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. INTRODUCTION

The theory of algebraic curves is a fundamental ingredient in the analysis of integrable
onlinear differential equations as it is shown, for example, by its relevance in the description of
he finite-gap solutions or the formulation of the Whitham averaging method.1–8 A particularly
nteresting problem is characterizing and classifying integrable deformations of algebraic curves.
ndeed, as it is shown in a series of recent papers,9–12 these deformations lie at the crossroads of
ntricate connections between the theory of random matrices and several models of Laplacian
rowth processes. It turns out that the integrable models underlying these applications are mem-
ers of the Whitham hierarchies of dispersionless integrable models introduced by Krichever in
efs. 6 and 7. Moreover, the corresponding solutions are usually characterized in terms of solu-

ions of hydrodynamic systems.
Natural deformations of algebraic curves arise in the dynamics of the algebraic orbits7 of the

hitham hierarchies. For example, algebraic orbits of the Zabolotskaya-Khokhlov dispersionless
P �dKP� hierarchy

�k

�tn
= �Qn,k�, n � 1, �1�

here

k = p + �
n=1

�
an�x,t�

pn , Qn ª �kn��0, t ª �t1,t2, . . . � �2�

re deformations of algebraic curves

f�k� = E�p,x,t� , �3�

here E=E�p ,x , t� is a meromorphic function of p, such that �3� determines a reduction of the
KP hierarchy. In the Gelfand-Dikii case the function E depends on the variables �x , t� through a

nite number of functions which evolve according to a system of hydrodynamic type. Neverthe-
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ess, other deformations of algebraic curves have been formulated which do not correspond to
lgebraic orbits of the standard dispersionless hierarchies. For example, the integrable hierarchy
ssociated to the energy-dependent Schrödinger problem13 admits a dispersionless limit which
eads to a family of deformations of the curves14,15

p2 = k2N+1 + �
n=1

N

unk2n−1. �4�

hese curves do not constitute any reduction of the dKP hierarchy and, as it is shown in Ref. 14,
heir deformations must be formulated in terms of the singular sectors of a dKdV Grassmannian
tructure.

A different approach for determining integrable deformations of general algebraic curves C
efined by monic polynomial equations,

C:F�p,k� ª pN − �
n=1

N

un�k�pN−n = 0, un � C�k� , �5�

as proposed in Refs. 14 and 15. It applies for finding deformations C�x , t� of C with the defor-
ation parameters �x , t�, such that the multiple-valued function p=p�k� determined by �5� obeys

n equation of the form of conservation laws

�tp = �xQ , �6�

here the flux Q is given by an element from C�k , p� /C,

Q = �
r=1

N

ar�k,x,t�pr−1, ar � C�k� .

tarting with �6�, changing to the dynamical variables un and using Lenard-type relations �see Ref.
5� one gets a scheme for finding consistent deformations of �5�. One should also note that �6�
rovides an infinite number of conservation laws, when one expands p and Q in Laurent series in
with k=zr for some r. In this sense, we say that Eq. �6� is integrable.

Our strategy can be applied to the generic case where the coefficients �potentials� un of �5� are
eneral polynomials in k,

un�k� = �
i=0

dn

un,ik
i,

ith all the coefficients un,i being considered as independent dynamical variables, i.e., un,i

un,i�x , t�. However, with appropriate modifications, the scheme can be also applied to cases in
hich constraints on the potentials are imposed. A complete description of these deformations for

he generic case of hyperelliptic curves �N=2� was given in Ref. 15.
The present paper is devoted to the deformations of cubic curves �N=3�,

p3 − wp2 − vp − u = 0, u,v,w � C�k� , �7�

nd it considers not only the generic case but also the important constrained case w�0. Although
ome of the curves may be conformally equivalent �with, for example, the dispersionless Miura
ransformation�, we will not discuss the classification problem under this equivalence in this paper
we will discuss the details of the problem elsewhere�. In Sec. II a general approach to construct
ntegrable deformations of algebraic curves is reported briefly. Section III is devoted to the analy-
is of the cubic case �7�. We emphasize the role of Lagrange resolvents, describe the Hamiltonian
tructure of integrable deformations and present several illustrative examples including Whitham-

ype deformations.
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I. SCHEMES OF DEFORMATIONS OF ALGEBRAIC CURVES

