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Abstract

We derive Laguerre expansions for the density and distribution functions of a sum
of positive weighted noncentral chi-square variables. The procedure that we use is
based on the inversion of Laplace transforms. The formulas so obtained depend
on certain parameters, which adequately chosen will give some expansions already
known in the literature and some new ones. We also derive precise bounds for the
truncation error.
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1 Introduction

Positive quadratic forms in normal variables arise naturally in many pro-
blems of estimation and testing related to normal distributions and Gaus-
sian processes. Also in non-normal cases, these quadratic forms appear as
limits of certain statistics used in the inference. Under suitable transforma-
tions, positive quadratic forms in normal variates can be expressed as linear
combinations of independent non-central chi-square variables. Numerous
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applications of these distributions can be found, for instance, in Jensen and
Solomon (1972) and Mathai and Provost (1992).

The problem of obtaining the distribution of a quadratic form in normal
variables has been addressed by many authors. Hence, several representa-
tions for the cumulative distribution function and the density can be found
out in the literature. These include, among others, power series expansions,
see Shah and Khatri (1961); χ2 series, see Ruben (1962) and Laguerre se-
ries, see Shah (1963) and Kotz et al. (1967). Some of these representations
arise in an attempt to generalize the already known formulas for the distri-
bution of linear combinations of central chi-square variables. For instance,
Kotz et al. (1967) generalized the expansion that they obtained for the
central case, using in essence the same method of Gurland (1955), giving
single series expansions in the power series and Laguerre series cases. These
formulas are more useful for computational purposes than the double series
given by Shah and Khatri (1961) and by Shah (1963), respectively.

One of the most successful approaches for obtaining the distribution and
density functions of linear combinations of non-central chi-square variables
is the representation in terms of Laguerre series as in Kotz et al. (1967), see
also Davis (1977) and Mathai and Provost (1992). In fact, Laguerre series
expansions play a very important role in the subject of approximation of
distributions, see Tan and Tiku (1999). These expansions have been also
used to solve numerous problems in information theory: Borget and Faure
(1973); regression analysis: Vomişescu (1999) and Gurmu et al. (1999) and
experimental design: Genizi and Soller (1979), Tan (1982) and Tiku (1964).

In this work we derive Laguerre expansions for the density and distri-
bution functions of a non-central χ2 variable and of positive linear com-
binations of non-central chi-square variables. The procedure that we use
is based on the inversion of their Laplace transforms in terms of Laguerre
polynomials.

The paper is structured as follows. In the following section we propose
Laguerre expansions for the density and distribution functions of a non-
central chi-squared variable. Moreover, we derive bounds on the truncation
error in the given expansions. In Section 3 we provide an analogous study
for positive linear combinations of non-central chi-squared variables and
compare our results with those given in the literature. Some comments and
conclusions are included in Section 4. In Section 5, we give an Appendix
in which we describe a procedure to invert Laplace transforms and also the
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proofs of some necessary results in order to study the truncation error of
the proposed expansions.

2 Expansions for a non-central chi-square variable

The non-central chi-square distribution was obtained by Fisher (1928) as a
limiting case of the distribution of the multiple correlation coefficient. After
him, this distribution has been derived in several different ways. The first
direct derivation was given by Tang (1938). A geometric derivation was
obtained by Patnaik (1949) who emphasized the relevance of this distribu-
tion to approximate the power of the χ2 test and also suggested approxi-
mations to the non-central χ2 distribution itself. Patnaik represented the
non-central chi-square distribution as a mixture of central χ2 variables with
weights equal to the probabilities of a Poisson distribution. Tiku (1965)
obtained an expression for the density function in terms of the generalized
Laguerre polynomials, which we will obtain as a particular case of our pro-
cedure. Gideon and Gurland (1977) provided another Laguerre expansion
with coefficients which are rather complicated. Other representations and
approximations for this distribution can be found in Johnson et al. (1995).

In the next subsection, we propose a Laguerre expansion for the den-
sity and distribution functions of a non-central χ2 variable, respectively.
Basically, the method consists in the inversion of the Laplace transform of
the density (or distribution function). The procedure to obtain the inverse
Laplace transform is described in the Appendix.

