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Abstract

A complete competitive scheme is proposed in this work in order to perform a classification analysis of meteorological

data in the ‘Campo de Gibraltar’ region (in the South of Spain) from 1999 to 2002. The main objectives of the study

presented here have been the characterization of the meteorological conditions in the area, using a competitive neural

network based on Kohonen learning rule. Standard Principal Component Analysis (PCA) and VARIMAX rotation have

allowed interpreting the physical meaning of the classes obtained from the competitive scheme. Quantitative (using three

quality indices) and qualitative (from the analysis of the data projection) criteria based on Fisher Discriminant Analysis

were introduced to verify the results of the clustering. A randomized procedure is developed to assure the best performance

of the models and to select the best model in the experiments. The different experiments developed extracted five classes,

which were related to typical meteorological conditions in the area.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is extremely important to consider the effect of
meteorological conditions on atmospheric pollu-
tion, since they clearly influence dispersion cap-
ability of the atmosphere. Severe pollution episodes
in the urban environment are not usually attributed
to sudden increases in the emission of pollutants,
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but to certain meteorological conditions which
diminish the ability of the atmosphere to disperse
pollutants (Ziomas et al., 1995; Cheng and Lam,
2000). The study of meteorological conditions could
be done by analyzing meteorological variables
individually. However, this analysis suffers from at
least one shortcoming because air pollution is
known to respond to the complete meteorological
data which comprises an air mass, rather than to
certain selected meteorological variables (Kalkstein,
1991).
.
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In the last years the use of cluster analysis to
better elucidate the dependency of air quality on
meteorology has proliferated. It has been used
successfully in numerous studies which relate air
quality and meteorological situations. Thus, Eder
et al. (1994) and Zelenka (1997) used clustering
results to develop ‘‘unique’’ or ‘‘separate’’ regres-
sion models for ozone and acid aerosols, respec-
tively. In the work of Ludwig et al. (1995) cluster
analysis is used to categorize meteorological data
and determine the combination of conditions
associated to daily ozone maxima.

Davis et al. (1998) used similar techniques to
those used by Eder et al. (1994), where principal
component analysis (PCA) and k-means clustering
procedure were used with the objective of determin-
ing synoptic meteorological scenarios. Similar ap-
proaches have been used in Berman et al. (1995),
Lam and Cheng (1998), and Triantafyllou (2001).
More recently, Kim Oanh et al. (2005) have also
developed an automated scheme to classify the
synoptic meteorological conditions governing over
Northern Thailand. Because a quantitative ap-
proach utilizes a variety of meteorological variables
for the classification of synoptic patterns, it involves
intensive statistical data treatment, normally ac-
complished in the literature by a combination of the
PCA and clustering techniques.

In Avila and Alarcón (1999) a clustering analysis
of meteorological variables was applied as a
classification tool, while PCA was performed to
help interpret the groupings. The meteorological
classification was compared to an independent
grouping based on PCA.

Up to date, no meteorological classification
approach has been applied to the assessment of
the relationships between climate and air pollution
in the ‘Campo de Gibraltar’ region (in the south of
Spain). The main objectives of this work were firstly
to analyse the capability of a competitive network
(Kohonen, 1987) with unsupervised learning to find
different classes from the meteorological data
available, and secondly, a quantitative analysis
(through four quality indices (QI) based on Fisher
Discrimination Analysis) and a qualitative analysis
(with the aid of the visualization capabilities of the
Fisher projection) of the data clustered. PCA
(Jollife, 1986) with a VARIMAX rotation (Kaiser,
1958) has been applied to make class interpretation
easier, while Fisher transformation (Fisher, 1976)
has been used to verify and control the quality of
the procedure. These networks require no priori
assumptions about the model in terms of mathe-
matical relationships or data distribution. Our
interest is to classify meteorological situations for
the later purpose of determining whether the
meteorological situations can be used for air
pollution forecasting and for developing future
control or warning strategies. In general, the
modelling of ‘‘separate’’ models (one for each
cluster) will give better performance results, rather
than the modelling of a unique model for the whole
data (Zelenka, 1997). This approach will allow
formulating better effective mitigation strategies
and better predictions to help or warn elderly and
sick people.

