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Abstract

A generalization of the concept of variational symmetry, based on �-prolongations, allows us
to construct new methods of reduction for Euler–Lagrange equations. An adapted formulation of
the Noether’s theorem for the new class of symmetries is presented. Some examples illustrate
how the method works in practice.
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1. Introduction

Lie symmetry groups provide a powerful and systematic method for analyzing ordi-
nary (and partial) differential equations. However, not every integration technique can
be based on symmetry analysis, [6,7], and require generalizations of the classical Lie
methods.
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A more general approach to the integration of ordinary differential equations is based
on the concept of a nonlocal exponential symmetry, which first appeared in [15, Exercise
2.31]. This method was further developed in the work of Abraham–Shrauner and her
collaborators, [1], and in the theory of solvable structures [2,8]. There exists a large
variety of processes of reduction that can be explained and deduced by this theory. These
ideas were further developed by Muriel [11], who replaces the nonlocal exponential
terms by a new method of prolonging vector fields known as the �-prolongation, leading
to the notion of a C∞-symmetry or �-symmetry. These methods have been extended
to partial differential equations in the work of Cicgona, Gaeta and Morando [3,5,4],
who develop the concept of a �-symmetry.

For ordinary differential equations that can be derived from a variational principle

L[u] =
∫

L(x, u(n)) dx, (1)

the existence of special types of symmetries (variational symmetries) doubles the power
of Lie’s method of reduction. Due to the special structure of the Euler–Lagrange equa-
tion derived from (1), the knowledge of a variational symmetry allows us to reduce
the order by two.

We can expect that a generalization of the concept of variational symmetry, based on
the new �-prolongations, will generate new methods of reduction for Euler–Lagrange
equations. In this paper we establish this generalization and introduce the concept
of variational C∞-symmetry, also including generalized vector fields. Some impor-
tant properties of these variational C∞-symmetries are presented. We also provide
an algorithmic procedure to reduce by two the order of any Euler–Lagrange equa-
tion that admits a variational C∞-symmetry. This is a “partial” reduction, because,
in general, a one-parameter family of solutions is lost when the reduced equation is
considered.

The correspondence between variational symmetries and conservation laws for Euler–
Lagrange equations is completely determined by the celebrated Noether’s Theo-
rem [9,14,15]. Since every conservation law rises from an ordinary (generalized) varia-
tional symmetry, we cannot expect to find new conservation laws associated with varia-
tional C∞-symmetries. In Section 4 we establish the corresponding version of Noether’s
theorem for the new symmetries (Theorem 3). This result allows us to reformulate the
connection between the original Euler–Lagrange equation and the reduced equation. In
addition, we will be able to obtain a conservation law for the one-parameter family
of solutions lost in the reduction process, by relating the variational C∞-symmetry to
an special pseudo-variational symmetry. We also include several examples to illustrate
how this new method works in practice.

Throughout the paper, we will freely use the notations and results in [15]. We will
restrict our attention to single variable integrals leading to ordinary differential equa-
tions. Extensions of these results to �-variational symmetries of multivariable variational
problems and Euler–Lagrange partial differential equations will proceed in an analogous
fashion, but we leave the details to another publication.
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2. Variational C∞-symmetries

2.1. Some previous results

Let us consider a variational problem

L[u] =
∫

L(x, u(n)) dx, (2)

where the Lagrangian L(x, u(n)) is defined on M(n), for some open set M of the space
of independent and dependent variables X × U . Let

E[L] ≡
n∑

i=0

(−D)i(�ui
L) = 0 (3)

be the associated Euler–Lagrange equation, where D stands for the total derivative
operator with respect to x. To simplify the notation, we will denote by A the space
of smooth functions depending on x, u and derivatives of u up to some finite, but
unspecified, order and we write P [u] = P(x, u(m)) if we do not need to precise the
order of derivatives that P depends on.

Roughly speaking, a variational symmetry group of functional (2) is a local group
of transformations that leaves the variational integral L unchanged when u = f (x) is
transformed by the action of the group. The infinitesimal criterion of invariance [15,
p. 253] characterizes the infinitesimal generators of connected groups of variational
symmetries. They are the vector fields v = �(x, u)�x + �(x, u)�u such that

v(n)(L) + LD(�) = 0. (4)

