Available online at www.sciencedirect.com

sc.suce@p.“ﬂ. PHYSIGA ﬂ\

e TN HRR
ELSEVIER Physica A 362 (2006) 261-276

www.elsevier.com/locate/physa

On the Calogero—Degasperis—Fokas equation
in (2 + 1) dimensions

M.L. Gandarias™, S. Saez

Departamento de Matemdticas, Universidad de Cadiz, P.O. BOX 40, 11510 Puerto Real, Cddiz, Spain

Received 1 November 2004; received in revised form 20 December 2004
Available online 15 November 2005

Abstract

In this paper we study a (2 + 1)-dimensional integrable Calogero—Degasperis—Fokas equation derivable by using a
method proposed by Calogero. A catalogue of classical symmetry reductions are given. These reductions to partial
differential equations in (1+1) admit symmetries which lead to further reductions, i.e., to second-order ordinary
differential equations. These ODEs provide several classes of solutions; all of them are expressible in terms of known
functions, some of them are expressible in terms of the second and third Painleve trascendents. The corresponding
solutions of the (2 + 1)-dimensional equation, involve up to three arbitrary smooth functions. Consequently, the solutions
exhibit a rich variety of qualitative behaviour. Indeed by making appropriate choices for the arbitrary functions, we exhibit
solitary waves, coherent structures and bound states.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we discuss the generalized (2+ 1)-dimensional integrable generalization of the
Calogero—Degasperis—Fokas (CDF) equation
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where 6 u = [udx. This equation has been derived by Toda and Yu [1].

A Wlde class of differential equations with interesting properties are integrable by the inverse spectral
transformation method. One of these equations is the CDF equation in (1 + 1) dimensions. The CDF
equations is a (1 4+ 1)-dimensional nonlinear equation having the form
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where @ and b are arbitrary constants. Eq. (2) was introduced by Calogero and Degasperis [2] investigating
equations solvable by a matrix variant of the inverse transformation, and independently by Fokas [3]
investigating KdV-type equations with certain Lie—Backlund symmetries. Exact multi-soliton solutions to (2)
was obtained from its bilinear form (when a>0) [4]. The CDF equation was studied also by other authors
[5,6]. In Ref. [7], an extended Dym equation was generated by the purely binormal motion of an inextensible
curve of constant curvature. This extended Dym equation is readily established by a reciprocal link to the
CDF equation. Besides, it is well known that CDF equation can be reduced to: the Calogero—Korteweg—de
Vries (CKdV) equation [8] when a =0 and b = £1, the Chen equation [9] when a = —b = 1, after the
transformation u = exp(kw) and w — +iw, the Schwartian KdV (SKdV) equation whena =b =0and u = ¢,
which is a potential transformation of u. The (2 4+ 1) (SKdV) has been considered in Ref. [10].

It is well known that the similarity solutions of integrable nonlinear partial differential equations (PDEs)
give rise to Painlevé trascendents [11-14]. This connection between Painlevé equations and soliton-type
equations has led to the Ablowitz, Ramani and Segur (ARS) conjecture [15]. Namely, it was exemplified that
ODEs obtained as reductions of the well-known soliton equations yield ODEs with the Painlevé property
(PP). A modern survey about PP can be found in Refs. [16,17]. Moreover, similarity reductions of the best-
known soliton equations lead to second-order Painlevé equations [11,18]. In Ref. [10] classes of solutions of
the Schwarzian Korteweg—de Vries equation in (2 + 1) dimensions has been derived, all of them expressible in
terms of known functions such as the second and third Painlevé trascendents.

Similarity reductions of partial differential equations (PDEs) to ODEs of Painlevé type are very important
theoretically. In this sense it is of great interest to consider the similarity reductions of the CDF equation in
(2+ 1) dimensions to ODEs. In Ref. [19], the similarity reductions of the CDF modified KdV equation in
(1 + 1) dimensions have been obtained. In Ref. [20], the Painlevé property was defined for PDEs and the
connection between the PP and the occurrence of the Lax pair and Bicklund transformation was
demonstrated for the KdV equation [21], as well as for some other well-known equations.

Lou [22] proposed a (1 + 1)-dimensional integrable model with space—time exchange symmetry under the
meaning that the model can be changed to a form with the Painlevé property. A list of (1 + 1)-dimensional
integrable equations and their symmetries has been done in Ref. [23].