In order to describe deformations of the curve C defined by �5�, one may use the potentials un,
s well as the N branches pi= pi�k� �i=1, . . . ,N� of the multiple-valued function p=p�k� satisfying

F�p,k� = 	
i=1

N

�p − pi�k�� . �8�

The potentials can be expressed as elementary symmetric polynomials sn �Refs. 16–18� of the
ranches pi,

un = �− 1�n−1sn�p1,p2, . . . � = �− 1�n−1 �
1�i1�¯�in�N

pi1
¯ pin

. �9�

owever, notice that, according to the famous Abel theorem,16 for N�4 the branches pi of the
eneric equation �5� cannot be written in terms of the potentials un by means of rational operations
nd radicals.

There is an important result concerning the branches pi which is useful in our analysis. Let
����� denote the field of Laurent series in � with at most a finite number of terms with positive
owers,

�
n=−�

N

cn�n, N � Z .

hen we have the following.19,20

Theorem 1 (Newton theorem): There exists a positive integer l such that the N branches

pi�z� ª 
�pi�k��
k=zl, �10�

re elements of C��z��. Furthermore, if F�p ,k� is irreducible as a polynomial over the field C��k��
hen l0=N is the least permissible l and the branches pi�z� can be labelled so that

pi�z� = pN��iz�, � ª exp
2�i

N
.

Notation convention: Henceforth, given an algebraic curve C we will denote by z the variable
ssociated with the least positive integer l0 for which the substitution k=zl0 implies pi

C��z�� , ∀ i.The number l0 will be referred to as the Newton exponent of the curve.
For the generic case the method proposed in Ref. 15 may be summarized as follows: Given an

lgebraic curve �5�, we define an evolution equation for uª �u1 , . . . ,uN� in the form

�tu = J0�T�uR�+, R�z,p� = �
i

f i�z�pi, �11�

here �·�+ indicates the part of non-negative powers of a Laurent series in k and

f i � C��z��, �uR ª � �R

�u1
. . .

�R

�uN
�T

,

�12�
T T
J0 ª T V �xV ,
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T ª
1 − u1 ¯ − uN−1

0 1 ¯ − uN−2

¯

0 ¯ 1
�, V ª

1 p1 ¯ p1
N−1

¯

¯

1 pN ¯ pN
N−1
� . �13�

et dnm and dn be the degrees of the matrix elements �J0�nm and the potentials un as polynomials
n k, respectively. Then �11� defines a deformation of the curve, if dnm and dn satisfy the consis-
ency conditions

max�dnm,m = 1,2,3� � dn + 1, n = 1,2,3, �14�

nd the components of �uR are in C��k�� with k=zl0.
Equivalently, in terms of branches

p ª �p1, . . . ,pN�T,

he system �11� can be written as

�tp = �x�Vr+� , �15�

here

r ª T�uR�z,p� = V−1f�z� , �16�

ith f�z�ª �f1�z� , . . . , fN�z��T. Notice that r is a solution of the Lenard relation

J0r = 0. �17�

Although there is not a general procedure for analyzing constrained cases, one may try a
imilar strategy. First, we start from the equation for branches �6� and then, by expressing the
otentials in terms of the independent branches only, we look for a formulation of the flows as

�tu = J0a, a ª �a1, . . . ,aN�T, �18�

or a certain operator J0. Finally, we use solutions r of Lenard relations �17� and set a=r+.
Another scheme for defining integrable deformations of algebraic curves of genus zero �i.e.,

ational curve� is implicit in the theory of integrable systems of dispersionless type developed in
efs. 7 and 8 which we refer to them as the Whitham deformations. It is concerned with algebraic
urves characterized by equations of the form

k = pN + vN−2pN−2 + ¯ + v0 + �
r=1

M

�
i=1

nr vr,i

�p − wr�i , �19�

here vn, vr,i, wr are k-independent coefficients. These curves arise in the theory of algebraic
rbits of the genus-zero Whitham hierarchy,7,8 where the function k represents the Landau-
inzburg potential of the associated topological field theory. We may rewrite the equation of the

urve �19� in the polynomial form �5� with potentials un of degrees dn�1 and satisfying a certain
ystem of constraints.