The relation between symmetry groups and conservation laws was first determined
by Noether. In modern language, the characteristic Q = v(u) − v(x)u1 of a variational
symmetry v is also the characteristic of a conservation law for the Euler–Lagrange
equation, i.e. QE[L] = D(P ) for some P ∈ A. The hypothesis that the vector field v
generate a group of variational symmetries is overly restrictive to deduce the existence
of a conservation law. This motivates a generalization of a variational symmetry: the
infinitesimal divergence symmetries are the vector fields v such that

v(n)(L) + LD(�) = D(B), (5)

for some B ∈ A.
It is well-known that a one-parameter symmetry group of variational symmetries

for the Euler–Lagrange equations allows us to reduce the order by two. This is the
Lagrangian counterpart of what is now known as Marsden–Weinstein reduction [10].
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It is also known that there exist ordinary differential equations without Lie symmetries
that can be reduced or integrated by using different methods. One of them, that explains
a large variety of these processes, is based on the existence of C∞-symmetries [11,13].
This concept is based of a new way of prolonging vectors fields. For a given vector
field v = �(x, u)�x + �(x, u)�u defined on M ⊂ X × U and for an arbitrary function
� ∈ C∞(M(1)) the �-prolongation of order n of v is the vector field

v[�,(n)] = �(x, u)�x +
n∑

i=0

�[�,(i)](x, u(i))�ui
, (6)

defined on M(n), where �[�,(0)](x, u) = �(x, u) and, for 1� i�n,

�[�,(i)](x, u(i)) = D
(
�[�,(i−1)](x, u(i−1))

)
− D(�(x, u))ui

+ �
(
�[�,(i−1)](x, u(i−1)) − �(x, u)ui

)
. (7)

Formally, the �-prolongation of a vector field v can be identified as the ordinary
prolongation of a nonlocal exponential vector field [15, Exercise 2.31]

v̂(n) = e
∫

� dxv[�,(n)], where v̂ = e
∫

� dxv.

Equivalent characterizations of the �-prolongations can be consulted in [12, Theorem
2]. One of them, that will be used in this paper, states that an arbitrary prolongation
of v to M(n)

v∗
n = �(x, u)

�
�x

+ �(x, u)
�
�u

+
n∑

i=1

�∗
i (x, u(i))

�
�ui

(8)

is the �-prolongation of v if and only if

[v∗
n, D] = �v∗

n − (D + �)(v∗
n(x))D. (9)

For this kind of prolongations it is possible to calculate a complete system of dif-
ferential invariants by invariant derivation of lower-order invariants. This is the key
to construct new methods of order reduction, based on the existence of C∞-
symmetries [11].

2.2. The concept of variational C∞−symmetries

In this section, we show how the concept of variational symmetry can be generalized
when �-prolongations are considered. This will generate new methods of reduction for
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Euler–Lagrange equations. The concept of infinitesimal divergence symmetry and the �-
prolongation formula inspire the following generalization of the definition of variational
symmetry:

Definition 2.1. A vector field v = �(x, u)�x + �(x, u)�u is a variational C∞-symmetry
of the functional L[u] = ∫

L(x, u(n)) dx if there exists B[u] ∈ A such that

v[�,(n)](L) + L(D + �)(�) = (D + �)(B), (10)

for some � ∈ C∞(M(1)). We also say that v is a variational �-symmetry to precise the
function � for which (10) is satisfied.

Let us observe that standard divergence variational symmetries correspond to varia-
tional C∞-symmetries for function � = 0.

Two Lagrangians L and L̃ are equivalent if L − L̃ = Df is a divergence term (see
Theorem 4.7 in [15]). In particular, the associated Euler–Lagrange equations are the
same. The next proposition states the coherence of Definition 2.1: formula (10) remains
invariant when equivalent Lagrangians are considered.

Proposition 2.1. Let v be a variational �-symmetry of L[u] = ∫
L(x, u(n)) dx. The

vector field v is also a variational �-symmetry of L̃[u] = ∫
L̃(x, u(n)) dx where L̃ =

L + Df , for any f ∈ A.

Proof. By using

v[�,(n)](L) + L(D + �)(�) = (D + �)(B), (11)

we get

v[�,(n)](L + Df ) + (L + Df )(D + �)(�)

= v[�,(n)](L) + v[�,(n)](Df ) + L(D + �)(�) + Df (D + �)(�)

= (D + �)(B) + Df (D + �)(�) + v[�,(n)](Df ). (12)

Formula (9), written as [v[�,(n)], D] = �v[�,(n)] − (D + �)(v(x))D, applied to f gives

v[�,(n)](Df ) = (D + �)(v[�,(n)]f ) − (D + �)(v(x))Df. (13)

Therefore (12) becomes

v[�,(n)](L + Df ) + (L + Df )(D + �)(�)

= (D + �)(B) + (D + �)(v[�,(n)]f )

= (D + �)(B + v[�,(n)]f ). � (14)
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The following result shows that a variational C∞-symmetry remains as a variational
C∞-symmetry under a change of variables:

Proposition 2.2. Let v be a variational C∞-symmetry of L[u] = ∫
L(x, u(n)) dx and

consider any change of variables

x̃ = X̃ (x, u), ũ = Ũ(x, u). (15)

The vector field v in new variables, ṽ, is a variational C∞-symmetry of the corre-
sponding transformed functional L̃[̃u] = ∫

L̃(̃x, ũ(n)) dx̃.