The study of higher-dimensional integrable systems is one of the main themes in integrability theory. Several
models in the context of (2 4+ 1)-dimensional equations, i.e., equations with two spatial and one temporal
variables, which are integrable have been developed by Toda and Yu [24]. These equations has been recently
derived by using a method proposed by Calogero. That is, by modifying one of the operators of the Lax pair
for (1 + 1)-dimension. In this way from the CDF equation they obtain Eq. (1). Although this equation arises
in a non-local form it can be written as follows:
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Although there exist different tools to investigate the properties of the integrable (2 + 1)-dimensional
equations we choose the Lie symmetry analysis. The invariance properties of some of the physically important
nonlinear evolution equations such as Kadomtsev—Petviashvili equation (KP) and Davey—Stewartson
equation (DS) have been studied through Lie symmetry analysis [25,26]. In most of the cases the
corresponding Lie algebra has the Kac-Moody—Virasoro-type subalgebra, but some of the integrable (2 + 1)-
dimensional equations do not admit Virasoro-type subalgebra. Examples of such equations are a breaking
soliton equation introduced by Bogovalenski, a (2 + 1)-dimensional generalization of the nonlinear
Schrédinger equation [27] and the Schwartian—Korteweg—de-Vries equation [10].
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The classical method for finding symmetry reductions of PDEs is the Lie group method of infinitesimals
transformations. Using this method we bring out the unexplored invariance properties and similarity reduced
(14 1) PDEs of the above Eq. (3). First we obtain a point transformation group which leaves system (3)
invariant. In order to find all invariant solutions with respect to s-dimensional subalgebras, it is sufficient to
construct invariant solutions for the optimal system of order s. The set of invariant solutions obtained in this
way is called an optimal system of invariant solutions.

By using the classical Lie method we obtain reductions of the (1 + 1)-dimensional PDEs, to obtain ODEs
and by further reductions to second-order integrable ODEs. The solutions of all of these ODEs are expressible
in terms of known functions, some of them can be expressed in terms of the second and third Painlevé
trascendents. We also derive exact solutions for the (2 4+ 1)-dimensional integrable generalization of the CDF
equation. Some of these solutions are soliton solutions, localized on a curve and that decay exponentially
apart from that curve.

2. Lie symmetries

To apply the classical method to the (2 4+ 1)-dimensional PDE (3), we consider the one-parameter Lie group
of infinitesimal transformations in (x, ¢, z, u) given by

X" = x4 eé(x, z, t,u) + O(),

7 =z 4 el(x, z, 1, u) + O(e?),

= t+ et(x, z, t,u) + O(E),

u* = u+ en(x, z, t,u) + O(E), 4)

where ¢ is the group parameter. Then one requires that this transformation leaves invariant the set of solutions
of (3). This yields to an overdetermined, linear system of equations for the infinitesimals &(x, z, ¢, u), {(x, z, t, u),
t(x, z, t,u) and n(x, z, t,u). The associated Lic algebra of infinitesimal symmetries is the set of vector fields of
the form
0 0 0 0
v=¢(—F+ 0 —FT1—+n—. 5

‘e a ©)
Having determined the infinitesimals, the symmetry variables are found by solving the invariant surface
condition
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Applying the classical method to PDE (3) the corresponding Lie symmetry algebra depends on the

constants @ and » and we can distinguish the following cases:

(i) If a0, b0

0 0 0 0
&, vzz&, V3=t&+z&,
where f(¢) is an arbitrary function of ¢.

(i) If a#0, b = 0, we get generators (7) and
) 0 0 0

V4:Xa—22&—ua.

V) =

0
v =/0) 5. ™

(iii) If @ = 0, b#0, we get generators (7) and

vz—xg—2zg+uE
T oy oz T ou
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(iv) If a =0, b = 0, we get generators (7) and
0
=Xx——2z— = k(z)u —,
vV, =X LT Vi (2)u %
where k(z) is an arbitrary function of z.
We, respectively, denote by ¥, ¥,, 3 and ¥4, the corresponding Lie algebras.

In order to obtain all the invariant solutions with respect to one-dimensional subalgebras, we construct the
one-dimensional optimal system of subalgebras.

