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Abstract

A theoretical method is derived for the progress of a nucleation and growth-controlled reaction during heating at a constant rate. The kinetic
p dependence.
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arameters have been obtained assuming that the reaction rate constant is a time function through its Arrhenian temperature
esides, it has been shown that the different models, used in the literature for analyzing the glass-crystal transformation, are par
f the general expression deduced for the actual volume fraction transformed. The model is applied to the DSC data of crystallizat
f the Ge0.18Sb0.23Se0.59 glassy alloy, thus obtaining values for the kinetic parameters that agree satisfactorily with the calculated r

he Austin–Rickett kinetic equation, under non-isothermal regime. This fact shows the reliability of the theoretical method develop
2005 Elsevier B.V. All rights reserved.
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. Introduction

Chalcogenide glasses are transparent visible or near
nfrared region up to 15�m. Germanium has very interest-
ng optical properties with very high refractive index and
ery low chromatic dispersion. There are very few materi-
ls which are transparent in the 8–12�m region and which
re environmentally stable enough for outdoor applications

1–2].
An important commercial application for chalcogenide

lasses concerns optical lenses for infrared transmission.
hey are mainly used for infrared radiometry. Recently,
oulding technology has been developed, making possi-
le the economical production of very complex and high
fficient lenses, which are necessary for thermal imaging
pplication[3–4]. Infrared transmitting glasses based on Ge-
b-Se are technologically important because they are good

∗ Corresponding author. Tel.: +34 956016323; fax: +34 956016288.
E-mail address: jose.vazquez@uca.es (J. Vázquez).

transmitters of radiation in the 2–16�m wavelength region
The applications include fabrication of optical compone
like IR lenses, windows and filters used in thermal imag
systems. They are less sensitive to the presence of
rities. The Ge-Sb films are sensitive for the UV radiat
and exhibit mechanical, optical and structural changes[5–6].
Glass-forming regions in the Ge-Sb-Se system were stu
by several authors[7–12].

In the present work, a theoretical method has been d
oped for obtaining an evolution equation with time for
actual volume fraction transformed, bearing in mind
mutual interference of regions growing from separated n
(impingement effect). From the quoted equation the kin
parameters and the glass-crystal transformation me
nism have been deduced by means of differential scan
calorimetry (DSC), using non-isothermal regime. In a
tion, this paper applies the developed method to the ana
of the crystallization kinetics of the Ge0.18Sb0.23Se0.59glassy
semiconductor. The values obtained for the quoted par
ters are in good agreement with the calculated results by
254-0584/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.matchemphys.2005.06.050
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kinetic equations. As an example, the above mentioned agree-
ment with the obtained results by the Johnson–Mehl–Avrami
(JMA) equation under non-isothermal regime can be quoted.

The treatment of condensed systems was adapted from the
classical theory of the vapour–liquid transition by Turnbull
and Fisher[13]. A full development of the theory is given
by Christian[14] and a relatively recent review published by
Kelton [15]. The last decades have seen a strong theoretical
and practical interest in the application of calorimetric analy-
sis techniques to the study of phase transformations[16–18].
This analysis is very quick and needs very small quantities
of glass samples to obtain kinetic parameters of the quoted
transformation. Two thermal analysis regimes are employed:
one is the isothermal regime[19,20] in which glass samples
are quickly heated up and held at a temperature of inter-
est, above glass transition temperature. In this regime, the
glasses crystallize a constant temperature. The other is so-
called non-isothermal regime[21–25]in which glass samples
are heated up at a fixed heating rate. Generally, an isothermal
experiment takes longer time than a non-isothermal exper-
iment, but isothermal experimental data can be interpreted
by the well-established JMA kinetic equation[26–29]. In
the non-isothermal experiments themselves are rather sim-
ple and quick, but assumptions are usually required for data
interpretation because there is no uniquely accepted equa-
tion available for non-isothermal regime. Therefore, the uti-
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where the expression
∏

i

∫ t

τ
ui(t′) dt′condenses the product of

the integrals corresponding to the values of the above quoted
subscripti andg is a geometric factor, which depends on the
dimensionality and shape of the crystal growth, and therefore
its dimension equation can be expressed as

[g] = [L]3−i ([L] is the length).