Proof. Let us denote by

x = X (̃x, ũ), u = U (̃x, ũ), (16)

the inverse change of coordinates. The two Lagrangians L(x, u(n)) and L̃(̃x, ũ(n)) are
related, through the change of variables, by the formula

L(x, u(n)) = L̃(̃x, ũ(n))

Dx̃X (̃x, ũ)
. (17)

We need the following useful property of �-prolongations (see [11] for details):

v[�,(n)] = ṽ[̃�,(n)], for � = �̃

Dx̃X (̃x, ũ)
. (18)

By (18) and since Dx = Dx̃

Dx̃X , formula (10), in new variables, becomes

ṽ[̃�,(n)]
(

L̃

Dx̃X

)
+ L̃

(Dx̃X )2 (Dx̃ + �̃)(̃v(̃x)) = 1

Dx̃X (Dx̃ + �̃)(B̃). (19)

By derivation, the first term of (19) becomes

Dx̃X ṽ[̃�,(n)](L̃) − L̃̃v[̃�,(n)](Dx̃X )

(Dx̃X )2 , (20)

and formula (9) applied to X gives

ṽ[̃�,(n)](Dx̃(X )) = (Dx̃ + �̃)(X ) − (Dx̃ + �̃)(̃v(̃x))Dx̃X . (21)
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By replacing (20) and (21) into (19) and simplifying, we finally get

ṽ[̃�,(n)](L̃) + L̃(Dx̃ + �̃)(̃v(̃x)) = (Dx̃ + �̃)(B̃). (22)

This proves the result. �

Near any point where the vector field v �= 0, we can introduce a particular change
of variables (15) such that v takes the canonical form ṽ = �ũ, formula (22) becomes

ṽ[̃�,(n)](L̃) = (Dx̃ + �̃)(B̃). (23)

Suppose that B̃ = −�ũ(A) for some function A. Then the Lagrangian

L̂ ≡ L̃(̃x, ũ(n)) + Dx̃(A) (24)

and L̃ have the same Euler–Lagrange expression, Eũ[L̂]. Now formula (9) becomes

[̃v[̃�,(n)], Dx̃] = �̃̃v[̃�,(n)], which, when applied to A, provides

ṽ[̃�,(n)](Dx̃(A)) = (Dx̃ + �̃)(̃v[̃�,(n)](A)). (25)

By (23) and (25), we get

ṽ[̃�,(n)](L̂) = 0. (26)

Let w = w(̃x, ũ, ũ1) be a first-order invariant for ṽ[̃�,(1)], that is

�ũ(w) + �̃�ũ1(w) = 0. (27)

A very important property of �-prolongations is that a complete system of invariants
of the nth-order �-prolongation can be constructed by successive derivations of lower-
order invariants [12]. In this case, by successive derivations of w with respect to x̃ we

obtain a system of coordinates {̃x, ũ, w, . . . , wn−1}, such that ṽ[̃�,(n)] = �ũ. Let us also
denote by L̂(̃x, w(n−1)) the Lagrangian (24) in the (̃x, ũ, w(n−1)) variables. By (26), L̂

does not depend on ũ.
By means of the transformation {̃x = x̃, w = w(̃x, ũ, ũ1)} we get the following

relation between Eũ[L̂] and the Euler–Lagrange equation of L̂(̃x, w(n−1)) (see Exercise
5.49 in [15]):

Eũ[L̂] = D∗
w(Ew[L̂]) − D∗̃

x(Dx̃wEw[L̂])
= D∗

w(Ew[L̂])
= �ũ(w)Ew[L̂] − Dx̃(�ũx̃

(w)Ew[L̂]). (28)
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Therefore, by (27)

Eũ[L̂] = (Dx̃ + �̃)[−�ũx̃
(w)Ew[L̂]]. (29)

Let w = H(̃x, C1, . . . , C2n−2) be the general solution of the reduced Euler–Lagrange
equation Ew[L̂] = 0. When w is written in terms of {̃x, ũ, ũ1}, we have a first-order
ordinary differential equation for ũ:

w(̃x, ũ, ũ1) = H(̃x, C1, . . . , C2n−2), (30)

whose general solution ũ = G(̃x, C1, . . . , C2n−1) yields a (2n−1)-parameter family of
solutions

ũ(x, u) = G(̃x(x, u), C1, . . . , C2n−1) (31)

to the original Euler–Lagrange equation Eu[L] = 0.
In this way, we have managed to construct a reduced Lagrangian, of order n − 1,

whose corresponding Euler–Lagrange equation (of order 2n − 2) provides a 2n − 1-
parameter family of solutions to the original Euler–Lagrange equations. In other words,
we have proved that variational C∞-symmetries generate new reduction procedures for
Euler–Lagrange equations, as spelled out in the following theorem:

Theorem 1 (Reduction of order). Let L[u] = ∫
L(x, u(n)) dx be an nth-order varia-

tional problem with Euler–Lagrange equation Eu[L] = 0, of order 2n. Let v be a
variational �-symmetry, where � ∈ C∞(M(1)). Then there exists a variational problem
L̂[w] = ∫

L̂(̃x, w(n−1)) dx̃ of order n − 1, with Euler–Lagrange equation Ew[L̂] = 0
of order 2n− 2, such that a (2n− 1)−parameter family of solutions of Eu[L] = 0 can
be found by solving a first-order equation from the solutions of the Euler–Lagrange
reduced equation Ew[L̂] = 0.