The paper is organized in several sections.
Section 2 presents the study area and the data
collected. In Section 3 the basic concepts of
clustering and Kohonen competitive learning ap-
proach are briefly described as well as how PCA and
Fisher analyses are used to identify, visualize and
compare the clustering results. Section 4 reports the
results obtained. Finally, the conclusions and future
researches are shown in Section 5.

2. The study area and the data

The ‘Campo de Gibraltar’ is the southern-most
region of the Iberian Peninsula. It is 584 km2, and is
surrounded by western mountains (a Natural Park
called ‘Los Alcornocales’) that rise up to 700m, and
the Rock of Gibraltar in the South–East, with a
maximum altitude of 420m. Its climate is Mediter-
ranean and winds are predominantly easterly and
westerly. About 300,000 inhabitants live in the
different towns spread in the region (Algeciras,
120,000; La Linea, 65,000). It is a very complex
scenario, where many stationary sources are present
(Fig. 1): an oil-refinery and some petrochemical
factories close to it, a coal-fired and several fuel-oil
power plants, a large steel factory and a paper
factory.

The port of Algeciras, one of the most important
ship-trading ports in Europe, and the airport of
Gibraltar are other possible sources of particulate
and gaseous air pollution in the area. Due to the
economic development of the region, many con-
struction activities, which are important particle
emission sources, have been carried out lately. In
addition, the region is one of the paths that African
air masses from Sahara and Sahel deserts take,
increasing significantly particulate air concentration
in different areas of Spain and Europe (Rodriguez
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Fig. 1. Location of the towns, large factories and the monitoring

stations.
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et al., 2001, 2002). Thus, many (particulate) air
pollution episodes have been detected by the
different monitoring stations that the Environmen-
tal Agency of the Andalusian Regional Government
has in the region. Therefore, and considering the
new European Directives for atmospheric emissions
(2001/80/EC, 1999/32/EC), more research is needed
in this area. In summary, this is a heavily
industrialized area where, up to date, very few air
pollution studies have been made.

The study was initiated in November 1999 and
continued until December 2002. The meteorological
data were obtained from the meteorological tower
located at the refinery (point 1 on the map of Fig. 1).
The meteorological variables employed include
daily average net radiation (RAD), precipitation
(PRC), surface temperature (TMP), wind speed
(WSP), sea level pressure (SLP), relative humi-
dity (RHM), absolute humidity (AHM), mixing
height (MXH), and the absolute frequencies of the
different wind sectors (N, NNE, NE, ENE, etc.). In
this study, no imputation missing data methods
were used to avoid the introduction of artificial data
in the clustering procedure.

The meteorological characterization was deter-
mined by the statistical analysis applied to the
different parameters measured in the tower (surface
wind speed and wind direction, temperature, atmo-
spheric pressure, etc.), and other indirectly esti-
mated variables (absolute humidity, mixing height,
ventilation factor, etc.). The mixing height was
estimated from surface data, using the method of
Batchvarova and Gryning (1990) for the growth of
the daytime mixed layer and the Benkley and
Schulman method for the nocturnal mixing height
estimation (Lena and Desiato, 1999). The surface
roughness length was set to 1m (typical urban
value), while the temperature gradient above the
mixing layer was assumed to be 0.05Km�1 for
MXH values less than 100m, and 0.005Km�1

above 100m. The equation for the growth of the
daytime mixing layer was solved numerically by
Finite Differences Method (FDM) (González,
2003).