Defining an extended volume of transformed mate-
rial and assuming spatially random nucleation[21,34,35],
the elemental extended volume fraction, dxe, in terms of
nucleation frequency per unit volume,IV(τ), is expressed
as

dxe = vτIV(τ) dτ = gIV(τ)

(∏
i

∫ t

τ

ui(t
′) dt′

)
dτ. (2)

When the crystal growth rate is isotropic,ui = u, an
assumption which is in agreement with the experimental evi-
dence, since in many transformations the reaction product
grows approximately as spherical nodules[14], Eq. (2) can
be written as

dxe = gIV(τ)

(∫ t

τ

u(t′) dt′
)m

dτ (3)
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ization of the non-isothermal regime has produced a l
umber of mathematical treatments for analyzing the
rocess data. While all of the treatments are based on th
al theory of transformation kinetics, they differ greatly

heir assumptions, and in some cases they lead to cont
ory results. It was suggested by Henderson[29], in a notable
ork, that many of the treatments are based on an incom
nderstanding of the formal theory of transformation ki

cs. Thus, many authors applied the JMA kinetic equatio
he non-isothermal crystallization process[30], and althoug
ometimes they appeared to get reasonable activation
ies, this procedure is not appropriate when their expres
re deduced from the JMA equation considering isothe

ransformation conditions[31].

. Theoretical background

.1. Nucleation, crystal growth and volume fraction
ransformed

The theoretical basis for interpreting DTA or DSC res
s provided by the formal theory of transformation kine
26–29,32,33]. This theory supposes that the crystal gro
ate, in general, is anisotropic, and therefore the volume
egion originating at timet = τ (τ being the nucleation perio
s then

τ = g
∏

i

∫ t

τ

ui(t
′) dt′ (1)
-

herem is an exponent related to the dimensionality of
rystal growth and the mode of transformation.

For the important case of isothermal transformation
ucleation frequency and growth rate independent of t
q. (3) can be integrated, resulting in

e = gIVum

∫ t

0
(t − τ)m dτ = g′IVumtn = (Kt)n (4)

heren = m + 1 for IV �= 0, g′ is a new shape factor andK is
efined as the effective overall reaction rate constant, w

s usually assigned an Arrhenian temperature depende

= K0 exp

(−E

RT

)
(5)

hereE is the effective activation energy, describing the o
ll transformation process. It should be observed thatKn is
roportional toIV um. Hence assumption of an Arrhen

emperature dependence forK is appropriate whenIV andu
ary in an Arrhenian manner with temperature.

In general, the temperature dependence of the nucle
requency is far from Arrhenian, and the temperature de
ence of the crystal growth rate is also not Arrhenian w
broad range of temperature is considered[35]. Over a suf

ciently limited range of temperature (such as the rang
ransformation peaks in DTA or DSC experiments), botIV
ndu may be described in zeroth-order approximation b

V ≈ IV0 exp

(−EN

RT

)
(6)
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and

u ≈ u0 exp

(−EG

RT

)
(7)

whereEN and EG are the effective activation energies for
nucleation and growth, respectively.

Combining Eqs.(4)–(7)results in

Kn
0 exp

(−nE

RT

)
∝ IV0um

0 exp

[−(EN + mEG)

RT

]
(8)

and the overall effective activation energy for the transforma-
tion is expressed as

E = EN + mEG

n
(9)

Eqs. (4) and (5)have served as the basis of nearly all
treatments of transformation in DTA or DSC experiments. It
should be noted, however, that Eq.(4) strictly applies only
to isothermal experiments, where an integration of the gen-
eral expression of Eq.(3) is straightforward. Accordingly, for
analyzing glass-crystal transformations in heating continuous
regime it is more accurate to integrate Eq.(3) under non-
isothermal conditions, according to the literature[22,35,36].

In the present work, a theoretical method has been devel-
oped to integrate Eq.(3) under the above mentioned con-
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Accordingly, takingr = 2 in Eq.(12) and considering that in
this type of series the error produced is less than the first term
neglected, Eq.(11)becomes

I1 = R

EG

[
T 2 e−EG/RT − T 2

τ e−EG/RTτ

]
(13)

bearing in mind that in most crystallization reactions
EG/RT′ � 1, usuallyE/RT′ ≥ 25, it is possible to use only
the first term of the above mentioned series without making
any appreciable error.