3. Generalized variational C∞-symmetries

A significant generalization of the notion of symmetry group is obtained by allowing
the components � and � of an infinitesimal generator to depend also on derivatives of u.
A generalized vector field will be a formal expression of the form v = �[u]�x +�[u]�u

in which � and � depends on x, u and derivatives of u with respect to x up to some
finite (but unspecified) order. Formally, the prolongation of generalized vector fields is
obtained in the same manner as for ordinary vector fields. In a similar way, we can
consider �-prolongations of generalized vector fields, for functions � depending on x, u

and derivatives of u (see [13] for details). Based on this generalizations, the concepts
of generalized symmetry and generalized �-symmetry are straightforward. In particular,
we can also define generalized variational C∞-symmetries as follows:
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Definition 3.1. A generalized vector field v = �[u]�x + �[u]�u is a generalized varia-
tional C∞-symmetry of the functional L[u] = ∫

L(x, u(n)) dx if there exists B[u] ∈ A
such that

v[�,(n)](L) + L(D + �)(�) = (D + �)(B), (32)

for some � ∈ A.

To simplify the terminology, in what follows we will not specify the term generalized
if it is clear from the context which type of variational C∞-symmetry is considered.

Any vector field v = �[u]�x + �[u]�u has an associated evolutionary representative,
vQ = Q�u where Q = �[u] − �[u]u1 is the characteristic of v. We have the following
alternative expression for the �-prolongation of the vector field [13]:

v[�,(n)] = v[�,(n)]
Q + �[u]D, where v[�,(n)]

Q =
n∑

i=0

(D + �)i(Q)�ui
. (33)

The vector field v and its evolutionary form vQ determine essentially the same varia-
tional C∞-symmetry:

Proposition 3.1. A vector field v is a variational �-symmetry of (2) if and only if vQ

is a variational �-symmetry.

Proof. By (33), the identity (32) is satisfied if and only if:

v[�,(n)]
Q (L) + �D(L) + L(D + �)(�) = (D + �)(B). (34)

This expression can be written as follows:

v[�,(n)]
Q (L) = (D + �)(B − �L), (35)

which proves the result. �

The term strict variational symmetry is used to distingish standard variational sym-
metries from divergence variational symmetries. Similarly, we will say that v is a strict
variational C∞-symmetry when the second member of (10) is identically null. The
following result proves, in particular, that there exists strict variational C∞-symmetry
associated to any given variational C∞-symmetry:

Proposition 3.2. Let v be a variational �-symmetry of L[u] = ∫
L(x, u(n)) dx and f ∈

A. The vector field v[�,(n)]+f D is also a variational C∞-symmetry. As a consequence,
v[�,(n)] − B

L
D is a strict variational C∞-symmetry.
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Proof. A simple calculation gives

(v[�,(n)] + f D)(L) + L(D + �)(� + f )

= v[�,(n)](L) + L(D + �)(�) + f D(L) + D(f L) + L�f. (36)

By (32), the right member of (36) becomes (D + �)(B) + D(f L) + L�f , for some
B ∈ A, and thus

(v[�,(n)] + f D)(L) + L(D + �)(� + f )

= (D + �)B + (D + �)(f L)

= (D + �)(B + f L). (37)

This proves that v[�,(n)] + f D is a variational C∞-symmetry. For f = −B
L

, the second
member of (37) is identically null, which proves that the modified vector field v[�,(n)] −
B
L

D is a strict variational C∞-symmetry. �

The following proposition will also be useful.

Proposition 3.3. Let v be a variational �-symmetry of L[u] = ∫
L(x, u(n)) dx and let

f ∈ A be an arbitrary non null function. Then f v is a variational �̃-symmetry of
L[u] = ∫

L(x, u(n)) dx for �̃ = � − D(f )
f

.

Proof. The proof is based on the following property of �-prolongations [11, Lemma
5.1]:

f v[�,(n)] = (f v)[̃�,(n)] for �̃ = � − D(f )

f
. (38)

By multiplying both members of (10) by f, replacing � by �̃ + D(f )
f

and by (38), we
get

(f v)[̃�,(n)](L) + f L(D + �̃)� + f L
D(f )

f
� = f (D + �̃)B + f

D(f )

f
B. (39)

Successive simplifications of expression (39):

(f v)[̃�,(n)](L) + f L(D + �̃)� + LD(f )� = f (D + �̃)B + D(f )B,

(f v)[̃�,(n)](L) + L(f D(�) + f �̃� + D(f )�) = f D(B) + f �̃B + D(f )B

lead to the desired result

(f v)[̃�,(n)](L) + L(D + �̃)(f �) = (D + �̃)(f B). � (40)
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4. Noether’s theorem and variational C∞-symmetries

Theorem 1 provides a method to reduce by two the order of a given Euler–Lagrange
equation. This is a “partial” reduction, meaning that, in general, a one-parameter family
of solutions cannot be derived from the solutions of the corresponding reduced equation.
It all has to do with relation (29). Solutions of the reduced equation annihilates the
expression in the brackets of second member of (29). However there could be solutions
of the Euler–Lagrange equation for which this expression is neither null nor constant.
In other words, in general, that expression is not a first integral of the Euler–Lagrange
equation.