2.1 Computation of the distribution of χ2
n(δ)χ2
n(δ)χ2
n(δ) variable

Let f(y) be the density function of χ2
n(δ) variable, where δ is the non-

centrality parameter. Its Laplace transform is:

L (f(y)) (λ) = exp

{

−
δλ

1 + 2λ

}

(1 + 2λ)−n/2 = G(λ).

Consider the function:

H(λ) = exp

{

−
δ(λ − 1)

2λ

}

λ−n/2 = G

(

λ − 1

2

)

.
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Using standard properties of the inverse Laplace transform we have:

f(y) = L−1 (G(λ)) (y) = L−1 (H(1 + 2λ)) (y) (2.1)

=
e−y/2

2
L−1(H(λ))(y/2).

Now, we invert the function H using the expansion (5.3) given in the
Appendix. For that, let g(µ) = (p/µ)pH(p/µ). In particular, for p = n/2,
we obtain

g(µ) = exp

{

−
δ (n/2 − µ)

n

}

,

with derivatives

g(k)(µ) =

(

δ

n

)k

exp

{

−
δ (n/2 − µ)

n

}

, k ≥ 0. (2.2)

So,

L−1 (H(λ)) (y) =
yn/2−1

Γ (n/2)
exp

{

−
δ (n/2 − µ0)

n

}

·
∑

k≥0

(

−µ0δ
n

)k

(n/2)k

L
(n/2−1)
k

(

ny

2µ0

)

,

with L
(α)
k the k-th generalized Laguerre polynomial (see Appendix). Then,

from (2.1) we have

f(y) =
e−y/2

2n/2

yn/2−1

Γ (n/2)
exp

{

−
δ (n/2 − µ0)

n

}

(2.3)

·
∑

k≥0

(

−µ0δ
n

)k

(n/2)k

L
(n/2−1)
k

(

ny

4µ0

)

,∀µ0 > 0.

If we consider µ0 = n/2 in (2.3), we obtain the expansion given by Tiku
(1965) using another procedure:

f(y) =
e−y/2

2n/2

yn/2−1

Γ (n/2)

∑

k≥0

(

−δ
2

)k

(n/2)k

L
(n/2−1)
k

(y

2

)

. (2.4)
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Let F (y) be the distribution function of χ2
n(δ). Its Laplace transform

is:

L (F (y)) (λ) =
1

λ
exp

{

−
δλ

1 + 2λ

}

(1 + 2λ)−n/2 = G (λ) .

Using similar arguments as before, we obtain:

F (y) =
e−y/2

2n/2+1

yn/2

Γ (n/2 + 1)

∑

k≥0

k!ck

(n/2 + 1)k

L
(n/2)
k

(

(n + 2) y

4µ0

)

, (2.5)

with

g(µ) =
2p

p − µ
exp

{

−
δ (p − µ)

2p

}

, p =
n

2
+ 1, (2.6)

and ck = (−µ0)
kg(k)(µ0)/k!. These coefficients satisfy the recurrent rela-

tions:

ck =
1

k

k−1
∑

j=0

cjdk−j, k ≥ 1, c0 =
2p

p − µ0
exp

(

−δ (p − µ0)

2p

)

, (2.7a)

dj =

(

−µ0

p − µ0

)j

, j ≥ 2, d1 = −µ0

(

1

p − µ0
+

δ

2p

)

. (2.7b)

Ashour and Abdel-Samad (1990) derived a different expression as a double
series; Gideon and Gurland (1977) proposed another Laguerre expansion
with coefficients which are difficult to calculate. Tiku (1965) obtained an-
other expression in terms of Laguerre polynomials by direct integration of
the density function. With our method, we provide a Laguerre expansion
without the explicit knowledge of the density function or the distribution
function. Moreover, the expansion given in (2.3) depends on a parameter,
µ0, that can be chosen arbitrarily. Some adequate choices may give compu-
tationally efficient formulas for the calculation of the distribution function.
Even, uniform convergence can be achieved by an adequate choice, as we
will see in Subsection 2.2.

In Table 1 we compare the expansion obtained in (2.5) for µ0 = p/4 with
that given by Tiku (1965), and the exact values given in Patnaik (1949),
being j the number of terms considered in the expansions.