(1) If a#0, b#£0, the corresponding generators of the optimal system of subalgebras for .#; are:

Vi + Ava, Vo, V3, A€ ZR.

(i) If a#0, b = 0, the corresponding generators of the optimal system of subalgebras for ¥, are:

1
Vi 4 AV, Vo, AV + vy,

AVy + 2v3 + VJ‘,V3 + }Vvl, /Iqé%, LER.

(1) If @ = 0, b#0, the corresponding generators of the optimal system of subalgebras for #; are:

2
Vi + AV2, V2, AV] 4V,

Iy 42V + Vi, vi 4+ Avy,  A#L de .

(iv) If a = 0, b = 0, the corresponding generators of the optimal system of subalgebras for Z, are:

3
Vi + Avo, Vo, Av) + Vs

o+ 2v3 + Vi, vi+ Ay, A#L de .

We remark that Eq. (3) does not admit Virasoro-type subalgebra. In the following, we list the similarity
variables and similarity solutions as well as the systems of PDEs obtained when the (2 + 1)-dimensional
equation (3) is reduced by means of {u;}. These generators {u;}, are obtained by adding to the generators of the
optimal system the infinite-dimensional generator v, and v.

2.1. Reductions for a#0 and b#0

Reduction 1. By using the generator v; + 4v> + v;, we obtain the similarity variables and similarity solution

Z] =Xx— /f(t) dt, zy=z—At, u=h(z1,22) ®)
and the PDE E,
8 heyz heyd — 8Dz hey 2 A — 212 he bz 2 By + 20PHE D

Z1Z12] 2121722

+ 6h2 bz ey — 28 Wb - ey — 4ab e, 2 hey — 267 hh, - h

Z121 121°%22

— 6h2 he, + 647 W12 by, — 66712 hoy + 200 b -

z1'" 2 z1'" 22

— 20Nz ez, — BRI B2y — 21 By By OB

Z122

+ 2a*W>h. h..., + 4abl’h. h.,., + 2b*h_ h.,., = 0. )

2122 2122



M.L. Gandarias, S. Saez | Physica A 362 (2006) 261-276 265

Reduction 2. By using the generator v, + v, we obtain the similarity variables and similarity solution
n1=x—zf(1), =1 u=h(z,z) (10)
and the PDE E,
- 8h3hz|zl hzz - Zf(ZZ)h3h21h21212121 + Zf(22)113h2121h212121 + 6f(22)h2h§] hzmzl - 12f(22)hh; h21:1
+ 8D b, + 6f (222, — 6 f (2, + 6b7f (z2)h2, = 0. (11)

Reduction 3. By using the generator v3 + vr, we obtain the similarity variables and similarity solution
(t
zlzx—/jgdt, zzzé, u=h(zy,z) (12)

and the PDE E;
(81 h., 2 ey — 8P hoyhey )20 — 21PN By By + 2HPHE

z1z1'"22

+ 6hh? hoyz hzy — 2810, 2 hoy — 4abh 2 by — 207 hhe, 2 e,
— 6h2 hey + 6a”h* 12 by — 6672 hoy + 200 D, -

21z Z1Z212122
— 21Nz by — AP iy — 210he B D+ O D
+2d% IPh, b, + 4abh*h- h,., + 2 b*h. h-,., = 0. (13)

2.2. Reductions for a#0 and b =0

Besides the previous reductions we obtain

Reduction 4. By using the generator Av; + v} + v/, with 10, we obtain the similarity variables and similarity
solution

Z1 = xe_’/A — I/ e_’/Af(l) dl, Zy) = 2621/1, u= h(Z],Zz)e_f//L (14)

and the PDE E4

— 16/ bz heyz2d ™ 4 160 by b2y z0 0™+ 81 hey 27 — 1612 27!
— 21 h by By A 2BPR he, + GRRE B b, — 2dPRhe, e,
— 6h2 ey 4 6a? 12 hey 4 200D by 2y — 2Ry B

z1z1' 22 AR B2 ey)
2121212122

—4IPR D2y — 207D by By 4 GRE Dy + 207 BB D, = 0. (15)

Reduction 5. By using the generator v} + v/, we obtain the similarity variables and similarity solution