To describe the deformations of �19� determined by Whitham flows we introduce local coor-
inates �z0 ,z1 , . . . ,zM� of the extended p-plane at the punctures �w0ª� ,w1 , . . . ,wM� such that

k = z0
N = z1

n1 = ¯ = znM

nM . �20�

t is clear that there are N branches of p which have expansions in powers of k1/N and that, for each
uncture wr, �r=1, . . . ,M�, there are nr branches of p having expansions in powers of k1/nr.

herefore, the Newton exponent l0 is given by the least common multiple of the set of integers
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N ,n1 , . . . ,nM�. Furthermore, it is clear that only in the absence of finite punctures �M =0� the
urve �19� is irreducible over C��k��.

At each puncture in �� ,w1 , . . . ,wM�, there is an infinite family of Whitham deformations of
19�. They can be expressed by equations of the form �see Refs. 7 and 8�

�tp = �xQ	,n, �21�

here

Q	,n = �z	
n���p�, 	 = 0,1, . . . ,M, n � 1,

Qr,0 = ln�p − wr�, r = 1, . . . ,M .

ere �z	
n�� stands for the singular part of z	

n�p� at the puncture w	, with �zr
n�����=0 for 1�r

M. There exist also commuting flows for the negative n in �21� with logarithmic terms which
orrespond to the descendant flows of Qr,0 �see Ref. 8 for the details�.

In the absence of finite punctures �M =0�, Whitham deformations become the dispersionless
elfand-Dikii flows. They can be described by our scheme15 as the reductions u1�0, uN=k−v0 of

he generic case corresponding to dn=
Nn. However, for M �1 it can be seen that, in general,
hitham deformations of �19� are not reductions of the flows �11� provided by our method. Some

xamples of this situation for cubic curves are shown below.

II. DEFORMATIONS OF CUBIC CURVES

For our subsequent analysis we introduce a basic tool of the theory of third order polynomial
quations,16 the so-called Lagrange resolvents, defined by

Li ª �
j=1

3

��i� jpj, i = 1,2,3, � ª e2�i/3, �22�

r, equivalently,

L1 ª �p1 + �2p2 + p3,

L2 ª �2p1 + �p2 + p3,

L3 ª p1 + p2 + p3.

hey can be expressed in terms of the potentials u= �w ,v ,u�T by using the identities

L1 · L2 = 3v + w2, L3 = w ,

L1
3 + L2

3 = 27u + 9vw + 2w3,

hich lead to

2L1
3 = 27u + 9vw + 2w3 + ��27u + 9vw + 2w3�2 − 4�3v + w2�3,

2L2
3 = 27u + 9vw + 2w3 − ��27u + 9vw + 2w3�2 − 4�3v + w2�3.

he fundamental advantage of Lagrange resolvents is that they provide explicit expressions of the

ranches pi in terms of the potentials according to Cardano formulas
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3pi = �
j=1

3

��−i� jL j, i = 1,2,3, �23�

r, equivalently,

3p1 = �2L1 + �L2 + L3,

3p2 = �L1 + �2L2 + L3,

3p3 = L1 + L2 + L3.

s we will prove below, the Lagrange resolvents are essential to determine consistent deforma-
ions of cubic equations.

. Generic case

As it was found in, Ref. 15 for N=3 the operator J0 reads

J0 =  3�x w�x + wx �2v + w2��x + �2v + w2�x

− 2w�x 2v�x + vx �3u + vw��x + 2ux + 2vwx

− v�x 3u�x + ux uw�x + 2uwx
� . �24�

hus if d1, d2, and d3 are the degrees in k of the potential functions w, v, and u, respectively, the
onsistency conditions �14� are

d1 � 1, d2 � d1 + 1,

d3 � d2 + 1, d2 � d3 + 1,

hich lead to the following 12 nontrivial choices for �d1 ,d2 ,d3�:

�0,0,1�, �0,1,0�, �0,1,1�, �0,1,2� ,

�1,0,0�, �1,0,1�, �1,1,0�, �1,1,1� , �25�

�1,1,2�, �1,2,1�, �1,2,2�, �1,2,3� .