We can observe in these examples that the expansion that we propose
converge faster than the expansion given by Tiku.
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Table 1: Distribution function of χ2

n
(δ)

n δ y j µ0 = p/4 (2.5) Tiku (1965) F (y) (Exact)

4 10 10 10 0.3148368 0.3141404 0.3148

7 16 10.257 10 0.04999622 -0.45<0 0.05

24 24 36 15 0.15671754 0.1276852 0.1567

2.2 Bound for the truncation error

As we are interested in the implementation of these formulas in a computer,
we study the errors produced when the infinite series are truncated. To get
bounds on the truncation error in the expansions above, we need to bound
the Laguerre polynomials and also the coefficients ck given in (2.7a):

Lemma 2.1. A classical global uniform (w.r.t. n, y and α) estimate given
by Szegő (1975) is

∣

∣

∣
L

(α)
k (y)

∣

∣

∣
≤

(α + 1)k

k!
exp

(y

2

)

, α ≥ 0, (2.8)

∣

∣

∣
L

(α)
k (y)

∣

∣

∣
≤

(

2 −
(α + 1)k

k!

)

exp
(y

2

)

,−1 < α < 0.

To bound the coefficients ck, the following lemma will be useful:

Lemma 2.2. Consider ck as given in (2.7a) and p=n/2+1, then

|ck| ≤
2p

|p − µ0|
exp

(

−δ

(

p − (1 + 1/ξ) µ0

2p

))

(2.9)

·

(

k

ξ(1 + k)

)−k ( 1

1 + k

)−1

,

with ξ =

∣

∣

∣

∣

µ0

p − µ0

∣

∣

∣

∣

.

Proof. See Appendix.

Consider the truncation error for the density function as:
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EN (f, y, µ0, δ) =

∣

∣

∣

∣

∣

e−y/2

2n/2

yn/2−1

Γ (n/2)
exp

{

−
δ (n/2 − µ0)

n

}

·
∞
∑

k=N+1

(

−µ0δ
n

)k

(n/2)k

L
(n/2−1)
k

(

ny

4µ0

)

∣

∣

∣

∣

∣

,

for µ0 > 0.

From Lemma 2.1 and ν ≥ 2 we get

EN (f, y, µ0, δ) ≤
e−y/2

2n/2

yn/2−1

Γ (n/2)
exp

{

−
δ (n/2 − µ0)

n

}

exp

(

ny

8µ0

)

·

∞
∑

k=N+1

(

µ0δ
n

)k

k!
.

The above series is absolutely convergent for µ0 > 0, and as a consequence
we have that the expansion (2.3) converges uniformly in any finite interval
of (0,∞). However it is possible to get uniform convergence when n > 2,
for all y > 0, by choosing µ0 > n/4.

In order to get bounds on the truncation error in the expansion given
for the distribution function (2.5) we use again Lemmas 2.1 and 2.2, to
obtain

EN (F, y, n, δ, µ0) ≤
e−y/2yn/2

2n/2+1

2p

|p − µ0|
exp

(

−δ

(

p − (1 + 1/ξ) µ0

2p

))

· exp

(

(n + 2)y

8µ0

) ∞
∑

k=N+1

bk, (2.10)

with

bk = ξk

(

1 + k

k

)k

(1 + k).

The bound (2.10) is well defined for µ0 < p/2, since the series
∑

k bk is
absolutely convergent if 0 < ξ < 1.
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3 The distribution of a linear combination of independent

non-central chi-square variables

In this section we propose Laguerre expansions for the density and dis-
tribution functions of Qn =

∑n
i=1 αiXi, with αi > 0 and Xi ∼ χ2

νi
(δi),

independent random variables. We proceed in a similar way as we did in
the previous section for a non-central chi-square variable.

Let f(y) be the density function of Qn. Its Laplace transform is:

L (f(y)) (λ) = exp

{

−
n
∑

i=1

δiαiλ

1 + 2αiλ

}

n
∏

i=1

(1 + 2αiλ)−νi/2 = G(λ).

Then,

f(y) =
e−

y

2β

2β
L−1 (H(λ))

(

y

2β

)

, (3.1)

with H(λ) = G ((λ − 1) / (2β)) and β > 0.