1=+ Oz =t u=hz,n)Vz (16)
and the PDE Ej5
(P heyhzyzyzyzy = Bhzpzy ez — 3070 heyeyzy + GRRS By — 30+ 3aPh*h )zy — 81, -, b,
30 h bz — 2000 — SHOR Dz — @ hOhyz 4 8HOh b, + 3k + SRR = 0. (17)

Reduction 6. By using the generator ivs + 2v3 + v} + v/, we obtain the similarity variables and similarity
solution

o =xt"? = %/f(z)ﬂ/2 dt, zm=z-— gln t, u=h(zy,z)"? (18)
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and the PDE E¢
o h— hzhzlh”lllzlhzz + hzh?lzlhz2

21 h, . by — 2100 B, .
o+ 302 heyz hey — @PROBzyz hey — 302 hey + 38R

+ h3h21h21212122 - h3h2121h212112 - 2h2h31h212122 - hzhllhllzzhzlzl
(19)

+ 2k he,zy + 3HB by, + OB D, — 4R, = 0.
Reduction 7. By using the generator v3 + Av} + vy, 1% %, we obtain the similarity variables and similarity

solution
2 =xt — / fOr7 e, oz =z, u=hzy, ) (20)
and the PDE E;
— 16/ Iz, ey 220 4 161 hey b2y 200+ 81D 2 2 — 16012, 4
+ 81 hzzyhey 2y — 8D 2y hey 2 — 210 he B By + 20PH D
+ 6h2 bz, hey — 28 Wb by — 662 by + 6B e,
+ 2h3h21 /121212122 - 2//13}13121/1212122 - 4h2h§1 /1212122
1)

— 21Phey by by + 6 W B2y + 27 I b, = 0.

2.3. Reductions for a =0 and b#0
These reductions can be obtained from the previous case due to the invariance of Eq. (3) under the

transformation
1

u—— a—b.
u

2.4. Reductions for a=0 and b =0
Besides the previous reductions we obtain
Reduction 8. By using the generator v; + Avs + v/ 4 v,, we obtain the similarity variables and similarity

solution
(22)

1 =x— /f(t) dt, zp=z—it, u=hz,z)e/* kO«

and the PDE E; (9) with a =0 and b = 0.

Reduction 9. By using the generator v, + vy + vi, we obtain the similarity variables and similarity solution
(23)

n=x—zf(1), =1, th(zlazz)efk(z)dz

and PDE (11) with a =0 and b = 0.
Reduction 10. By using the generator Av; + v; + vr + vk, A#0 we obtain the similarity variables and similarity

solution
(24)

1 ; : @) 4.
7y = xe 1 — 7/ e f(0)dt, z =z, u= h(zl,zz)e_l/zfyd‘

and PDE E, (15) with h=1/h and a = 0.
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Reduction 11. By using the generator v + Vs + Vi, we obtain the similarity variables and similarity solution

= (A SOWE =1, u=h(zy, e S EE (25)
and the PDE E5 (17) with a = 0.

Reduction 12. By using the generator Avs + 2v3 + Vi + vy + vx, A#0 we obtain the similarity variables and
similarity solution

1 ) (ko) de
7 =xt“/2—§/f(t)t‘3/2 d, nm=z-Jlnr, u = h(z,, z5)eV/% [ K@) &2 (26)

and the PDE E¢ (19) with A — 1/h and a = 0.

Reduction 13. By using the generator vs + Avj + v/ + v, we obtain the similarity variables and similarity
solution

2 =xth - / SOz =2 = bz, z)e [ (27)

and the PDE E; (21) with 7 — 1/h and a = 0.

We remark that equation E, with f(z;) = 1 can be integrated once with respect to z; and becomes the
(1 + 1)-dimensional (CDF) equation.

3. Symmetry reductions to ODEs

In several cases, the reduced PDEs in (1 4 1) variables admit symmetries which lead to further reductions to
ODEs, we shall use again the techniques of Lie group theory.