Substituting Eq.(13)into Eq.(10), by using the expansion
of the binomial-potential series and integrating the resulting
expression one obtains an equation with an exponential inte-
gral of order 2s + 2, which is again evaluated according to Eq.
(12), yielding

xe = pR

(
R

EG

)m
[

m∑
s=0

(−1)s
(

m

s

)
(EN + sEG)−1

]
T 2m+2

× exp

[−(EN + mEG)

RT

]
(14)

if it is assumed thatT0 	 T, (T0 is the starting temperature).
This assumption is justifiable for any heating treatment that
begins at a temperature where nucleation and crystal growth
are negligible, i.e., belowTg (glass transition temperature)
f
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p unc-
itions and to obtain a general expression for the exte
olume fraction,xe, for each value of them exponent. In thi
ense, the case when nucleation and crystal growth
imultaneously has been considered. Both the nucleatio
uency, Eq.(6), and crystal growth rate, Eq.(7), may still be
pproximately described by Arrhenius- type laws at tem
tures lower than the peak temperatures for both quan

n this case, the temperature dependence of extende
me fraction involves a range of particles that are nucle
t different temperatures and, thus, grow to different
izes when the sample is subjected to continuous heatin
onsidering the quoted fact of nucleation and crystal gro
imultaneous, which agrees with literature[22], and a con
tant heating rate,β = dT/dt, Eq.(3) becomes

xe = pIm
1 e−EN/RTτ dTτ (10)

herep is a parameter equal togIV0um
0 β−(m+1), Tτ the tem-

erature at timeτ and I1 is a temperature integral defin
y

1 =
∫ T

Tτ

e−EG/RT ′
dT ′ (11)

y using the substitutionz′ = EG/RT′, the integralI1 is trans-
ormed in an exponential integral of order two, which
articular case of that orderr, which can be expressed, acco

ng to literature[37], by the sum of the alternating series

r(zτ, z) =
[

e−z′

z′r
∞∑

k=0

(−1)k(k + r − 1)!

(r − 1)!z′k

]zτ

z

(12)
or most glass-forming systems[35].
Introducing in Eq.(14) the parameter

= R

(
R

EG

)m m∑
s=0

(−1)s
(

m

s

)
(EN + sEG)−1

nd defining the reaction rate constant

KV = KV0 exp

[−(EN + mEG)

(m + 1)RT

]
,

KV0 = (gIV0um
0 )1/(m+1) (15)

ith an Arrhenian temperature dependence, the extende
me fraction, under heating continuous regime, is expre
s

e = Q

(
KVT 2

β

)m+1

(16)

hich, as can be observed is a general expression f
ossible values of them exponent, which, as it is well kno
epends on the dimensionality of the crystal growth. Bes
iven that in the present work Eqs.(6) and (7)have been con
idered valid, the exponentm + 1 equals the so-called kine
xponentn.

It should be noted that the frequency factorKV0 =
gIV0um

0 )1/(m+1), of Eq. (15) can be expressed by the re

ionshipKV0 = (I ′
V0u′m

0 )1/(m+1), which includes the shap
actor,g, and where the dimension equation of each of
uantitiesI′V0 andu′

0 is [T]−1.
The graphical representation of Eq.(16)shows the typica

arabolic curve of the extended volume fraction as a f
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Fig. 1. Extended volume fraction transformed as function of tempera-
ture calculated from Eq.(16), with I′V0 = 6×106 s−1, EN = 20 kcal mol−1,
u′

0 = 4.8× 104 s−1, EG = 14 kcal mol−1, β = 0.13 K s−1 and for crystal
growth in one (1), two (2) and three (3) dimensions.

tion of temperature in crystallization reactions.Fig. 1shows
the representation of the quoted equation for some selected
kinetic parameters and for crystal growth in one, two and
three dimensions. It should be noted thatxe function tends to
infinity for T increasing and their corresponding curves for
severalm values intercept at different temperatures.

Finally, as an illustration of the use of Eq.(16), a reac-
tion with m = 3 (e.g. valid for recrystallization), nucleation
frequency and crystal growth rate according to Eqs.(6) and
(7), respectively, has been considered. Then Eq.(16) shows
that, for an experiment at constant heating rate,xe increases
approximately in proportion tot2(m+1) = t8. For comparison,
in an isothermal experiment,xe increases in proportion to
tm+1 = t4.