Therefore, it is enough to invert H(λ). Using (5.3) given in Appendix
and (3.1), for p = ν/2, we obtain

f(y) =
e
− y

2β

(2β)ν/2

yν/2−1

Γ (ν/2)

∑

k≥0

k!ck

(ν/2)k

L
(ν/2−1)
k

(

νy

4βµ0

)

,∀µ0 > 0, (3.2)

with

g(µ) =
(ν

2
β
)ν/2

exp

{

−
1

2

n
∑

i=1

δiαi(p − µ)

βµ + αi(p − µ)

}

n
∏

i=1

(βµ + αi(p − µ))−νi/2 ,

(3.3)
where ν =

∑n
i=1 νi and ck = (−µ0)

kg(k)(µ0)/k!. These coefficients satisfy
the recurrent relations:

ck =
1

k

k−1
∑

j=0

cjdk−j, k ≥ 1,

c0 =

(

ν

2µ0

)ν/2

exp

{

−
1

2

n
∑

i=1

δiαi(p − µ0)

βµ0 + αi(p − µ0)

}

·

n
∏

i=1

(

1 +
αi

β
(p/µ0 − 1)

)−νi/2

,

(3.4a)
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dj = −
jβp

2µ0

n
∑

i=1

δiαi (β − αi)
j−1

(

µ0

βµ0 + αi(p − µ0)

)j+1

+
n
∑

i=1

νi

2

(

1 − αi/β

1 + (αi/β) (p/µ0 − 1)

)j

, j ≥ 1.

(3.4b)

Obviously if we consider δi = 0, i = 1 . . . n, in the expression (3.2), we
obtain the corresponding expansion for the central case.

If we consider in (3.2), µ0 = ν/2 = p we obtain the expansion given by
Kotz et al. (1967). However we can consider other choices of the parameter
in order to improve the speed of convergence of this series.

Similarly, since the Laplace transform of the distribution function, F (y),
of Qn is given by

L (F (y)) (λ) =
1

λ
exp

{

−

n
∑

i=1

δiαiλ

1 + 2αiλ

}

n
∏

i=1

(1 + 2αiλ)−νi/2,

we obtain the following expansion for the distribution function:

F (y) =
e
− y

2β

(2β)ν/2+1

yν/2

Γ (ν/2 + 1)

∑

k≥0

k!mk

(ν/2 + 1)k

L
(ν/2)
k

(

(ν + 2)y

4βµ0

)

, (3.5)

for µ0 > 0 and p = ν/2 + 1. The coefficients mk satisfy the following
recurrent relation:

mk =
1

k

k−1
∑

j=0

mjdk−j , k ≥ 1,

m0 = 2
(ν

2
+ 1
)ν/2+1

exp

{

−
1

2

n
∑

i=1

δiαi(p − µ0)

βµ0 + αi(p − µ0)

}

·
βν/2+1

p − µ0

n
∏

i=1

(βµ0 + αi(p − µ0))
−νi/2 ,

(3.6a)

dj = −
jβp

2µ0

n
∑

i=1

δiαi (β − αi)
j−1

(

µ0

βµ0 + αi(p − µ0)

)j+1

+

(

−µ0

p − µ0

)j

+

n
∑

i=1

νi

2

(

µ0 (β − αi)

βµ0 + αi(p − µ0)

)j

, j ≥ 1.

(3.6b)
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In this case, we offer an alternative expression for the distribution function
without knowing the density function. Most of the authors in the literature
obtain an expression for the distribution function by direct integration of
the density function, such as Kotz et al. (1967). If δi = 0,∀i, in (3.5), we
obtain an expression for the distribution function of a linear combination
of independent central chi-square variables.

3.1 Bounds for the truncation error

In a similar way to the case of one variable, our objective is to implement
these formulas in a computer so we study the errors produced when the
infinite series given in (3.2) and (3.5) are truncated.

Firstly we need to bound the coefficients:

Lemma 3.1. Consider ck as given in (3.4a), then

|ck| ≤

(

ν

2µ0

)ν/2 n
∏

i=1

∣

∣

∣

∣

1 +
αi

β

(

p

µ0
− 1

)∣

∣

∣

∣

−νi/2

exp

{

µ0
∑n

i=1 δi

2pζ

}

(3.7)

· exp

{

−
1

4

n
∑

i=1

δi (αi/β) (p/µ0 − 1)

1 + (αi/β) (p/µ0 − 1)

}

(

2k + ν

2k

)k (2k + ν

ν

)ν/2

ζk,

with ζ = maxi

∣

∣

∣

1−(αi/β)
1+(αi/β)(p/µ0−1)

∣

∣

∣
and p = ν/2.