(1) Equation E;, admits the following symmetries

0 0
= — P -, 28
Vit oz, A u(z2) oz, (28)
where o(z,) is an arbitrary function of z,. By using v;; + v, we obtain the similarity variable and similarity
solutions
1
W=z — /— dzy, h=g(w), (29)
u(z2)
and the autonomous ODE
_ng/g//// + g3g//g/// + 3g2(g/)2g/// _ 6g(g/)3g// + 3(g/)5 _ 3a2g4(g/)3 + 3b2(g/)3 =0. (30)

By dividing by ¢2(¢')%, integrating once with respect to w and then multiplying by ¢*(¢')* Eq. (30) can be
reduced to the following second-order autonomous ODE:
3(9)y & 5 3b1
== - ——+k k. 31
g'=3"y T2 9ty theth (1)
By multiplying by g—3¢/, integrating once with respect to w we get
(¢) = —a*g* +2kig* + kag + b + 2k3g’. (32)

The integration may be completed in terms of elliptic functions.
(2) Equation Eq, for » = 0 and A#0, admits symmetries (28). For 4 = 0 besides the previous ones admits the
following generator:
0 0

=zi——h—. 33
Vio =21 o & (33)
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By using v;; + v, we obtain the similarity variable and similarity solutions (29) and the ODE (30) with
b=0.
By using vi, + v, we obtain the similarity variable and similarity solutions

w=ze S35 RCTy - glw)e” S35 2 (34)
and the ODE
_ g%g/J////w + J%g//J///W + 392(9 )ngW 6g(J/)3g//W + 3(9/)51/1/ _ 3a294(g/)3w
_ 3g? ’ o + 2g (g//)Z + ng(g )Zg// +a g()g// 3g(g/)4 _ 5a2g5(g/)2 =0. (35)

By dividing (35) by ¢%(¢')*, integrating once with respect to w, and then multiplying by ¢~3(¢’) and
integrating again with respect to w we arrive at Painlevé 111 (PIII)
g// — (g/)2 . g_/ 23 kl kzgz

B (36)
g w 2w w

(3) Equation E,, admits the following symmetries:

1 2
= e i f(z2)#0, (37)

where {(z2) and f(z) are arbitrary functions of z;. By using v; + vz we obtain the similarity variable and
similarity solutions

W=z — /C(zz)f(zz)dzz, h=g(w), (38)

0
v = {(22) oz Vg

and ODE (30) that can be integrated in terms of elliptic functions.
(4) Equation E,, with b = 0 admits symmetries (38) and

vy _Zl

o [fedn g feo (39)

By using v; + v + v, we obtain the 51m11ar1ty variable and similarity solutions

1/3 zZ zZ zZ
w221<1+3/f(22)d22> _/(1 f(z2)o(z2) dzs

+3 [f(z2)dz)*
—1/3
h= g(w)(l +3 /f(zz) dzz) (40)
and the ODE
g3g/g//// + g3J//g/// + 392(g/)2g/// 6g(g )3 " + 4g4 " + 3(g/)5 _ 3a2g4(g/)3 _ 8g3(g/)2 —0. (41)

By dividing (41) by ¢°(¢')°, integrating once with respect to w, multiplying by ¢’ and integrating again with
respect to w we arrive to the following second-order ODE:

1 3 ' : a2
ZE(g) —7g3+kzg—4wg+k1. (42)
The change of variables g = y~! leads to
1 (J/)2 a 2
== ——+k 4 kiy. 43
=37 2y+zy+wy+1y (43)
By making the change of variables y = aV(Z) with Z = fw leads to (44),
/" 1 (V/) 2 11
vV =57 ——+4cV - ZV — 37 (44)

the solutions can be written in terms of the second Painlevé equation (PII) (see Ref. [28]).
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(5) Equation E3, only admits the following translation symmetry vy, that leads to a trivial reduction.
(6) Equation E4, admits the following symmetries:

0 0 0

=z1— 22— —h—. 45
Vi1, V41 =Zj oz ) o5 oh (45)

By using v4; we obtain the similarity variable and similarity solutions
w=z1/z2, h=gWw)/z2 (46)

and the ODE (35) that leads to (PIII).