2.2. Effect of impingement

To obtain a general kinetic equation for the volume frac-
tion transformed, the mutual interference of regions growing
from separated nuclei must be considered. When two such
regions impinge on each other it is possible that the two
regions develop a common interface, over which growth
ceases, although it continues normally elsewhere. This hap-
pens in most solid transformations. The problem is primarily
geometrical and through the concept of extended volume may
thus be separated from the kinetic laws of nucleation and
g nded
v ll
r -
f e
a ill
i -

ments of volume, which make up dVe, a fraction (1− Vb/V )γi

on the average will lie in previously untransformed material,
and thus contribute to dVb, whilst the remainder of dVe will be
in already transformed material. Note thatγ i will be termed
the impingement exponent. The above quoted result clearly
follows only if dVe can be treated as a completely random
volume element. Accordingly, bearing in mind the hypoth-
esis of random nucleation it is possible to write the relation
betweenVb andVe in the form

dVb =
(

1 − Vb

V

)γi

dVe = (1 − x)γi dVe (17)

wherex = Vb/V is the actual volume fraction transformed and
with dVe = V dxe, Eq.(17)can be expressed as

(1 − x)−γi dx = dxe. (18)

Defining an impingement factor,δi = (γ i − 1)−1, the general
solution of the preceding differential equation is given as

x = 1 − (1 + xeδi
−1)

−δi (19)

It should be noted that the Eq.(19) includes different models
used in the literature when the glass-crystal transformation is
analyzed, namely:

(i) Case of no impingement,γ i = 0, x = xe.
(ii) If the impingement exponent,γ = 1, δ → ∞ and Eq.

(

a-
t olume
f n
a

s

x

a ans-
f

2

era-
t ss-
f an be
d order
f that
b
h int of
rowth. We have now to find a relation between the exte
olume,Ve, and the actual volume,Vb. Consider any sma
andom region, of which a fraction (1–Vb/V) remains untrans
ormed at timet, and whereV is the volume of the whol
ssembly. During a further time dt, the extended volume w

ncrease by dVe, and the true volume by dVb. Of the new ele
i i

(19)becomes

x = 1 − lim
δi→∞

[
1 +

(
δi

xe

)−1
]−δi

= 1 − exp(−xe) = 1 − exp[−(Kt)n] (20)

iii) When γ i = 2, δi = 1 and Eq.(19)can be written as

x = 1 − (1 + xe)
−1 = 1 − [1 + (Kt)n]−1

. (21)

Both in Eq.(20)and in Eq.(21)an isothermal transform
ion has been considered, and therefore, the extended v
raction is given by Eq.(4), resulting in the JMAK equatio
nd the Austin–Rickett (AR), respectively.

Finally, by substituting Eq.(16) into Eq.(19), one obtain

= 1 −
[

1 + 1

δi

Q

(
KVT 2

β

)m+1
]−δi

(22)

general expression for the actual volume fraction tr
ormed in a non-isothermal process.

.3. Deducing the kinetic parameters

The usual analytical methods, proposed in the lit
ure [35] for analyzing the crystallization kinetics in gla
orming liquids, assume that the reaction rate constant c
efined by an Arrhenian temperature dependence. In

or this condition to hold, the present work assumes
oth the nucleation frequency,IV, and crystal growth rate,u,
ave Arrhenian temperature dependences. From this po
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view, the crystallization rate is obtained by deriving the actual
volume fraction crystallized [Eq.(22)] with respect to time,
bearing in mind the fact that, in non-isothermal processes, the
reaction rate constant is a function of time through its above
mentioned Arrhenian temperature dependence. Moreover, if
in the resulting equation, the expression in square brackets is
substituted by its value given in Eq.(22), one obtains

dx

dt
= Q(m + 1)

β

(
KVT 2

β

)m

(1 − x)(δi+1)/δi

×
(

T 2 dKV

dt
+ 2TβKV

)
. (23)

The maximum crystallization rate is found making
dx2/dt2 = 0, resulting in

δi + 1

δi

(1 − xp)1/δiQ

[
KV |pTp

2

β

]m+1

= 1 − 1

m + 1


T 2

p

(
dKV

dt

∣∣∣∣
p

)2

+ 2β2(KV |p)2 −T 2
p KV |p

d2KV

dt2

∣∣∣∣∣
p




w nd-
i

tion
r to
E rgy,
E d,
t

w
δ en-
t tion
r ions
E n,
E

a

t

one obtains

1 − xp =
(

δi

δi + 1

)δi

(27)

an expression from which, the impingement factor,δi, can
be evaluated in a set of exotherms taken at different heating
rates, by using a method of successive approximations (e.g.
secant method). The corresponding mean value may be taken
as the most probable value of the impingement factor in the
glass-crystal transformation process.