Proof. See Appendix.

Remark 3.1. If µ0 < ν/4, then 0 < ζ < 1, for all β > 0 and if µ0 ≥ ν/4,
then 0 < ζ < 1, for β > (2 − ν/(2µ0)) α(n)/2 and α(n) = maxi αi .

Lemma 3.2. Let mk as given in (3.6a), then

|mk| ≤
2βp

|p − µ0|
exp

{

−
1

4

n
∑

i=1

δi (αi/β) (p/µ0 − 1)

1 + (αi/β) (p/µ0 − 1)

}

exp

{

µ0δ

2pε

}

(3.8)

·

(

p

µ0

)ν/2 n
∏

i=1

∣

∣

∣

∣

1 +
αi

β

(

p

µ0
− 1

)
∣

∣

∣

∣

−νi/2(2k + ν + 2

2k

)k(2k + ν + 2

ν + 2

)ν/2+1

εk
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with p = ν/2 + 1, δ =
∑n

i=1 δi , ε = max (a, ζ),

a =

∣

∣

∣

∣

−µ0

p − µ0

∣

∣

∣

∣

and ζ = max
i

∣

∣

∣

∣

1 − (αi/β)

1 + (αi/β) (p/µ0 − 1)

∣

∣

∣

∣

.

Note that 0 < ε < 1 if µ0 < p/2.

Proof. See Appendix.

From the bounds of the Laguerre polynomials given in Lemma 2.1 and
of the coefficients given in Lemmas 3.1 and 3.2 we will study the truncation
error in the proposed expansions.

With the usual notation we have:

EN (f, y, µ0, β) ≤
e−

y

2β

(2β)ν/2

yν/2−1

Γ (ν/2)

n
∏

i=1

∣

∣

∣

∣

1 +
αi

β

(

p

µ0
− 1

)
∣

∣

∣

∣

−νi/2

(3.9)

·

(

ν

2µ0

)ν/2

exp

{

µ0δ

2pζ

}

exp

{

−
1

4

n
∑

i=1

δi (αi/β) (p/µ0 − 1)

1 + (αi/β) (p/µ0 − 1)

}

· exp

(

νy

8βµ0

) ∞
∑

k=N+1

ζk

(

2k + ν

2k

)k (2k + ν

ν

)ν/2

.

This bound is well defined since the above series is absolutely convergent if
0 < ζ < 1, see Remark 3.1. As a consequence the expansion given for the
density function converges uniformly in any finite interval, for all µ and β
chosen in an adequate way.

In the particular case of µ0 = ν/2 = p in (3.9), we have:

EN (f, y, β) ≤
e−

y

4β

(2β)ν/2

yν/2−1

Γ (ν/2)
exp

{

δ

2ζ

}

(3.10)

·

∞
∑

k=N+1

ζk

(

2k + ν

2k

)k(2k + ν

ν

)ν/2

.
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Kotz et al. (1967) proposed another different bound given by

EN (f, y, β) ≤
e
− y

4β

(2β)ν/2

yν/2−1

Γ (ν/2)
exp

{

δ

2ζ

}

(1 − ρζ)−ν/2 (3.11)

· (1 − R)−ν/2
∞
∑

k=N+1

(ρR)−k ,

with ρ = ζ−2/3 and R = ζ1/3.

In Table 2, we show how the bound that we propose is better than the
one given by Kotz et al. (1967) for Q2 = 0.7χ2

1 (6) + 0.3χ2
1 (2) (see Imhof,

1961) with β = (0.3 + 0.7) /2 and N = 20.

Table 2: Bounds for the truncation error of the density of Q2

y = 1 y = 6 y = 15

(3.11) Kotz et al. 1200.579848 98.54959519 1.094787111

(3.10) 0.005900164346 0.0004843149820 0.5380253460 · 10−5

(3.9) (µ0 = p/3) 1.349683601 · 10−10 0.1644251231 · 10−9 0.1480107789 · 10−7

Similarly we obtain the following bound for the truncation error of the
distribution function. Using Lemmas 2.1 and 3.2:

EN (F, y, µ0, β) ≤
e
− y

2β yν/2

Γ (ν/2 + 1)

n
∏

i=1

(

1 +
αi

β

(

p

µ0
− 1

))−νi/2

(3.12)