By using �23� and �24� it is straightforward to determine the Newton exponent l0 for each of
he cases �25�. Thus one finds three categories

l0 3 2 1

�0,0,1�, �0,1,2� �0,1,0�, �0,1,1,� �1,0,1�, �1,1,0�
�1,0,0�, �1,1,2� �1,1,1�, �1,2,1�

�1,2,2�, �1,2,3�

Only the cases with l0=3 correspond to irreducible curves over the field C��k��. We also note
ere that our deformations for the trigonal curves �5� in the generic case allow one to have only the
urves with genus less than or equal to 1 �the details will be discussed elsewhere�.

Once the Newton exponent l0 is known, in order to derive the associated hierarchy of inte-
rable deformations according to our scheme, two steps are still required:

1� To determine the functions R�z ,p�=�i f i�z�pi such that the components of �uR are in C��k��
with k=zl0.
2� To find the explicit form of the gradients �uR in terms of the potentials.
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Both problems admit a convenient treatment in terms of Lagrange resolvents. Thus by intro-
ucing the following element �0 of the Galois group of the curve:

�0�pi��z� ª pi��0z�, �0 ª e2�i/l0, �26�

e see that our first problem can be fixed by determining functions R invariants under �0, i.e.,
��0z ,�0p�=R�z ,p�. In this way, we have the following forms of R.

For the case l0=3, the element �0 is given by the permutation

�0 = �p1 p2 p3

p2 p3 p1
� , �27�

r, in terms of Lagrange resolvents,

�0 = � L1 L2 L3

�2L1 �L2 L3
� . �28�

hus we get the invariant functions

R = zf1�z3�L1 + z2f2�z3�L2 + f3�z3�L3, �29�

ith f i�z3� being arbitrary functions in C��z3��.
For the case l0=2, �0

2 is the identity permutation, so that under the action of �0 two branches
re interchanged while the other remains invariant. If we label the branches in such a way that

�0 = �p1 p2 p3

p2 p1 p3
� , �30�

hen

�0 = �L1 L2 L3

L2 L1 L3
� , �31�

nd we obtain the invariant functions

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2� + f3�z2�L3, �32�

here f i�z2� are arbitrary functions in C��z2��.
For the case l0=1, we have z=k and �0 is the identity, so that any function R�k ,p� is invariant

nder �0.
Now the problem of finding the gradients of R reduces to determine the gradients of the

agrange resolvents. To this end we differentiate �23� and obtain

L2�uL1 + L1�uL2 = �2w,3,0�T,

L1
2�uL1 + L2

2�uL2 = �2w2 + 3v,3w,9�T,

o that

�L1
3 − L2

3��uL1 = ��2w2 + 3v�L1 − 2wL2
2,3�wL1 − L2

2�,9L1�T,

�L2
3 − L1

3��uL2 = ��2w2 + 3v�L2 − 2wL1
2,3�wL2 − L1

2�,9L2�T.

ence the gradients of the generic density R for �29� and �32� are given as follows.

For l0=3, we have
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�uR =
zf1�z3�
L1

3 − L2
3�2w2 + 3v�L1 − 2wL2

2

3�wL1 − L2
2�

9L1
� −

z2f2�z3�
L1

3 − L2
3�2w2 + 3v�L2 − 2wL1

2

3�wL2 − L1
2�

9L2
� + f3�z3�1

0

0
� .

For l0=2, we get

�uR =
f1�z2�

L1
3 − L2

3�2w2 + 3v��L1 − L2� + 2w�L1
2 − L2

2�

3�wL1 − L2
2� − 3�wL2 − L1

2�

9�L1 − L2�
�

+
zf2�z2�
L1

3 − L2
3�2w2 + 3v��L1 + L2� − 2w�L1

2 + L2
2�

3�wL1 − L2
2� + 3�wL2 − L1

2�

9�L1 + L2�
� + f3�z2�1

0

0
� .

rom these expressions and �28� and �31� it follows that the corresponding components of �uR are
n C��k��.

Example 1: The case l0=3 with �d1 ,d2 ,d3�= �0,0 ,1�. Taking into account �24� and �23� it is
lear that there are two trivial equations corresponding to w0 and u1. Then, we take for the
otentials

w = 1, v = v0�x,t�, u = k + u0�x,t� .

hus, by using �29� with

f1 � f3 � 0, f2�z3� =
27�1 − �3i�

4
z3,

e obtain

v0t = 5
3 �2 + 27u0 + 9v0�u0x + 5

18�7 + 54u0 + 36v0 + 27v0
2�v0x,

u0t = 5
18�− 1 − 54u0 + 27v0

2�u0x + 5
9v0�2 + 27u0 + 9v0�v0x.