3. Methodology

3.1. Competitive neural approach

Typically, a Kohonen neural network (or self-
organizing map—SOM) has two layers of nodes, the
input layer and the Kohonen or output layer. The
input layer is fully connected to a 1-D or 2-D (or
another different topology) output grid. During the
training process, input data (the 20 meteorological
variables) are introduced in the network through the
processing elements (nodes or neurons) in the input
layer. Associated with the output nodes in the
Kohonen layer there is a weight vector of values.
The neurons of competitive networks learn to
recognize groups of similar input vectors. The
weights of the winning neuron are adjusted with
the Kohonen learning rule (Kohonen, 1987). The
weight vector (w) is changed for a given neuron if
the output is not equal to zero (the winning neuron),
according to: dw ¼ aðx� wÞ, where x is the
neuron’s input, and a the learning rate. Thus, the
neuron whose weight vector is closer to the input
vector is updated to be even closer. The result is that
the winning neuron is more likely to win the
competition the next time a similar vector is
presented, and less likely to win when a very
different input vector is presented. The training
stage stops when any of the following conditions are
met: the maximum number of epochs (an epoch is a
presentation of all input patterns) is reached, the
performance has been minimized to the goal, or a
maximum amount of time has been exceeded. One
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of the limitations of competitive networks is that
some neurons may not always get allocated, that is,
some neuron weight vectors may start out far from
any input vectors and never win the competition, no
matter how long the training is continued. Tendency
terms or biases (b) are used to give the neurons that
rarely win the competition an advantage over the
neurons that often win. The learning algorithm
calculates the bias change for a given neuron by first
updating each neuron’s conscience (c), i.e. the
running average of its output (o): c ¼ ð1� aÞcþ
ao. The conscience is then used to compute a bias
change for the neuron that is the greatest for smaller
conscience values: db ¼ exp ð1� log ðcÞÞ � b. For
each epoch, each training vector is presented once
in a different random order to the network. Weight
and bias values are updated accordingly after each
individual presentation.

The Kohonen networks have the ability to extract
the statistical properties of the data set, and are also
able to model any statistical distribution which may
lack a closed-form analytical expression (Fu, 1994).
That is the reason why these kinds of network have
been used in the present study. However, in order to
get good results, the network should be trained with
statistically representative or meaningful data of the
total input. In this application, the data statistics are
not well understood and, therefore, the whole data
set is required for good modelling. Due to the
inherent process randomness and because these
methods depend on initial centres, the order of the
presentation and the geometric properties of the
data (Jain et al., 1999), a relatively high number of
experiments (30 were proposed in this study) has to
be done and their results checked. Also, different
experiments have been done to determine different
numbers of classes, by changing the number of
iterations and checking the appropriate perfor-
mance of each solution (Masters, 1993). A uni-
dimensional competitive Kohonen network (or
SOM 1-D with k output units) can be seen as a
stochastic form of classical k-means clustering
technique (Tou and Gonzalez, 1974), and its
performance is very similar to this algorithm (Fu,
1994; Jain et al., 1999). Both techniques try to
minimize the sum of squared distances from each
example to its cluster centre. These clustering
methods are just algorithms: even though they aim
to optimize a criterion, finding the global optimum
is not guaranteed (Ripley, 1996). In the reviewed
literature, k-means is normally applied after a
hierarchical clustering method, such as average
linkage, to find the number of clusters to be
searched. With a competitive network this first
stage could be implemented by using a large number
of classes (greater than the plausible number of
clusters) and analysing the dead neurons. This was
the first experiment developed (results in Table 2).
Then, a second stage experiment was designed with
a refinement of the algorithm which uses a
conscience term to avoid the death of neurons in
the searching process of the most frequent number
of clusters. Our aim is to interpret this second stage
competitive experiment with the aid of PCA-
VARIMAX transformation, and to control its
quality using quantitative and qualitative properties
of Fisher transformation.