·
p

|p − µ0|
exp

{

µ0δ

2pε

}

exp

{

−
1

4

n
∑

i=1

δi (αi/β) (p/µ0 − 1)

1 + (αi/β) (p/µ0 − 1)

}

·

(

p

2βµ0

)ν/2

exp

(

(ν + 2) y

8βµ0

) ∞
∑

k=N+1

bk,

where

bk = εk

(

2k + ν + 2

2k

)k (2k + ν + 2

ν + 2

)ν/2+1

. (3.13)

The above series is absolutely convergent for µ0 < p/2 (p = ν/2 + 1) since
0 < ε < 1, then in a similar way to the density function we have the uniform
convergence of the expansion given for the distribution function.
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Kotz et al. (1967) proposed the following bound:

EN ≤ 2 (1 − ξρ)−n/2 (1 − R)−1−n/2 eλ/2ξey/4β (3.14)

·g (n + 2, y/β)
[

(ρR)−(N+1) / (1 − 1/ρR)
]

,

with ξ = maxi |1 − αi/β| , λ =
∑n

i=1 δi and g (n + 2, y/β) is the central χ2

density function with n + 2 degrees of freedom, ρ = ξ−2/3 and R = ξ1/3.

We can observe that the expression (3.14) is different than (3.12) that we
propose. In Table 3 we compare these bounds for Q2 = 0.7χ2

1 (6)+0.3χ2
1 (2)

with β = (α1 + α2) /2 and N = 20. Again, we observe the improvement
produced by our bound.

Table 3: Bounds for the truncation error of the distribution of Q2

y = 1 y = 6 y = 10

(3.14) 4561.582748 2246.625094 506.7460696

(3.12) (µ0 = p/4) 0.2211225252 · 10−5 0.001969049548 0.1791774378

4 Comments and conclusions

We propose Laguerre series expansions for the density and distribution
functions of non-central χ2 variables and of positive linear combinations of
non-central chi-square variables.

Our expansions depend on some parameters that can be chosen arbi-
trarily. Parameter p has been chosen in such a way that the derivatives of
an auxiliar function (g) are easily calculated. The other parameter, µ0, is
chosen to obtain uniform convergence in the expansion, see Subsections 2.2
and 3.1.

The terms of our expansions are easily calculated using recurrent formu-
las, so that with no much computational effort we can obtain many terms
for these expansions. Also we provide precise bounds for the truncation
errors.

An IMSL subroutine is available for calculating the probability integral
of a chi-square distribution with both integer as well as fractional degrees
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of freedom. It is, therefore, easy to evaluate the Patnaik and Pearson ap-
proximations. The latter gives remarkably accurate approximations except
perhaps for small values of y (Table 4). However, small values of y are
not of much interest since non-central chi-square distribution arises in the
context of determining the power of a chi-square test. The test uses the
tail on the right hand side of a chi-square distribution. Consequently, the
value of y is greater than 1 in which case the Pearson approximation is
remarkably accurate.

In Table 4 we compare the probabilities of a noncentral chi-squared
variable, χ2

n(δ), obtained from the first j terms of our series and compare
them with the values based on two and three moments approximations
given in Patnaik (1949) and Pearson (1959), respectively. We note that
our approximations seem to be better than other approximations to the
non-central χ2 distribution.

Table 4: Approximations to the distribution function of χ2

n
(δ)

n δ y j (2.5) µ0 = p/4 Patnaik’s approx. Pearson’s approx. Exact

2 1 0.17 3 0.050028 0.061760 0.069248 0.05

2 4 0.65 3 0.050440 0.02777 0.0581 0.05

2 4 14.72 8 0.949881 0.948975 0.950862 0.95

4 4 1.77 3 0.050274 0.040042 0.053059 0.05

4 10 10 5 0.314904 0.3178 0.3118 0.3148

4 16 7.88 5 0.05135 0.039995 0.05027 0.05

7 4 3.66 5 0.049848 0.04542 0.050788 0.05

7 16 10.257 5 0.0509 0.0430 0.0503 0.05

An alternative method is the one given by Kotz et al. (1967). They
provide a Laguerre expansion and as Mathai and Provost (1992) state “it
is computationally the most convenient and effective through the range
of interesting value y”, for this reason we mainly compare our results on
truncation errors with those given by Kotz et al. (1967), see Tables 2 and 3.