Substituting Eq.(27)into Eq.(26)and taking the logarithm
in the resulting expression leads to the relationship

ln
T 2

p

β
= E

RTp

− ln q (28)

which is a linear function, whose slope and intercept give
the overall effective activation energy,E, and the factor
q = Q1/nKV0 [Eq. (22)], which is related to the probability of
effective collisions for the formation of the activated com-
plex. About the physical meaning of the overall effective
activation energy of Eq.(28) it can be explained by analyz-
ing the expression of the reaction rate constant, (KV)|p, given
by Eq.(15). According to the quoted equation and following
the literature[35], the above-mentioned activation energy is
expressed by Eq.(9). From this equation it is immediate that
t i-
n tion,
E es
s

-
t
E n
a
o

n

a
c ting
r ed as
t ans-
f

m
o
o as
i te
b AK
m non-
i

x

×
[
Tp

dKV

dt

∣∣∣∣
p

+ 2βKV |p
]−2

, (24)

here the subscriptp denotes the quantity values correspo
ng to the maximum crystallization rate.

Taking the first and the second derivative of the reac
ate constant,KV, with respect to time, substituting both in
q.(24), assuming that the overall effective activation ene
, is given by Eq.(9), and thatn = m + 1, as already state

he quoted Eq.(24)can be rewritten as

δi + 1

δi

(1 − xp)1/δiQ

[
KV |pT 2

p

β

]n

= 1 − 2

n

(
1 + E

RTp

)(
2 + E

RTp

)−2

(25)

hich relates the crystallization kinetic parametersE, n and
i to the quantity values that can be determined experim
ally, and which correspond to the maximum crystalliza
ate. Bearing in mind that in most transformation react
/RTp � 1 (usuallyE/RTp ≥ 25), already quoted assumptio
q. (25)becomes

δi + 1

δi

(1 − xp)1/δiQ

[
KV |pT 2

p

β

]n

= 1 (26)

nd the error introduced is not greater than 2.5%.

Substituting in Eq.(26)the expressionQ
(

KV |pT 2
pβ−1

)n

aken from Eq.(22)and by making explicit the quantity 1–xp,
he activation energy in Eq.(28), means physically a comb
ation of the effective activation energies for the nuclea
N, and for the crystal growth,EG, respectively, which agre
atisfactorily with the literature[35] (see page 255).

Finally, substituting in Eq.(23) for the maximum crys
allization rate, the expressionQ(KV |pTp

2β−1)
n
taken from

q. (22), introducing Eq.(27) into the resulting expressio
nd considering the above quoted assumptionE/RTp � 1, one
btains

= RT 2
p

dx

dt

∣∣∣∣
p

[
(1 − xp)(δi+1)/δiβE

]−1 (29)

n expression which permits the kinetic exponent,n, to be
alculated in a set of exotherms taken at different hea
ates. The corresponding mean value may be consider
he most probable value of the kinetic exponent of the tr
ormation process.

Eqs.(27) and (29)give information about the mechanis
f the transformation through the parametersδi andn. More-
ver, it should be noted that when theδi parameter is taken

nfinity, Eqs.(22)–(24)for the maximum crystallization ra
ecome exactly the equations corresponding to the JM
odel, in the case of glass-crystal transformations under

sothermal regime, namely

p = 1 − exp[−Q(KV |pT 2
pβ−1)

n
] (30)

dx

dt

∣∣∣∣
p

= nQ(KV |pT 2
pβ−1)

n
(1 − xp)βT−1

p [2 + E(RTp)−1]

(31)
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Q[ KV |pT 2
pβ−1]

n

= 1 − 2n−1[1 + E(RTp)−1][2 + E(RTp)−1]
−2

. (32)

The present fact shows again that the JMAK evolu-
tion equation for the volume fraction transformed under
non-isothermal regime is a particular case,γ i = 1, of the
more general transformation equation, which considers the
impingement effect between regions growing from separated
nuclei.