(7) Equation Es, admits the following symmetries:

= 0 Vs =2 o + 2z 0 h 0
N0 P T T e, Con
By using vs; we obtain the similarity variable and similarity solutions
w=1z, h=gw) 47)

and the ODE (35) that leads to (PIII).
By using vs; we obtain the similarity variable and similarity solutions

w=zi/Va, h=gw)/ya (48)
and the ODE
799" w—a'g"g"w—3gg)g"w+69(g)g"w—3(g)w+3d’g*(g)w + 3g°g'g"
—29°(g")Y = 547" — a’¢°g" +4g%g" + 39(¢)* + 54°¢°(¢)* — 84°(¢')* = 0. (49)
By dividing (49) by ¢2(¢')%, integrating once with respect to w, setting the integrating constant k, = 0,
multiplying by wg—2¢’ and integrating again with respect to w we get the following second-order ODE:

3 "2 2k2
g,,zz(gg) N (722_4> g+ (50)

The change of variables g = n*(w)V(é(w)) leads to (44) where éin“ + > = 0 and y must satisfy the linear
equation

ks
/" 1 e — 0
(i ( 214/2)"

whose solutions are expressed in term of Bessel functions.

(8) Equation Eg, admits, the following symmetries:

vii, Vsi, A#O. (51)

Besides the previous symmetries, Eq admits, for A = 0, the generator vq;.
By using v4; we obtain the similarity variable and similarity solutions (46) and the ODE (49).
By using uv;; + vs; we obtain the similarity variable and similarity solutions
W=z —uz, h=gWw) (52)
and the ODE
—0*d'g" 1+ g9 1+ 3979V 9" 1w —69(g) g n+3(g) n—3ag*(g) u+ 29%g" — 4g°(g')’ = 0.
(53)
By dividing by ¢*(¢')*, integrating once with respect to w, multiplying then by g~2¢’ and integrating again
with respect to w, Eq. (53) can be reduced to the following second-order ODE:
3 n2 2 k
S COL S SRS Y B (54)
2 2 Loop
The change of variables g = V! leads to (44) whose solutions are expressed in term of (PII).
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(9) Equation E7, admits for A7#0 symmetries (45). Equation E;, for 4 = % also admits vs;.
By using v4; we obtain the similarity variable and similarity solutions (46) and ODE (49).
By using uvi; +vs with 2 =3, we obtain the similarity variable and similarity solutions (52) and
ODE (53).

4. Some travelling wave solutions and other explicit solutions

In the following we present some explicit solutions of the second-order ODEs as well as the corresponding
travelling solution of the (2 4+ 1) CDF equation. Eq. (32) can be integrated in terms of elliptic functions.
Setting in (32) b = 0 and k; = —4 an exact solution is given in terms of the Weirstrass 2 function. Clearly any
of the rational, hyperbolic or trigonometric degenerations of the £ functions also give solutions. In particular,
solitary waves result:

Setting k1 = —2¢3, ko = 0, k3 = —%(26’16‘2 —a)2cicr + a), we get

1
— (¢1 + 355) cosh*(caw)
2

By considering the corresponding symmetry reductions (8) and (29) we obtain that a “curve” soliton solution
for the (CDF) equation in (2 + 1) dimensions can be written as
1
u= = 5 , (55)
— (1 + ) (cosh*(erx — (1) — oz — 1))

with

o(t) = ¢ / fdt, 8(z) = e =z—t (56)

( 2)
In Fig. 1 we can see solution (55) with ¢; = —1, co =1, a =4, 6(z — At) = sin(z — ¢) and ¢(t) = —t for t = 1.
By considering the corresponding symmetry reductions (10) and (38) we obtain that a soliton solution for
the (CDF) equation in (2 + 1) dimensions can be written as
1
u= 5 (57)
—(c1+3 2)(COSh (c2x — 2/ (1) = Y())

with

Mo=q/awmm. (58)

-10

Fig. 1. Curve soliton ¢ = 1.
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In Fig. 2 we can see (57) with ¢; =1, co =1, a=4, f({) = t* and Y(¢) = ¢ for t =0 and 1, respectively, we
observe that this soliton solution is “rotating”.
Setting in (32) a =0, b =0, k; = —2¢y, k, =0, k3 = 4¢, we get the solution

C1
¢> cosh® Jeaw '
By considering the corresponding symmetry reductions (8) and (29), we obtain that solutions of the CDF in
(24 1) dimensions can be written as
_ c1p(2)
¢2 cosh*(/er(x — p(t) — 8(z — A1)

By considering the corresponding symmetry reductions (10) and (38) we obtain that a solution for the (CDF)
equation in (2 4+ 1) dimensions can be written as

(59)

