Eϕ whenever Cϕ is compact on the weighted
Dirichlet spaces Dα .

Recall that for α > −1, the weighted Dirichlet space Dα consists of analytic
functions f on D for which the norm

‖ f ‖α =
(

| f (0)|2 +
∫

D

| f ′(z)|2(1 − |z|2)α d A(z)

)1/2

is finite. Here, d A(z) = 1
π

dx dy denotes the normalized Lebesgue area measure
on D. Particular instances of α yield well known Hilbert spaces of analytic func-
tions. Indeed, α = 0 corresponds to the Dirichlet space D. If α = 1 the norm
obtained is equivalent to the usual one in the Hardy space H2. Analogously, for
α = 2, we get the Bergman space A2. Note that if α1 < α2, then Dα1 is strictly
contained in Dα2 .

If α > 1, it was shown in [9] that there exists an inner function ϕ inducing a
compact Cϕ on Dα (see Example 3.6). So, in such a case, Eϕ = ∂D, and therefore
its Lebesgue measure is positive. Obviously, the Hausdorff dimension of Eϕ is one.

When −1 < α < 0 and Cϕ is compact on Dα , the set Eϕ is empty (see [3,
Theorem 4.5]) and therefore, there is nothing to discuss.

On the other hand, since the map ϕ constructed in the proof of main re-
sult is univalent, it follows that Cϕ is bounded on the Dirichlet space D. More-
over, the angular derivative of ϕ fails to exist at each point of the boundary
∂D, so upon applying the Angular Derivative Criterion (see [9, Theorem 5.3]),
it follows that Cϕ is actually compact on Dα for any α > 0. Then, we may
conclude.
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Corollary 3.1 There exists a compact composition operator Cϕ on Dα , α > 0,
such that the Hausdorff dimension of Eϕ is one.

Remark 3.2 We note that the map ϕ in the proof of Main Theorem does not induce
a compact composition operator on the Dirichlet space D, that is, α = 0. To check
this, it is enough to show that for any Carleson disk S(ξ, δ) = {z ∈ D : |z −ξ | < δ}
centered in ξ ∈ ∂D of radius δ, 0 < δ < 1, the limit limδ→0 A (S(ξ, δ) ∩ �) /δ2 is
not zero. For the characterization of compact composition operators on the Dirichlet
space see [9, Proposition 5.9], for instance.

On the other hand, if 0 ≤ α < 1, there is a close relation between functions
in Dα and the concept of α-capacity of a set. Recall that, for 0 ≤ α < 1 and any
measure µ of bounded support Sµ, the α-potential of µ is defined by

uµ
α (x) =




∫
log

1

|x − y| dµ(y), α = 0;

∫
dµ(y)

|x − y|α , 0 < α < 1.

If Iα(µ) denotes the energy integral of µ,

Iα(µ) =
∫

uµ
α d µ(x),

then the α-capacity of a bounded Borel set E is defined by

Cα(E) = {inf Iα(µ)}−1

where the infimum is taken over all positive measures µ with total mass 1 and
support Sµ contained in E . When α = 0, the α-capacity is also called logarithmic
capacity. Observe that there exist Borel sets E of Lebesgue measure zero and α-
capacity positive for any 0 ≤ α < 1. In addition, if Cα1(E) = 0 then Cα2(E) = 0
for any α2 > α1. For more about capacities, we refer to Carleson’s book [2].

When functions in the weighted Dirichlet spaces Dα are considered, the fol-
lowing relation holds: if f ∈ Dα , then the radial limits f (eiθ ) = limr→1− f (reiθ )
exist except on a set of α-capacity zero (see [1] and [16]).

In addition, when α > 0, there is a connection between the α-capacity and the
α-dimensional Hausdorff measure. In fact, a Meyers’ result on Bessel capacities
[10] implies that Cα(E) = 0 whenever �α(E) < ∞. Moreover, if Cα(E) = 0
then Hβ(E) = 0 for any β > α (see also [17]). Thus, as a consequence, we may
deduce the following

Corollary 3.3 There exists a compact composition operator Cϕ on Dα , 0 ≤ α < 1,
such that the α-capacity of Eϕ is positive.

The statement in Corollary 3.3 for α = 0 corresponds to Theorem 3.1 in [5],
where the authors provided an example of a compact composition operator Cϕ on
D such that the logarithmic capacity of Eϕ is positive.

Finally, for 0 < α < 1, Corollary 3.3 completes a previous result proved in [6]
which asserts that the α-capacity of Eϕ is zero whenever Cϕ is Hilbert-Schmidt on
Dα .
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