3.2. Principal component analysis (PCA) and Fisher

discriminant analysis

PCA is a well-known multivariate statistical
method which allows finding new directions (com-
ponents) that explain most of input data variability
and which are linear combinations of input vari-
ables. A transformation matrix is constructed from
the eigenvectors of the input correlation matrix and
they are ordered according to their corresponding
eigenvalues (Thurston and Spengler, 1985). More
details on the mathematical background of PCA
can be found in Jollife (1986). Many applications of
PCA on synoptic meteorological approaches can be
found in Avila and Alarcón (1999), Davis et al.
(1998), Lam and Cheng (1998), Cheng and Lam
(2000), Borchi and Marenco (2002), Kim Oanh et
al. (2004), and Colette et al. (2005). Here, VAR-
IMAX criterion has been used (Johnson and
Wichern, 1998). The number of significant factors
to be considered is diagnosed from the eigenvalues
by discarding any direction corresponding to
eigenvalues lower than unity (Kaiser, 1958; Colette
et al., 2005). An attempt to interpret the physical
meaning of the resulting competitive clustering is
made by using the projection of the patterns (of
each cluster) onto the VARIMAX axes.

Fisher discriminant method achieves an optimal
linear dimensionality reduction for classification
problems in a supervised way (Bishop, 1995; Duda
and Hart, 1973). Fisher criterion is derived by
requiring maximum class separation in the output
space, and looks for a linear combination of the
variables which maximizes the ratio of its between-
group variance to its within-group variance (Bishop,
1995). Therefore, the method calculates the
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between-group covariance matrix (B) and the with-
in-group covariance matrix (W). Then, the Fisher
transformation matrix can be found, as in PCA
algorithm, from the eigenvectors associated to the
highest eigenvalues of the matrix ratio B �W�1

(Ripley, 1996). Three QI, based on Fisher method,
are proposed here to compare the results obtained
from the experiment quantitatively. The QI are
computed as follows: QI1: trace(B)/trace(W), QI2:
norm(diag(B)/diag(W)), and QI3: norm(eigenva-
lues(B/W)). Additionally, the sum of standard mean
squared errors (MSE) for each class is also used
(QI4). Quality index four is the usual criterion
which k-means clustering methods attempt to
minimize. These QI are introduced in order to have
some quantitative measurements of the clustering
method applied at hand. However, as we mentioned
above, clustering methods are just algorithms that
are not guaranteed to converge into a global
optimum. The first three QI are measurements of
the between-group and within-group ratio (Tou and
Gonzalez, 1974; Fukunaga, 1990; Bishop, 1995;
Ripley, 1996), that is, three alternative formulae to
measure the discriminant capability of each model.
2-D projections (through Fisher transformation) of
the clusters have been used as a qualitative
Table 1

PCA-VARIMAX eigenvectors. Only absolute values greater than 0.40

MET 1 MET 2 MET 3 MET 4

TMP 0.93

RAD 0.82

AHM 0.75 0.41

NW �0.78

NNW �0.81

RHM �0.40 0.61

W �0.75

WNW �0.79

ESE 0.58

E 0.59 0.45

WSP 0.92

MXH 0.45 0.80

SE �0.49

SSE

NNE

SSW

SLP �0.46

PRC

NE

ENE

% var. 17.4 30.4 43.0 51.9

Communalities are shown in the last column, while the last row shows th
measurement. Generally, these first two axes con-
tain most of the variance in the experiments. The
interest of this representation has been shown in
Section 4—Results and discussion. The best model
is selected using a Majority Voting Scheme (MVS)
(Ng and Singh, 1998), and the model selected have
the votes of the majority of the indices.

4. Results and discussion

The results of applying rotated PCA-VARIMAX
to the meteorological data of the period 1999–2002
are shown in Table 1. Only those components
associated with eigenvalues greater than unity were
extracted. With the rotated PCA-VARIMAX trans-
formation method seven different meteorological
conditions could be extracted: component labelled
as MET1 is strongly loaded on TMP, RAD and
AHM, and is associated with the thermal low,
especially observed during warm periods. It is also
characterized by high MXH values and wet condi-
tions derived from evaporation processes. It can be
interpreted as the influence of convective turbulence
in the area. MET2 shows the contrast between
the drier conditions linked to north-western winds
and the wetter conditions associated with other
are shown in the table