It can be checked that this system corresponds to the one obtained by setting M =0, N=3 in
19�, and 	=0, n=5 in �21�.

Example 2: The case l0=2 with �d1 ,d2 ,d3�= �0,1 ,0�, �l0=2�. From �24� and �23� we see that

1t=0. We then take

w = w0�x,t�, v = k + v0�x,t�, u = u0�x,t� ,

nd

f1�z2� = z4, f2 � f3 � 0.

hus it follows

w0t = 4�w0u0x + v0v0x + u0w0x� ,

v0t = − 2�w0
2u0x − 2u0v0x + u0w0w0x� + 2v0�2u0x − w0v0x� ,

u0t = − 2�v0w0u0x + u0�− 2u0x + w0v0x + v0w0x�� .

t turns out that this system can also be found among the Whitham deformations, by setting M

1, N=2 in �19�, and 	=0, n=4 in �21�.
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Example 3: The case l0=2 with �d1 ,d2 ,d3�= �1,0 ,0�. From �23� and �24� it is easy to see that
u0 /w1�t=0. If we choose

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = v0�x,t� ,

u�k,x,t� = w1�x,t� ,

nd set

f1�z2� = z4, f2 � f3 � 0

n �32�, then the following system arises:

w1t = 2w1
−2�w1w0x − w0w1x� ,

w0t = 2w1
−3�w1�v0x + w0w0x� − �2v0 + w0

2�w1x� ,

v0t = w1
−3�− 4w1w1x + 2v0�w1w0x − w0w1x�� .

his is one of the flows in the dispersionless Dym hierarchy corresponding to the curve, w1k= p
w0−v0p−1−w1p−2. Also note that the linear flow, i.e., w1t=cw1x, etc., with c=constant, can be
btained by the choice f2�z−2 with f1= f3=0.

Example 4: The case l0=1 with �d1 ,d2 ,d3�= �1,0 ,1�. From �23� and �24� one finds that
u1 /w1�t=0. By setting

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = v0�x,t� ,

u�k,x,t� = w1�x,t�k + u0�x,t� ,

nd

R =
2�1 + �3i�

�3
kL1,

e obtain

w1t = u0x + w0x,

w0t = w1
−2�w1�v0x + u0w0x� − �3 + v0�w1x − w0

2w1x + w0�w1�u0x + 2w0x� − u0w1x�� ,

v0t = w1
−2�w1�2�2 + v0�u0x + u0v0x + w0v0x + 2v0w0x� − 2�u0�3 + v0� − �1 − v0�w0�w1x� ,

u0t = w1
−2�− w0w1u0x − 3u0

2w1x + v0�w1v0x + �1 − v0�w1x� + u0�w1�4u0x + w0x� + w0w1x�� .

e also note that the linear flow is obtained by choosing R�L1, and the higher flows in the
ierarchy can be obtained by R�knL1.

Example 5: The case l0=1 with �d1 ,d2 ,d3�= �1,1 ,0�. From �23� and �24� we deduce that
v1 /w1�t=0. Now we take

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = w1�x,t�k + v0�x,t� ,

u�k,x,t� = u0�x,t�
nd set
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R =
�3 + i

2�3
kL2.

hen the following system is obtained:

w1t = 2u0x − v0x,

w0t = w1
−2�w1��3 + 2w0�u0x − �2 + w0�v0x + �2u0 − v0�w0x� + �v0�2 + w0� − u0�3 + 2w0��w1x� ,

v0t = w1
−2�w1��− 2 + 4v0 − 2w0�u0x + �2u0 − 3v0 + w0�v0x� + �v0�2v0 − w0� + u0�3 − 4v0 + 2w0��w1x� ,

u0t = w1
−2��− 2v0 + w0�w1u0x − 6u0

2w1x + u0�w1�8u0x − 3v0x + w0x� + 2�2v0 − w0�w1x�� .