5 Appendix

In the next we describe a method to invert Laplace transforms that is based
on properties of unbiased estimation in the Gamma distribution.
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Consider a random variable X distributed as a gamma with convolution
parameter, p > 0, known, and shape parameter, λ > 0, unknown. As it is
known this distribution belongs to the natural exponential family (NEF)
with quadratic variance function. We parametrize the family in terms of
the mean, µ = p/λ, as in Morris (1982).

In this situation, we will say that a function h(µ) is MVU-estimable
if there exists a function T such that, Eµ(T 2(X)) < ∞, ∀µ > 0, and
Eµ(T (X)) = h(µ), ∀µ > 0. So, T (X) is the minimum variance unbiased
estimator (MVUE) of h(µ).

From the results in Morris (1983), it can be showed that T admits the
following expansion:

T (y) =

∞
∑

j=0

(−µ)jg(j)(µ)

(p)j
L

(p−1)
j

(

py

µ

)

, ∀µ > 0, (a.e.) (5.1)

with g(µ) = h(p/µ), g(j)(µ) =
dj

dµj
g(µ) and L

(α)
j (x) =

∑j
m=0

(

j+α
j−m

) (−x)m

m! ,

α > 0 is the j-th generalized Laguerre polynomial.

On the other hand, from the unbiasedness condition Eµ(T (X)) = h(µ),
for all µ > 0, we obtain an alternative expression for the unbiased estimator
based on the inverse Laplace transform (denoted by L−1):

T (y) =
Γ(p)

yp−1
L−1

(

(

p

µ

)−p

h

(

p

µ

)

)

(y), y > 0. (5.2)

And from the uniqueness (a.s) of the MVU estimators, equating (5.1) and
(5.2), we obtain the following expression for the inverse Laplace transform
of a function G(λ), such that for certain p > 0, h(λ) = λpG(λ) is MVU-
estimable function:

L−1 (G (λ)) (y) =
yp−1

Γ (p)

∞
∑

j=0

(−µ0)
j g(j) (µ0)

(p)j
L

(p−1)
j

(

py

µ0

)

, (a.e.) (5.3)

for any µ0 > 0, with g(µ) = h (p/µ).

Note that the choice of µ0 is irrelevant, so adequate choices of this
parameter may yield formulas computationally efficient.
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The generalized Laguerre polynomials can be obtained recurrently by
the relations:

jL
(α)
j (x) = (2j + α − 1 − x)L

(α)
j−1 (x) − (j + α − 1)L

(α)
j−2(x), j ≥ 1,

L
(α)
−1 (x) = 0, L

(α)
0 (x) = 1.

Proof of the Lemmas 2.2, 3.1 and 3.2.

The proofs of these lemmas are similar. So we only give the proof of
Lemma 2.2.

Proof. By definition ck = (−µ0)
k g(k)(µ0)/k!, and g (·) given in (2.6) is an

analytic function, so for each µ0 > 0 we have:

g ((1 − θ)µ0) =
2p

p − µ0

(

1 + θ

(

µ0

p − µ0

))−1

(5.4)

· exp

(

−δ

(

p − (1 − θ)µ0

2p

))

=
∑

k≥0

ckθ
k, |θ| <

1

ξ
,

with ξ =

∣

∣

∣

∣

µ0

p − µ0

∣

∣

∣

∣

and (p = n/2 + 1).

Applying Cauchy’s inequality to (5.4), we bound the coefficients ck:

|ck| ≤ ρ−k max
|θ|=ρ

|g ((1 − θ)µ0)| , ∀ρ, 0 < ρ <
1

ξ
. (5.5)

Considering (5.4),

max
|θ|=ρ

|g ((1 − θ)µ0)| ≤
2p

p − µ0
(1 − ρξ)−1 (5.6)

· exp

(

−δ

(

p − (1 + 1/ξ) µ0

2p

))

.

From (5.5) and (5.6):

|ck| ≤
2p

|p − µ0|
exp

(

−δ

(

p − (1 + 1/ξ) µ0

2p

))

ρ−k (1 − ρξ)−1 .
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We find a better bound if we consider:

inf
0<ρ<1/ξ

ρ−k (1 − ρξ)−1 =

(

k

ξ(1 + k)

)−k ( 1

1 + k

)−1

, (5.7)

so we have (2.9).
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