In this section we investigate the form of the well-known Noether’s theorem for when
�-prolongations are considered. The version presented here is inspired on the proof of
Noether’s theorem used in [15]. From this standpoint, the essence of this theorem is
reduced to the formula

v(n)(L) = QE[L] + D(A), for some A ∈ A, (41)

which is based on techniques of integration by parts. First of all, we prove a formula
that is similar to (41), but adapted to �-prolongations.

Lemma 4.1. Suppose Q, � ∈ A. There exists A ∈ A such that

v[�,(n)]
Q (L) = QE[L] + (D + �)(A). (42)

Proof. Let us prove that for any F, G and for each i ∈ N, there exists Ai ∈ A such
that

(D + �)i(F )G = F(−D)i(G) + (D + �)(Ai). (43)

For i = 0 and i = 1, formula (43) is satisfied for A0 = 0 and A1 = FG, respectively.
Let us assume that (43) is true for i − 1. Then there exists a function Ãi−1 such that

(D + �)i−1((D + �)(F ))G = (D + �)(F )(−D)i−1(G) + (D + �)(Ãi−1).

It is clear that

(D + �)i(F )G = −FD((−D)i−1(G)) + (D + �)(Ã1) + (D + �)(Ãi−1)

= F(−D)i(G) + (D + �)(Ai),

where Ã1 = F(−D)i−1(G) and Ai = Ãi−1 + Ã1. Then we can write

v[�,(n)]
Q (L) =

∑n

i=0
(D + �)i(Q)�ui

(L)
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=
∑n

i=0
Q(−D)i(�ui

(L)) + (D + �)(A)

= QE[L] + (D + �)(A). � (44)

Next, we present a result which is formally similar to Noether’s theorem, for varia-
tional �-symmetries.

Theorem 2. Let v be a variational �-symmetry of the variational problem L[u] =∫
L(x, u(n)) dx and Q the corresponding characteristic of v. Then there exists P [u] ∈

A such that

QE[L] = (D + �)(P ). (45)

Proof. By (35) and (42) we deduce

0 = QE[L] + (D + �)(A − B + �L). (46)

Therefore (45) is satisfied for P = −A + B − �L. �

Every variational symmetry of a variational problem is necessarily a symmetry of the
corresponding Euler–Lagrange equation. This can be proved by means of an important
commutation formula [15, p. 332]

E[v(n)
Q (L)] = v(2n)

Q (E[L]) + D∗
Q(E[L]), (47)

where L, Q ∈ A, and D∗
Q denotes the Frechet derivative operator.

Our next goal is to prove that variational C∞-symmetries are conditional C∞-
symmetries of the Euler–Lagrange equation. That means that variational C∞-symmetries
satisfy the invariance criterion v[�,(2n)](E[L]) = 0 only for a particular class of solutions
of E[L] = 0.

With this aim, let us investigate the form of formula (47) when �-prolongations
are considered. First, we introduce some notations and technical formulas that will be
used to prove subsequent results. The following operators are similar to the Frechet
derivative operator and its adjoint, when D is replaced by D + �:

(D + �)P (Q) = v[�,(n)]
Q (P ) =

n∑
i=0

(�ui
P )(D + �)i(Q), (48)

(D + �)∗Q(P ) =
n∑

i=0

(−(D + �))i(�ui
(Q) · P). (49)
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Let us observe that (D + �)∗R(1) corresponds to the Euler–Lagrange operator when D
is replaced by D + �, so we will write

E�[Q] = (D + �)∗Q(1).

In Lemma 4.2 formula (47) for �-prolongations will be stated. The proof we present
uses the following relations, that can be checked without too much difficulty:

E�[P + Q] = E�[P ] + E�[Q], (50)

E�[PQ] = (D + �)∗P (Q) + (D + �)∗Q(P ), (51)

E�[(D + �)P ] = (D + �)∗�(P ), (52)

(D + �)E[L](Q) = (D + �)∗E[L](Q). (53)

Lemma 4.2. Suppose L, Q and � ∈ A. Then

E�[v[�,(n)]
Q (L)] = v[�,(2n)]

Q (E[L]) + (D + �)∗Q(E[L]) + (D + �)∗�(A) (54)

for A given in Lemma 4.1.