. Hamiltonian structures

The general structure of integrable deformations �11� does not exhibit a direct Hamiltonian
orm. However, the analysis of particular cases reveals the presence of certain Hamiltonian struc-
ures. We look for a Hamiltonian operator J such that for certain appropriate densities R it verifies

J0�T�uR�+ = J��uR�+, �33�

here

T ª 1 − w − v

0 1 − w

0 0 1
� .

hus, if �33� holds then the flows �11� can be written in the pre-Hamiltonian form

�tu = J��uR�+. �34�

To achieve our aim we require a k-independent operator T0 verifying

T�uR = T0�uR , �35�

o that JªJ0 ·T0 is a Hamiltonian operator.
Let us consider first the case l0=3. It involves two classes of cubic curves.
For the case with �d1 ,d2 ,d3�= �0,0 ,1�, the potentials are of the form

w = w0�x�, v�x� = v0�x�, u = u0�x� + ku1�x� .

he matrix T is k independent so that by setting J=J0 ·T we find the Hamiltonian operator

J =  3�x − 2�x · w − �x · v

− 2w�x 2w�x · w + 2v�x + vx �3u + vw��x + 2ux + wvx

− v�x �3u + vw��x + vwx + ux v�x · v − 2uw�x − �uw�x
� . �36�

t represents the dispersionless limit of the Hamiltonian structure of the Boussinesq hierarchy.
For the case with �0,1,2� the potentials now are

w = w0�x�, v�x� = v0�x� + kv1�x� ,

u = u0�x� + ku1�x� + k2u2�x� .
rom �33� one deduces
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T�uLi = T0�uLi, i = 1,2,

T�uL3 = L3, �37�

here T0 is the k-independent matrix

T0 = − 2 w 0

0 1 − w

0 0 1
� . �38�

oreover JªJ0 ·T0 takes the Hamiltonian form

J = − 6�x 4�x · w 2�x · v

4w�x − 2w�x · w + 2v�x + vx �3u − vw��x + 2ux − wvx

2v�x �3u − vw��x − vwx + ux − 2uw�x − �uw�x
� . �39�

hus by setting

R = zf1�z3�L1 + z2f2�z3�L2,

quation �11� reduces to the form �34�.
For the remaining cases of l0=2 and l0=1, the situation is as follows:

1� For the sets of degrees �0,1,0� and �0,1,1� for l0=2, the identities �37� with the same operator
�38� hold, so that by setting

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2� ,

Eq. �11� reduces to the form �34� with the Hamiltonian operator �39�.
2� For the sets of degrees �two cases of l0=2 and all the cases of l0=1�,

�1,0,0�, �1,0,1�, �1,1,0�, �1,1,1� ,

�1,1,2�, �1,2,1�, �1,2,2�, �1,2,3� ,

there is no k-independent operator T0 satisfying �36� for �uLi, �i=1,2�.

. Deformations of cubic curves with w=0

Deformations of cubic curves of the form

p3 − vp − u = 0, �40�

annot be obtained simply by setting w=0 in the above analysis. Indeed, as it is clear from the
xpression �24� for J0, the constraint w=0 does not constitute a reduction of the flows �11�.
herefore, we must apply our deformation scheme to �40� directly.

In terms of the branches pi the condition w=0 reads

p1 + p2 + p3 = 0,

hich is preserved by deformations

�tpi = �x�a1 + a2pi + a3pi
2� �41�
atisfying
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3a1 = − �p1
2 + p2

2 + p3
2�a3. �42�

y expressing the potentials as functions of the branches p1 and p2,

v = p1
2 + p2

2 + p1p2, u = − �p1
2p2 + p1p2

2� , �43�

nd using �41� and �42�, we obtain

�tu = J0a, u ª �v u�T, a ª �a1 a2�T, �44�

here

J0 = � 2p1 + p2 2p2 + p1

− 2p1p2 − p2
2 − 2p1p2 − p1

2 ��x�p1
1
3 p1

2 − 2
3 �p2

2 + p1p2�

p2
1
3 p2

2 − 2
3 �p1

2 + p1p2�
� = �2v�x + vx 3u�x + 2ux

3u�x + ux
1
3 �2v2�x + 2vvx�

� .