3. Experimental procedures

The Ge0.18Sb0.23Se0.59 glassy alloy was made from their
components of 99.999% purity, which were pulverized to less
than 64�m, mixed in adequate proportions, and introduced
into a quartz glass ampoule. The content of the ampoule (7 g
per batch) was sealed under a vacuum of 10−2 Pa and heated
in a rotating furnace at around 1223 K for 52 h, submitted to
longitudinal rotation of 1/3 rpm in order to ensure the homo-
geneity of the molten material. It was then immersed in a
receptacle containing water in order to solidify the material
quickly, avoiding crystallization of the compound. The amor-
phous state of the material was confirmed by a diffractometric
X-ray scan, in a Siemens D500 diffractometer. The homo-
g ugh
s icro-
s arried
o eter
w li-
b ating
r lting
e the
i (par-
t s,
a
e
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s er
t cell,
t idity
o ple.
M emit-
t aks,
a n the
D nsid-
e point
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F -
a f
t -
t
t n
t
F

Fig. 2. Typical DSC trace of Ge0.18Sb0.23Se0.59glassy alloy at a heating rate
of 32 K min−1. The hatched area showsAT, the area betweenTi andT.

4. Results

The typical DSC trace of Ge0.18Sb0.23Se0.59chalcogenide
glass obtained at a heating rate of 32 K min−1 and plotted
in Fig. 2 shows three characteristic phenomena, which are
resolved in the temperature region studied. The first one
(T = 545.4 K) corresponds to the glass transition temperature,
Tg, the second (T = 653.4 K) to the extrapolated onset crys-
tallization temperature,Tc, and the third (T = 671.0 K) to the
peak temperature of crystallization,Tp, of the above men-
tioned chalcogenide glass. This DSC trace shows the typical
behaviour of a glass-crystal transformation. The DSC data for
the different heating rates,β, quoted in Section3, show values
of the quantitiesTg,Tc andTp, which increase with increasing
β a property which has been reported in the literature[38].
The ratio between the ordinates and the total area of the peak
gives the corresponding crystallization rates, which make it
possible to plot the curves of the exothermal peaks repre-
sented inFig. 3. It may be observed that the (dx/dt)|p value
increases in the same proportion as the heating rate, a prop-
erty which has been widely discussed in the literature[38].

F at dif-
f

eneity and composition of the solid were verified thro
canning electron microscopy in a JEOL, scanning m
cope JSM-820. The calorimetric measurements were c
ut in a Perkin-Elmer DSC7 differential scanning calorim
ith an accuracy of±0.1 K. Temperature and energy ca
rations of the instrument were performed, for each he
ate, using the well-known melting temperatures and me
nthalpies of high-purity indium and zinc supplied with

nstrument. Powdered samples weighing about 10 mg
icle size around 40�m) were crimped in aluminium pan
nd scanned at room temperature through theirTg at differ-
nt heating rates of 2, 4, 8, 16, 32 and 64 K min−1. An empty
luminium pan was used as reference, and in all cases,
tant 60 ml min−1 flow of nitrogen was maintained in ord
o provide a constant thermal blanket within the DSC
hus eliminating thermal gradients and ensuring the val
f the applied calibration standard from sample to sam
oreover, the nitrogen purge allows to expel the gases

ed by the reaction, which, without affecting the DSC pe
re highly corrosive to the sensory equipment installed i
SC furnace. The glass transition temperature was co
red as a temperature corresponding to the inflection
f the lambda-like trace on the DSC scan, as shown in
ig. 2. The volume fraction crystallized,x, at any temper
ture T is given asx = AT/A, whereA is the total area o

he exotherm between the temperatureTi , where the crys
allization is just beginning and the temperatureTf , where
he crystallization is completed andAT is the area betwee
he initial temperature and a generic temperatureT, see
ig. 2.
ig. 3. Crystallization rate vs. temperature of the exothermal peaks
erent heating rates.



J. Vázquez et al. / Materials Chemistry and Physics 96 (2006) 107–115 113

Table 1
Characteristic temperatures and enthalpies of the crystallization process of
the Ge0.18Sb0.23Se0.59 glassy alloy

Parameter Experimental value

Tg (K) 536.8–553.2
Ti (K) 617.5–656.2
Tp (K) 634.6–686.1
�T (K) 23.9–82.3
�H (mcal mg−1) 2.5–6.1

4.1. Glass-crystal transformation

The kinetic study of the glass-crystal transformations is
related to the knowledge of the reaction rate constant,KV,
as a function of the temperature. In the present work it is
assumed that the quoted constant has an Arrhenius type tem-
perature dependence. Bearing in mind this assumption and
that the nucleation frequency and crystal growth rate have
also Arrhenian temperature dependences, the overall effec-
tive activation energy,E, for crystallization is given by Eq.
(9). From this point of view, and considering that in most
crystallization processesE � RT, the crystallization kinetics
of the alloy Ge0.18Sb0.23Se0.59may be analyzed according to
the theory developed in Section2.