Proof. By (50)–(53) and (42),

E�[v[�,(n)]
Q (L)] = E�[QE[L]] + E�[(D + �)A]

= (D + �)∗E[L](Q) + (D + �)∗Q(E[L]) + (D + �)∗�(A)

= v[�,(2n)]
Q (E[L]) + (D + �)∗Q(E[L]) + (D + �)∗�(A). �

Lemma 4.3. Let v be a variational �-symmetry of the variational problem L[u] =∫
L(x, u(n)) dx. Let Q be the corresponding characteristic, and let P [u] be given by

Theorem 2. Then

v[�,(2n)]
Q (E[L]) = −(D + �)∗Q(E[L]) + (D + �)∗�(P ). (55)

Proof. By formula (35), the left-hand side of (54) becomes

E�[v[�,(n)]
Q (L)] = E�[(D + �)(B − �L)]

= (D + �)∗�(B − �L)

= (D + �)∗�(P ) + (D + �)∗�(A)

(56)

and by (54) we get the result. �
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Let us observe that evaluating (55) when E[L] = 0 gives

v[�,(2n)]
Q (E[L])|E[L]=0 = (D + �)∗�(P )|E[L]=0 (57)

and the second member, in general, is not null. Therefore, variational C∞-symmetries
are not, in general, C∞-symmetries of the Euler–Lagrange equation. However,
v[�,(2n)]
Q (E[L]) = 0 on solutions to the combined system E[L] = 0, P = 0. This

explains, from another point of view, the “partial” reduction for the Euler–Lagrange
equation stated by Theorem 1. The next result connects the function P of Theorem 2
with the expression in brackets of formula (29) and, consequently, with the reduced
equation of Theorem 1.

Theorem 3. Let v be a variational �-symmetry of the variational problem L[u] =∫
L(x, u(n)) dx, and P [u] given by Theorem 2. Then v is a �-symmetry of the equation

P [u] = 0. The reduced equation of P [u] = 0 through this �-symmetry is (up to
multipliers) the reduced equation of the Euler–Lagrange equation corresponding to v,
according to Theorem 1.

Proof. Let us retain the notation of Theorem 1. We can assume that v is a proper
C∞-symmetry, i.e., not equivalent to a standard variational symmetry. In terms of
(̃x, ũ, w2n−1), (45) becomes

Eũ[L̂] = (Dx̃ + �̃)(P̃ ), (58)

where P̃ stands for P in the new variables. By (29),

(Dx̃ + �̃)(P̃ + �ũx̃
(w)Ew[L̂]) = 0. (59)

We set P̃ + �ũx̃
(w)Ew[L̂] = H(̃x, ũ, w(2n−1)) and (59) can be written

0 = Dx̃(H (̃x, ũ, w(2n−1))) + �̃(̃x, ũ, w)H (̃x, ũ, w(2n−1))

= �H

�x̃
(̃x, ũ, w(2n−1)) + �H

�ũ
(̃x, ũ, w(2n−1))Dx̃ũ

+ · · · + �H

�w2n−1
(̃x, ũ, w(2n−1))w2n + �̃(̃x, ũ, w)H (̃x, ũ, w(2n−1)). (60)

The only term where w2n appears is
�H

�w2n−1
(̃x, ũ, w(2n−1))w2n, and so its coefficient

must vanish:
�H

�w2n−1
(̃x, ũ, w(2n−1)). Therefore, H does not depend on w2n−1, and (60)
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becomes

0 = �H

�x̃
(̃x, ũ, w(2n−2)) + �H

�ũ
(̃x, ũ, w(2n−2)) · Dx̃ũ

+ · · · + �H

�w2n−2
(̃x, ũ, w(2n−2)) · w2n−1 + �̃(̃x, ũ, w)H (̃x, ũ, w(2n−2)). (61)

The variable w2n−1 only appears in
�H

�w2n−2
(̃x, ũ, w(2n−2))w2n−1, and, as above, we

deduce that H does not depend on w2n−1. By continuing this process, we obtain

0 = �H

�x̃
(̃x, ũ) + �H

�ũ
(̃x, ũ)Dx̃ũ + �̃(̃x, ũ, w)H (̃x, ũ), (62)

that is 0 = Dx̃(H) + �̃H. If function H is not null, �̃ − Dx̃(1/H)
1/H

= 0 and Proposition

3.3 proves that 1
H

ṽ is a (standard) variational symmetry, which we excluded at the start
of the proof.

Thus, H ≡ 0 and

P̃ = −�ũx̃
(w)Ew[L̂]. (63)

Since Ew[L̂] does not depend on ũ, we have v[�,(2n−1)](P ) = 0 when P = 0, which
proves that v is �-symmetry of P = 0. In particular, P̃ does not depend on ũ and
P̃ = 0 is the reduced equation corresponding to v. Formula (63) proves the second
part of the theorem. �

5. Partial conservation laws

In this section we focus our attention on the solutions of the Euler–Lagrange equa-
tion that do not arise from the reduced equation of Theorem 1. Such solutions sat-
isfy P �= 0 but (D + �)(P ) = 0. The following result states that 1

P
v is a pseudo-

variational symmetry of the problem, which is defined as a generalized vector field
v = �(x, u(k))�x + �(x, u(k))�u that satisfies

v(n)(L) + LD(�) = D(B), (64)

for some B[u] ∈ A, only on solutions of the Euler–Lagrange equations [15, Exercise
5.38].