�45�

According to our strategy for finding consistent deformations, we use Lenard-type relations

J0R = 0, R ª �r1 r2�T, ri � C��k�� ,

o generate systems of the form

ut = J0a, a ª R+. �46�

ere �·�+ and �·�− indicate the parts of non-negative and negative powers in k, respectively. Now
rom the identity

J0a = J0R+ = − J0R−,

t is clear that a sufficient condition for the consistency of �46� is that the degrees d2 and d3 of v
nd u as polynomials of k satisfy

d3 � d2 + 1, 2d2 � d3 + 1.

ence only four nontrivial cases arise for �d2 ,d3�

�0,1�, �1,1�, �1,2�, �2,3� . �47�

e notice that they represent the dispersionless versions of the standard Boussinesq hierarchy and
ll three hidden hierarchies found by Antonowicz, Fordy, and Liu for the third-order spectral
roblem.21

Solutions of the Lenard relation can be generated by noticing that the operator J0 admits the
actorization

J0 = UT ·
1

3
� 2 − 1

− 1 2
��x · U , �48�

here

U ª �2p1 + p2 − 2p1p2 − p2
2

2p2 + p1 − 2p1p2 − p1
2 � =

�v
�p1

�u

�p1

�v
�p2

�u

�p2

� . �49�

his shows two things,

i� J0 is a Hamiltonian operator.

ii� The gradients �upi of the branches p1 and p2 solve the Lenard relations.
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Thus our candidates to deformations are the equations of the form

�tu = J0��uR�+, R�z,p� = f1�z�p1 + f2�z�p2. �50�

At this point one applies the same strategy as that used for the curves �7� Sec. III A. We first
etermine the Newton exponents of the four cases �47� which turn out to be given by

l0 3 2 1

�0,1� �1,1� �2,3�
�1,2�

hen, with the help of Lagrange resolvents, we characterize the functions R�z ,p� verifying �uR
C��k�� with k=zl0. In summary, one finds the following.

For the case l0=3,

R = zf1�z3�L1 + z2f2�z3�L2, k = z3. �51�

For the case l0=2,

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2�, k = z2. �52�

For the case l0=1, we have z=k, so that any function R�k ,p�= f1�k�L1+ f2�k�L2 is appropriate.
Example 1: The case l0=3 with �d2 ,d3�= �1,2�. From �44� and �45� we have that u2t=0. Then

f one takes

u�k,x,t� = k2 + u1�x,t�k + u0�x,t�, v�k,x,t� = v1�x,t�k + v0�x,t� ,

nd sets

f1�z3� = 1
2 �1 + i�3�z3, f2 � 0,

n �51�, one gets

v1t = − 2u1x + 5
9v1

2v1x,

v0t = 1
9 �− 18u0x + v1

2v0x + 4v0v1v1x� ,

u1t = 1
9 �v1

2u1x − 6v0v1x − 6v1v0x + 6v1u1v1x� ,

u0t = 1
9 �v1

2u0x − 6v0v0x + 6u0v1v1x� ,

.e., the dispersionless version of the coupled Boussinesq system �3.20b� in Ref. 21.
Example 2: The case l0=2 with �d2 ,d3�= �1,1�. Now, one can see that v1t=0. By setting

u�k,x,t� = u1�x,t�k + u0�x,t�, v�k,x,t� = − k + v0�x,t� ,

nd

f1�z2� = − z2, f2 � 0,

n �52�, we find the system,

v0t = − 2u0x − 2v0u1x − u1v0x,

u1t = − 4u1u1x + 2v0x,
3
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u0t = − u1u0x − 3u0u1x − 2
3v0v0x.

his is the dispersionless version of the system �4.13� in Ref. 21.

. Whitham deformations of cubic curves

There are four types of cubic curves of the form �19� given by the following equations:

M 0 1 2

k= p3+v1p+v0 k = p2 + v0 +
v1

p − w1
k = p +

v1,1

p − w1
+

v2,1

p − w2

k = p +
v1

p − w1
+

v2

�p − w1�2

ote here that the Newton exponent l0 is given by l0=3−M. Also in Ref. 18, two cases in
M =1 are shown to be conformally equivalent, i.e., p=�↔p=w1.