With the aim of analyzing the above mentioned kinet-
ics, the variation intervals of the quantities described by
the thermograms for the different heating rates quoted in
Section 3 are obtained and given inTable 1, where Ti
andTp are the temperatures at which crystallization begins
and that corresponding to the maximum crystallization rate,
respectively, and�T is the width of the crystallization
peak. The crystallization enthalpy,�H, is also determined
for each heating rate. The data of ln (T 2

p/β) and 103/Tp

are fitted to a linear function by least squares fitting and
shown inFig. 4. From the slope and intercept of this fit,
according to Eq.(28), both the overall effective activa-
t
t ing:

F n

l

Table 2
Maximum crystallization rate, corresponding temperature and volume frac-
tion crystallized, kinetic exponent and impingement factor for the different
heating rates

β (K min−1) 103(dx/dt)|p
(s−1)

Tp (K) xp δi n

2 3.11 634.6 0.5862 3.5972 4.08
4 3.99 641.9 0.4577 0.6701 3.99
8 7.08 652.1 0.4660 0.7213 3.55

16 11.43 659.7 0.4284 0.5237 3.34
32 21.68 670.9 0.4725 0.7652 2.82
64 27.84 686.1 0.3629 0.3160 2.83

E = 56.5 kcal mol−1and q = 2.11× 1012 (Ks)−1. Moreover,
the experimental dataTp, xp and (dx/dt)|p, shown inTable 2
allow to obtain the parameters: impingement factor,δi, and
kinetic exponent,n. By using Eq.(27) and following the
secant method of successive approximations, the impinge-
ment factor has been evaluated for each heating rate. The
calculation of the kinetic exponent has been carried out for
each heating rate, by using Eq.(29) and from the quoted
experimental data, together with the above mentioned value
of the activation energy and the corresponding results of the
impingement factor. The values both forδi and forn are also
given inTable 2. With the aim of explaining why the lowest
heating rate, 2 K min−1, gives the highestδi andn values, the
Eqs.(27) and (29)have been related, yielding

nf (δi) = n

(
δi

δi + 1

)δi+1

= RT 2
p (dx/dt)|p

βE

an expression where the productnf(δi) is inversely propor-
tional to heating rate. From the data given inTable 2, the val-
ues of the producthp = T 2

p (dx/dt)|p are obtained. It should
be noted that the quotient,c = (hp)

i+1/(hp)
i
, in general,

increases with the value of the subscripti = 1, 2, 3,. . ., keep-
ing always minor values that the corresponding ratio of 2–1
of the heating rate. By means of this fact it is possible to
explain why the lowest heating rate gives the highestδi and
n tric
a ssi-
b l the
m been
c e
n sug-
g
i
d ion of
t y
u fact
e 9
t r-
e it is
r k-
i by
E al
ion energy,E, and the pre-exponential factor,q, of the
ransformation are obtained. The results are the follow

ig. 4. Experimental plots of ln(T 2
p/β) vs. 103/Tp and straight regressio

ine of Ge0.18Sb0.23Se0.59 alloy (β in K s−1).
values. In addition, bearing in mind that the calorime
nalysis is an indirect method which only makes it po
le to obtain mean values for the parameters that contro
echanism of a reaction, the quoted mean values have

alculated, resulting in:〈δi〉 = 1.10 and〈n〉 = 3.43. It should b
oted that the preceding value of the impingement factor
ests that the Austin–Rickett kinetic equation (γ i = 2,δi = 1),

s more adequate than the JMA equation (γ i = 1, δi → ∞) to
escribe the mechanism of the glass-crystal transformat