Theorem 4. Let L[u] = ∫
L(x, u(n)) dx be an nth-order variational problem with

Euler–Lagrange equation Eu[L] = 0, of order 2n. Let v be a variational �-symmetry
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and let P be as in Theorem 2. The generalized vector field Y = 1
P

v is a pseudo-
variational symmetry of the problem.

Proof. According to Definition 2.10, there exists B[u] ∈ A such that

v[�,(n)](L) + L(D + �)(�) = (D + �)(B), (65)

for some � ∈ C∞(M(1)). According to Proposition 3.3, the vector field 1
P

v is a varia-

tional C∞-symmetry for �̃ = � + D(P )
P

. In particular,

1

P
v[�,(n)] =

(
1

P
v
)[̃�,(n)]

. (66)

Now we multiply both members of (65) by 1
P

:

1

P
v[�,(n)](L) + 1

P
L(D + �)� = 1

P
(D + �)B. (67)

Let us evaluate (67) on the solutions u of the Euler–Lagrange equations such that
P [u] �= 0. Since (D + �)(P )[u] = 0, the following relation holds, for any A ∈ A:

1

P
(D + �)(A)[u] = D

(
A

P

)
[u]. (68)

If (D + �)(P )[u] = 0, we also have

1

P
v[�,(n)][u] =

(
1

P
v
)[̃�,(n)]

[u] =
(

1

P
v
)(n)

[u]. (69)

Therefore, (67) evaluated on u becomes

(
1

P
v
)(n)

(L)[u] + LD

(
�

P

)
[u] = D

(
B

P

)
[u] . (70)

This proves the theorem. �

To every pseudo-variational symmetry of a normal variational problem there corre-
sponds a conservation law and, moreover, there is always a true variational symmetry
giving rise to the same law [15, Exercise 5.38].

The corresponding conservation law associated to the pseudo-variational symmetry
of the previous theorem can be constructed as follows. Let Q̃ be the characteristic
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of vector field 1
P

v and
( 1

P
v
)
Q̃

the corresponding evolutionary form. The next relation
always holds [15, p. 273]:

(
1

P
v
)(n)

Q̃

(L) = Q̃ · E[L] + D(A), (71)

for some function A. By other hand, in terms of
( 1

P
v
)
Q̃

, formula (67) reads

(
1

P
v
)(n)

Q̃

(L)[u] = D

(
B

P
− L�

)
[u]. (72)

From Eq. (71) evaluated when E[L] = 0 and Eq. (72) we finally get

D

(
A − B

P
− L�

)
= 0 when E[L] = 0. (73)

In consequence, A− B
P

−L� is a conservation law associated to the pseudo-variational
symmetry 1

P
v.

6. Some examples

6.1. First-order Lagrangian

6.1.1. Strict variational C∞-symmetries
The vector field v = �u is a strict variational C∞-symmetry, for � = u, of the

variational problem associated to the Lagrangian

L(x, u, ux) = x3 +
(

ux − u2

2

)2

. (74)

Indeed,

v[�,(2)](L) = (�u + u�ux + (u2 + ux)�uxx )(L) = 0. (75)

The corresponding Euler–Lagrange equation is

E[L] ≡ u3 − 2uxx = 0. (76)

The order reduction associated to the variational C∞-symmetry v can be constructed
by using Theorem 1 or Theorem 3. Next, we use both theorems to compare the two
different methods.
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Theorem 1. In coordinates {x, u} the vector field v adopts the canonical form �u

and the original Lagrangian (74) is an invariant for v[�,(2)] by itself. We consider a
first-order invariant for v[�,(2)]

w = ux − u2

2
. (77)

In coordinates {x, u, w} the Lagrangian L becomes x3 + w2. The associated Euler–
Lagrange equation for the reduced Lagrangian L̂(x, w) = x3 +w2 is given by 2w = 0.
The general solution of this (0th-order) ordinary differential equation is w = 0. By
(77) we obtain the first-order differential equation

ux − u2

2
= 0. (78)

By solving this equation we recover a one-parameter family of solutions of (76) given

by u(x) = − 2

x + C
for C ∈ R.

Theorem 3. It can be checked that P = u2 − 2ux satisfies QE[L] = (D + �)(P ). As
promised by Theorem 3, the vector field v = �u is also a C∞-symmetry, for � = u, of
the equation P = 0:

v[�,(2)](P ) = (�u + u�ux + (u2 + ux)�uxx )(u
2 − 2ux) = 0. (79)

To reduce the order of the equation P = 0 by means of the C∞-symmetry v, we consider
the set {x, w}, for w as in (77), that constitutes a complete system of invariants of
v[�,(1)]. In terms of {x, w} the equation P = 0 becomes 2w = 0, that is equivalent to
the reduction obtained by the previous method.