_ C1 P(Z) (60)
ez cosh2 (e (x — 2 (1) — p(0)”
with
V(D) = o / S (r)d. 61)

In Fig. 3 we can see solution (59) with ¢@(1)=0, d(z—At)=z—1, —c1p(z)=cosh™(z), and
—c1p(2) = cosh™2(z2) + cosh™%(z + 4), respectively, for = 1. We observe that these dromions and coherent
structures are localized in all directions. In Fig. 4 we can see solution (60) with f(7)=1¢, Y(t)=1¢,
—c1p(z) = cosh™(2), respectively, for t = 1 and 2. We observe that the solution is localized in all directions
and evolves “‘rotating” and changing its shape.

Setting in (32) a = 0, we get

k3 — 8k, b

\/ k5 — 8kib
g= 4—(sm(\/2k iw+co)+ k), g= Tl(cos(\/ﬂq(w + ¢) — ky)),

\/ =k + 8k b° K5 — 8kib?
g= T(smh(\/ 2kiw+ )+ k), ¢g= aT(cosh(\/ =2k (w+ ¢) + k2)).
1
By considering the corresponding symmetry reductions (8) and (29) we obtain that some exact solutions for
the (CDF) equation in (2 + 1) dimensions can be written as

8k, b?
y=— Tl(sin(\/ﬂq((x — @(t) — 8(z — A1) + k2)))), (62)

i
i *1
MH W ‘1‘ 15

i ”W’t;m

H‘ ‘u

Fig. 2. Evolution of the rotating soliton with # =0 and 1.
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Fig. 3. Dromion and coherent structure ¢ = 1.

Fig. 4. Evolution of solution (60) with =1 and 2.

k2 — 8k, b*
u=— aTll(cos(\/ 2k1((x — @(t) — 0(z — At) — k2)))), (63)

k3 + 8k
u= — E(Slnh(\/ 2k ((x — (1) — 8(z — At) — k2)))), (64)

4k,

k5 — 8k
L V8 - s’ (cosh(v/=2k1((x — (1) — 8(z — A1) — k2)))). 65)

4k,

In Fig. 5 we can see the periodic solution (62) with k| =1, ky =4b, b =2, ¢(t) =1t, d(z) =z — At and
0(z2) = sin(z — Az) for ¢t = 1, respectively.
Setting in (32) a=1and b =0,
2 tan(‘/T§ w)
tan(@ w)+3 '

Setting in (32) a = v/2i/+/3, k1 = 0, ko =3 and b = 0 we get
_ 2sech’>w —2
" 2sech®w+ 1

Setting in (32) b= 0, ky =k, =0 and A = k3/a*, we get

24

9= 1+ a22>w?’
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Fig. 5. Periodic solution (62) for ¢ = 1.

Setting in (32) a =0, b =0 and k, = k3 = 0 we get

g = p(z)e¥ =T,
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By considering the corresponding symmetry reductions (8) and (29) we obtain that some exact solutions for

the (CDF) equation in (2 + 1) dimensions can be written as

2 tan(2 (x — (1) — 8(z — A1)
tan 3 (x — (1) — 8(z — A1) + 3

_ 2sech’(x — @(t) — 8(z — /) — 2
~ 2sech’(x — (1) = 0(z — At)) + 1~

3 2
1+ 22 (x — o(f) — 8(z — M)

U= p(z)e»,/72k1(x7(p(t)75(zflt))’

with

(1) = o3 / (0di, 8z = e / %, 2y =7t

(66)

(67)

(68)

(69)

(70)

In Fig. 6 we can see the “curve” soliton solution (68) with a =1, ¢ =1, @(t) =1, d(z2) = (z — A1)’ and

(z2) = Ai(z — At) for t = 1, respectively.

In Fig. 7 we can see solution (69) with §(z2) = (z — 2t) o(t) = t, p(z) = e and p(z) = tanh(z), respectively,

for t = 1. We observe that setting p(z) in a convenient form, we can modulate the solution.