he semiconducting Ge0.18Sb0.23Se0.59 glass. Of course, b
sing both equations under non-isothermal regime. This
xplains that the experimentalxp values range from 0.362
o 0.5862 (seeTable 2) results which are relatively diffe
nt of xp = 0.63, an approximately constant value, as
equired by JMA kinetic equation. With the aim of ma
ng comment on the validity of the model represented
q. (22) to analyze the kinetics of different non-isotherm
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transformations it must be considered the Eq.(27), which
relates the parameters: volume fraction transformed,xp, and
impingement factor,δi. The values obtained for the quoted
parameters by means of the developed model are compared
with the calculated results by other kinetic equations, and
they allow to check the validity of the quoted model. Accord-
ingly, it is interesting to emphasize that when thexp value is
close to 0.5, the Austin–Rickett equation is more adequate,
whereas if the quoted value ofxp tends to 0.63, the JMA
kinetic equation is more suitable to describe the correspond-
ing non-isothermal transformation. For this purpose, we have
applied the present model at the analysis of the crystallization
kinetics of a glassy alloy set, corresponding to the Sb-As-Se
and Ge-Sb-Se systems, and we have examined the kinetic
parameters, which control the glass-crystal transformation,
checking the validity of the described model. In this sense, it
should be noted that the mean value both of the volume frac-
tion transformed,〈xp〉, and of the impingement factor,〈δi〉,
for the quoted alloys, range from 0.4399 to 0.5348 and from
0.6198 to 1.5366, respectively. These results oscillate around
the theoretical values:xp = 0.5 andδi = 1, and, therefore, the
developed model proposes the Austin–Rickett kinetic equa-
tion, under non-isothermal regime to describe the mechanism
of the glass-crystal transformation of the quoted alloys.

Besides, from the mean value of the kinetic exponent,
〈n〉 = 3.43, of the semiconducting Ge Sb Se glass
i ch-
a
s to
d
u
n -
a n,
o ring
i
t ost
l face
o into
t tem-
p r the
o uclei
r fact
a itial
s
a ion,
t igher
t mples
w e as-
q
r of the
a
h g, a
l hen
t hat
t rystal
t

5. Conclusions

The developed theoretical method enables us to study the
evolution with the time of the actual volume fraction trans-
formed and to analyze the glass-crystal transformation mech-
anisms in semiconducting glass systems involving formation
and growth of nuclei. This method assumes the concept of
the extended volume of transformed material and the condi-
tion of randomly located nuclei, together with the assumption
of mutual interference of regions growing from separated
nuclei. By using these assumptions we have obtained a gen-
eral expression for the actual volume fraction transformed, as
a function of the temperature in non-isothermal crystalliza-
tion processes. In the quoted expression the kinetic exponent
depends on both the nucleation frequency and the dimen-
sionality of the crystal growth. It should be noted that the
above mentioned expression also depends on the impinge-
ment factor. The kinetic parameters have been deduced by
using the following considerations: the condition of the max-
imum crystallization rate and the quoted maximum rate.

The theoretical method developed has been applied to the
experimental data corresponding to the crystallization kinet-
ics of the Ge0.18Sb0.23Se0.59glassy alloy. The results obtained
for the kinetic parameters agree satisfactorily with the calcu-
lated values by other mathematical treatments, confirming
the reliability of the method developed.
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t is possible to postulate a crystallization reaction me
nism of the quoted glass. Mahadevan et al.[39] have
hown thatn may be 4, 3, 2, or 1, which are related
ifferent glass-crystal transformation mechanisms:n = 4, vol-
me nucleation, three- dimensional growth;n = 3, volume
ucleation, two-dimensional growth,n = 2, volume nucle
tion, one-dimensional growth;n = 1, surface nucleatio
ne-dimensional growth from surface to the inside. Bea

n mind that the material is grained (Section3), according
o the literature[40,41], it can be supposed that the m
ikely nucleation site of the studied glass is the free sur
f the grain, arising a concentration of nuclei growing

he grain. These nuclei are formed during the process of
erature rise at temperatures lower than that required fo
nset of crystal growth, and, therefore, the number of n
emains almost constant during the growth stage. This
llows considering that the site saturation occurs at in
tage of the transformation for the Ge0.18Sb0.23Se0.59 glassy
lloy. With the aim of confirming the possible site saturat

he material was reheated up to a temperature slightly h
han the glass transition temperature. The reheated sa
ere subjected to the same calorimetric scans that th
uenched samples. The values of the kinetic exponent,n, for
eheated samples are similar to the corresponding data
s-quenched material, given inTable 2. Matusita et al.[42]
ave shown that ifn does not changes with the reheatin

arge number of nuclei already exists in the specimen w
he crystal growth begins. Accordingly, it is confirmed t
he site saturation happens at initial stage of the glass-c
ransformation of the alloy studied.
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