6.1.2. Divergence variational C∞-symmetries
The vector field v = �u is a divergence variational C∞-symmetry, for � = u, of the

variational problem associated to the Lagrangian

L(x, u, ux) = xux
2 + u3 (4 + 3 xu)

12
, (80)

because

v[�,(2)](L) = u
(
u + xu2 + 2 xux

)
= (D + u)(xu2). (81)

Therefore, (10) is satisfied for B = xu2. The corresponding Euler–Lagrange equation
is

E[L] ≡ u2 + xu3 − 2 (ux + xuxx) = 0. (82)
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In coordinates {x, u} the vector field v adopts the canonical form �u but in this case,
in view of (81), the original Lagrangian (80) is not an invariant of v[�,(2)]. According
to Theorem 1, we choose some function A such that B = −�u(A), for example, A =
−1
3 u3x. In coordinates {x, u, w, wx}, for w given by (77), the corresponding v[�,(2)]-

invariant Lagrangian (24) becomes xw2. The associated Euler–Lagrange equation for
the reduced Lagrangian L̂(x, w) = xw2 is given by 2xw = 0. From the general
solution of this 0th-order ordinary differential equation (w = 0) and through the first-
order differential equation (78), we obtain the one-parameter family of solutions of (82)
given by u(x) = − 2

x+C
for C ∈ R.

To apply Theorem 3, P = xu2 − 2 xux satisfies QE[L] = (D + �)(P ), and the
reduced equation of P = 0, by means of the �-symmetry v, is 2 xw = 0, which is
equivalent to the reduction obtained by the previous method.

6.2. Second-order Lagrangian

The vector field v = �u is a variational C∞-symmetry, for � = u, of the variational
problem associated to the Lagrangian

L(x, u, ux, uxx) = x

(
ux − u2

2

)
+ 1

uxx − u ux

(83)

because

v[�,(2)](L) = (�u + u�ux )(L) = 0. (84)

The corresponding Euler–Lagrange equation is a fourth-order differential equation:

E[L] ≡ −1 + 2 u
(
ux

2 + u uxx − uxxx

)
(u ux − uxx)

3 − 6
(
ux

2 + u uxx − uxxx

)2
(− (u ux) + uxx)

4

+ 2 (3 ux uxx + u uxxx − uxxxx)

(u ux − uxx)
3 − xu = 0. (85)

Theorem 1. A complete system of invariants of v[�,(4)] is given by {x, w, wx, wxx, wxxx},
for w as in (77). In coordinates {x, u, w, wx}, (83) becomes L̂(x, w, wx) = xw + 1

wx
.

The Euler–Lagrange equation that corresponds to the reduced Lagrangian L̂, in coor-
dinates {x, w, wx, wxx}, becomes

2wxx

w3
x

− x = 0. (86)
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The general solution of this second-order equation is given by

w = ±√
2 arctan

(
x√

C1 − x2

)
+ C2, C1, C2 ∈ R. (87)

By setting w = ux − u2

2 through the first-order equation

ux − u2

2
= ±√

2 arctan

(
x√

C1 − x2

)
+ C2, (88)

we get a three-parameter family of solutions of E[L] = 0.
We can also use Theorem 3 to effect the reduction, but the complexity of (85) to

determine an expression P that satisfies Q E[L] = (D + �)(P ) suggests to use the
previous method. Anyway, the reader can check that P is given

P(x, u, ux, uxx, uxxx) = 2
(
ux

2 + u uxx − uxxx

)
(u ux − uxx)

3 − x. (89)

We use the �-symmetry v to reduce the equation P = 0. In terms of the invariants
{x, w, wx, wxx} as above, the equation P = 0 becomes (86). By Theorem 3, this is
also the reduced equation for the Euler–Lagrange equation (85).

7. Conclusions

The new technique of �-prolongations and some conditions of invariance allowed
us to introduce the concept of C∞-symmetry and to derive new methods of reduc-
tion for ordinary differential equations [11]. In this paper we prove that a convenient
generalization of the concept of variational symmetries for Euler–Lagrange equations,
based on a similar technique, also provides new algorithms of reduction for this type
of equations (Theorem 1).

This generalization corresponds to the concept of variational C∞-symmetry, and
some important properties have been presented. We have also provided the general
algorithm to reduce by two the order of a given Euler–Lagrange equation admitting
a C∞-symmetry. In general, a one-parameter family of solutions cannot be derived
from the solutions of the corresponding reduced equation. For this kind of solutions
we have proved the existence of a conditional conservation law, associated to a pseudo-
variational symmetry of the problem (Theorem 4).

The method of reduction can also be interpreted in terms of the formulation of
the Noether’s theorem when �-prolongations are considered (Theorem 2). This result
clarifies the relation between the original Euler–Lagrange equations and the reduced
equation (Theorem 3). Finally, some examples have been included to illustrate the main
results and the methods presented in this work.
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