For M =0 the Whitham deformations are reductions of our flows with w�0. But, in general,
ther Whitham deformations are not of that form. To illustrate this point let us take the class with

M =1 and N=2. The corresponding Newton exponent is l0=2 and there the branches of p have the
ollowing asymptotic behavior as z→�:

p1�z� = z + O�1

z
� ,

p2�z� = p1�− z� = − z + O�1

z
� ,

p3�z� = w1 + O�1

z
� .

et us consider now the Whitham flows �21� associated with the puncture at p=�,

Q0,n = �zn���p� .

n terms of the potentials u= �w ,v ,u�T they read

�tu = J0a , �53�

here

a = V−1�zn���p1�
�zn���p2�
�zn���p3�

��
+

.

ne easily sees that all matrix elements of V−1 are of order O�1/z� with the exception of

�V−1�13 = 1 + O�1

z
� .

n the other hand, we have

�zn���p1� = zn + O�1� ,

z
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�zn���p2� = �− z�n + O�1

z
� ,

�zn���p3� = �zn���w1� + O�1

z
� .

herefore one gets

a = znV−1 1

�− 1�n

0
��

+

+ �zn���w1�e3,

here e3= �0,0 ,1�T, so that Eq. �53� becomes

�tu = J0�T�u�zn�p1 + �− 1�np2���+ + J0��zn���w1�e3� . �54�

imilar expressions can be obtained for the deformations generated by the Whitham flows �21� for
=1 and n�1.

CKNOWLEDGMENTS

One of the authors �L.M.A.� wishes to thank the members of the Physics Department of Lecce
niversity for their warm hospitality. This work is partially supported by DGCYT Project BFM
002-01607 and by the grant COFIN 2004 “Sintes:” One of the authors �Y.K.� is partially sup-
orted by NSF Grant No. DMS 0404931

1 S. P. Novikov, S. V. Manakov, L. P. Pitaevski, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method
�Plenum, New York, 1984�.

2 E. D. Belokolos, A. I. Bobenko, V. Z. Enolski, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear
Integrable Equations �Springer-Verlag, Berlin, 1994�.

3 B. Dubrovin and S. Novikov, Russ. Math. Surveys 44, 35 �1989�.
4 H. Flaschka, M. G. Forest, and D. W. Mclauglin, Commun. Pure Appl. Math. 33, 739 �1980�.
5 B. A. Dubrovin, Commun. Math. Phys. 145, 415 �1992�.
6 I. M. Krichever, Funct. Anal. Appl. 22, 206 �1988�.
7 I. M. Krichever, Commun. Pure Appl. Math. 47, 437 �1994�.
8 A. Aoyama and Y. Kodama, Commun. Math. Phys. 182, 185 �1996�.
9 I. Krichever, M. Mineev-Weinstein, P. Wiegmann, and A. Zabrodin, Physica D 198, 1 �2004�.
0 A. Zabrodin, Theor. Math. Phys. 142, 166 �2005�.
1 R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, and P. Wiegmann, Nucl. Phys. B 704, 407 �2005�.
2 R. Teodorescu, A. Zabrodin, and P. Wiegmann, Phys. Rev. Lett. 95, 044502 �2005�.
3 M. Manas, L. Martinez Alonso, and E. Medina, J. Phys. A 40, 4815 �1997�.
4 Y. Kodama and B. G. Konopelchenko, J. Phys. A 35, L489 �2002�; in Deformations of Plane Algebraic Curves and
Integrable Systems of Hydrodynamic type in Nonlinear Physics: Theory and Experiment II, edited by M. J. Ablowitz
et al. �World Scientific, Singapore, 2003�.

5 B. G. Konopelchenko and L. Martínez Alonso, J. Phys. A 37, 7859 �2004�.
6 B. L. van der Waerden, Algebra, Vol. I �Springer-Verlag, Berlin, 1991�.
7 L. Redei, Introduction to Algebra �Pergamon, Oxford, 1967�, Vol. I.
8 I. G. Macdonald, Symmetric Functions and Hall Polynomials �Clarendon, Oxford, 1979�.
9 R. Y. Walker, Algebraic Curves �Springer-Verlag, Berlin, 1978�.
0 S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs Vol. 35
�American Mathematical Society, Providence, RI, 1990�.

1
 M. Antonowicz, A. P. Fordy, and Q. P. Liu, Nonlinearity 4, 669 �1991�.

 Aug 2006 to 150.214.231.66. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