MET 5 MET 6 MET 7 h2

0.900

0.831

0.779

0.715

0.735

0.674

0.717

0.789

0.566

0.781

0.892

0.888

0.556

0.80 0.705

0.77 0.647

0.71 0.553

�0.64 0.660

0.69 0.598

0.76 0.721

0.74 0.702

59.9 66.8 72.0

e cumulative percentage of variance explained by the components.
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prevailing winds. MET3 shows the contrast between
the most prevailing winds in the area: westerly
winds (W, WNW) and easterly winds (E, ESE).
MET4 reflects the influence of high winds and good
dispersion conditions, that is, mechanical turbu-
lence. This component is positively correlated with
easterly winds (E), while the negative moderate
correlation with southeast winds appears to indicate
Table 2

Relative frequencies of the different number of classes

Number of classes 1 2 3 4 5 6 7

Relative frequency 0 0 0.0187 0.1375 0.3883 0.3080 0.1320

Table 3

Comparison results between k-means clustering and Kohonen

competitive network in the search of five clusters

Quality

indices

Kohonen competitive

network

k-means

Mean value Std value Mean value Std value

QI1 6.31 0.42 6.05 0.22

QI2 15.80 1.44 15.44 1.41

QI3 1.18E+05 3.22E+05 1.21E+05 2.83E+05

QI4 66634 1834.8 67735 261.11

Fig. 2. Quality indices computed for t
the presence of coastal sea breezes during low wind
speed conditions. MET5 shows the presence of
winds from SSE and NNE sectors, usually asso-
ciated with transitional situations and low wind
speeds. MET6 is positively correlated with PRC and
SSW winds and negatively correlated with SLP. It
seems to represent rain conditions associated with
cyclonic winds from the SSW sector. Finally, MET7
seems to reflect the persistence of northeast winds in
the area.

PCA suggests the existence of seven meteorologi-
cal conditions through the analysis of the eigenvec-
tors associated to the eigenvalues greater than unity.
Although these directions can be physically inter-
preted and represent the seven most relevant
directions in terms of variance explained, they are
not likely to represent seven clusters in the data. In
fact, PCA is not a discriminant transformation, and
though the new space is better oriented, clusters do
not have to be extracted more easily. Anyway, and
as a starting point, the Kohonen network was
trained to look for seven clusters. Table 2 shows
that five is the most frequent final number of
clusters. The Kohonen network had the ability to
discover the final number of clusters in an un-
supervised way. This outcome achieved by Koho-
nen networks is very interesting and useful.

The competitive network performance was
compared with k-means clustering procedure in a
he competitive final experiment.
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30-times experiment searching for five clusters.
Table 3 shows the mean and standard deviation
values of the 30 repetitions. Although differences
are not very important, it can be noticed that
Kohonen network obtained better results in QI 1, 2
and 4 (better performance is achieved when QI1-3
are higher, and QI4 are smaller).

In the final experiment with a SOM 1-D with five
output neurons (one for each cluster), different
numbers of epochs were considered for the compe-
titive network (100, 500, and 5000). However, more
than 100 epochs led to very slightly changes in the
network weights. This final experiment with five
classes (and 100 epochs) was repeated 30 times.
Fig. 3. Projection onto PCA-VARIMAX axes. (a) Data clustering pro

projection onto MET1; (c) MET2; (d) MET3; (e) MET4; (f) MET5; (g
Thus, the results could be compared and the
uncertainty from the randomness in the weight
initialization and from the order of pattern pre-
sentation was eliminated. The combination (made
by MVS) of the results from the quantitative QI (see
Fig. 2) allows selecting the second experiment as the
best one. For this experiment, the patterns of the
five classes found by the competitive network were
projected onto PCA-VARIMAX new axes (called
MET1-7), as shown in Fig. 3. Projections on the
rotated VARIMAX principal components lead to a
plausible physical interpretation of the five classes.
Actually, the different classes obtained by the
Kohonen network seem to be a combination of
jected onto the first two principal axes (MET1 and MET2); (b)