Setting in (32) 5 = 0 and k, = 0 we get
4k,

4k,
g= , g= .
\/ k5 — 8kya*(cosh(v/ =2k (w + ¢) — k) \/ k5 — 8kia?(cos(v/2k1(w + ¢) — ky))

By considering the corresponding symmetry reductions (8) and (29) we obtain that some exact solutions for

the (CDF) equation in (2 + 1) dimensions can be written as

B 4k,
I = 8@ (cosh(V=2K((x — @(f) — 5z — 2) + ) — kg))
4k,

2 = 8k (cos(VART((x — (1) — 3z — 1) + 6)) — k)

(71)

(72)
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Fig. 6. Curve solitons (68) with ¢ = 1.

i

AR

Fig. 7. Solution (69) with t = 1.

In Fig. 8 we can see the solitary wave (71) with ¢(f) =1, §(z2) = (z — At) and 8(zy) = (23 — Af) for t =1,
respectively. We observe that setting k4 = 1 we have in terms of k| a one parameter family of solitary waves.
Eq. (3) support two kinds of solitary waves: a solitary family that decays exponentially and a solitary wave
which decays algebraically.

We remark that by considering the corresponding symmetry reductions (10) and (38) we obtain that some
exact solutions for the (CDF) equation in (2 4 1) dimensions can be written, as

U= |_Tz|klsech(\/ =2ki(x —zf(t) — Y(1)), u=-— é]'q cosech(y/ =2k (x — zf(¢) — Y (?))),
k; — 8k b? ks — 8k, b”
= =S sin(/ 2 (= 2 () = Y(0) + ko)t = == cos(v/ 2K (= =f () = (1) o),
[ .2 2
u=— %mm/ 2k (x — 2 (£) — Y(0)) — ko) u = 4k

I = 8k@? cosh(v/=2F(x — 2/ (1) — (1)) — ka)

4k,

/16 = 8k cos(v/2Ki(x — £(1) — (1) — k)

_ 2R -0 -y@)  2seeh’(x — 2 () = (1) =2
o B— () —p@)+3 2sech’(x —zf () — (zp0) + 1

\/ k3 — 8k b*

U= TCOSh(V —2ki(x = zf () = (1) — k2),u =
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Fig. 8. Solitary waves (71) t = 1.
_ 22 _ VIR (=2 ()= (1)
u= 5 2 2 u= p(Z)e >
1+ a?A(x — zf (1) — (1))
with
b = [ s (73)
Setting k; = 0, k; = 0 in Eq. (36) some particular solutions arise:
2¢1 ot ¢ (74)
w2 + c3a?’ w cosh(caalog(w) + ¢1)

By considering the corresponding symmetry reductions (14) and (46), we obtain that a family of solutions for
the CDF in (2 4+ 1) dimensions can be written as

L 2aear— () 'z

= o @([))251261 I c%az > (75)
u= . . (76)
(x — (1)) cosh(c2a(®&2 + log(x — ¢(1)) + ¢1))

Solution (75) depending on the choice of ¢; and ¢, becomes a singular solution. In particular if ¢; is a
rational number the solution becomes singular on an algebraic curve. It is interesting that this solution

possesses quite rich structure because of the entrance of an arbitrary function. For example, by choosing
¢1 =4, ¢co =1 and ¢(t) = sin(¢) the solution becomes

8(x - singz))3zz ’ a7
(x — sin(£))°z* + a?

which is, for a#0, a bounded regular solution for any values of x, ¢ and z.
Solution (76) becomes singular on an infinite number of curves in the plane XZ moving with .

The most interesting solutions are the soliton solutions, the entrance of some arbitrary functions p(z), ¢(7),
d(z — At) allows a wide variety of qualitative and physical behaviour for these solutions.

5. Conclusions

In this work, we have carried out a detailed Lie symmetry analysis of the (2 + 1)-dimensional integrable
generalization of the CDF equation. Through this invariance analysis we obtain (1 + 1)-dimensional PDE:s.
The invariance study of these PDEs and further reductions lead to second-order integrable ODEs whose
solutions are all expressible in terms of known functions, some of them expressible in terms of the second and
third Painlevé trascendents. For the CDF equation in (2 4 1) dimensions we obtained families of solutions
which have a rich variety of qualitative behaviors. This is due to the freedom in the choice of the arbitrary
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functions ¢(¢) p(z) and é(z — Af). Among them we have obtained bounded solutions such as soliton solutions.
Because of these arbitrary functions which are included in the single soliton solution, the solution is localized
on a curve and the curve may have quite a free form.
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