) MET6; (h) MET7.
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the meteorological situations formerly labelled as
MET1-7. The description of classes C1–C5 is as
follows: C1 has a clear seasonal behaviour, specially
focussed on winter and autumn months. From its
projections on the different principal components, it
seems that this class reflects opposite conditions to
that of persistent easterly winds, showing situations
of non-easterly dry winds, small wind speed and
mixing heights. Rainy days are also part of this
class. C2 is specially focussed on warm months,
including thermal low situations, persistent easterly
winds and those from sectors W and WNW. C3 is
similar to C2, but with higher sea level pressure and
lower net radiation values. C4 seems to be a subclass
of C5 but focussed on the warm months. C5 is
strongly influenced by relative humidity what could
explain its seasonal behaviour with increases in
winter time. It has also the highest values on
variable NNW (daily frequency of the appearance
of winds from this sector). From the analysis of
these projections it seems that there are slightly
differences between the meteorological situations
labelled as MET3, MET5 and MET7. This is
another interesting result extracted from the use of
Fig. 4. Metereological clustering projected onto Fisher axes. (a) The bes

17.615, 2.07E+05, 64024}. (b) Experiment number 8 (QI1, QI2, QI3, Q

(QI1, QI2, QI3, QI4) ¼ {5.84, 14.50, 3.46E+05, 68745}.
the methodology proposed here. Seasonal beha-
viour of the series seems to really affect the
clustering process, and different classes have been
established during each year’s season. Furthermore,
their projections on the principal component axes
seem to repeat from year to year, which is a
plausible result. However, longer series should be
considered to infer climatological situations.

Fig. 4 shows how different data clustering can be
qualitatively controlled through the visualization of
2-D Fisher projection of the database (the first two
Fisher dimensions explained at least 99% of
variance). Anyway, like all unsupervised methods,
the clustering techniques must be judged by their
results. There is no guarantee to find the global
optimum. A successful clustering produces groups
which can be interpreted by domain experts (Ripley,
1996). In Fig. 4, u1 and u2 are the new basis (linear
combination of the original basis xi), and the
database is projected using the Fisher transforma-
tion matrix. Fig. 4a shows the projection of
the selected clustering (experiment number 2). In
Fig. 4b it can be seen that, although QI1 and QI2
are practically identical to those in Fig. 4a, the
t clustering (experiment number 2), (QI1, QI2, QI3, QI4) ¼ {6.48,

I4) ¼ {6.71, 17.54, 1.07E+05, 64992}. (c) Experiment number 28
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smaller value of QI3 makes the clustering worse.
Fig. 4c illustrates that if QI1 and QI2 are high, the
value of QI3 seems to be irrelevant, and the
clustering will be bad.

5. Conclusions

The following concluding remarks can be made
from the results discussed above:
�
 Using this approach, a Kohonen SOM 1-D
seems to be a plausible alternative to a classical
two-stage hierarchical-partitioning clustering
technique.

�
 Five different meteorological classes (C1–C5)

have been found using a competitive neural
network and identified by using the projection
onto the rotated-PCA with VARIMAX criterion.

�
 The model with the best classification results can

be selected using the quantitative QI based on
Fisher method.

�
 The Fisher visualization of the clustering allows

checking the clustering in a qualitative way.

The results obtained here can be used in future
works to design a separate system of air pollution
prediction for each meteorological class, which will
improve the results of a unique global system for all
the patterns from the database. Our future research
includes modelling of the relationship between air
pollutants concentrations and meteorological vari-
ables within each cluster using backpropagation
feedforward neural networks or radial basis func-
tion neural networks as regression models. Addi-
tionally, SOM networks with different output n-
dimensional topologies (rectangular, hexagonal,
toroidal, etc.) should be researched in order to test
the applicability of the method and its topological
preserving characteristic in the domain of meteor-
ological clustering.
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