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That the endocrine system regulates the immune response in mammals has been demonstrated and is
widely accepted, while in fish this interaction is still under investigation. The expression of neuropeptides/
hormones and cytokines, as well as of their receptors, has been demonstrated in both neuroendocrine and
immune system cells in mammals [1—3]. The role of cortisol in the immune system is the best characterized
because of its implication in the stress response. It is known, for example, that this hormone decreases the
phagocytic response, mitogenesis, antibody-producing cells, circulating immunoglobulin M (IgM) titres,
Ilymphocyte numbers and resistance to pathogens [4—10]. On the other hand, PRL and GH are able to
enhance leucocyte mitogenesis, phagocytosis, respiratory burst, cell-mediated cytotoxicity and antibody
production in several teleost fish [11—16]. These results clearly illustrate the relation between endocrine and
immune systems in fish although the mechanisms involved are still unclear.

While the influence of such hormones on fish cellular immune responses has been widely studied, their
effect on the humoral response has been more scarcely considered despite the great importance of these
responses. IgM and complement activity are major adaptive and innate humoral responses, respectively,
and are both regulated by the endocrine system [17]. Circulating IgM levels reflect the immune system
status without exposing the fish to a specific antigen [14], while the alternative complement activity is the
most standard parameter for determining the innate humoral immune system. Previous results have shown
that cortisol administration decreases the circulating IgM levels in non-infected fish [18,19]. Other studies,
however, have shown depressed complement activity after stress as a probable consequence of the high
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circulating levels of cortisol [8,9,20]. On the other hand, PRL and GH activate the immune system, an effect
that has also been related to the osmoregulatory responses. Thus, using different strategies (seawater
acclimation, hypophysectomy or hormone implants), the positive effects of PRL and GH on the fish
humoral immune responses have been documented [12—15, 21—26]. The same studies point to a link
between the neuroendocrine and immune systems in teleosts. Taking into consideration the known effects
of PRL, GH and cortisol on the immune system and the importance of neuroendocrine control of the
immune system, we developed the present study.

Immature male gilthead seabream (Sparus aurata, 100—150 g bw) were provided by Planta de Cultivos
Marinos (C.A.S.E.M., University of Cadiz, Puerto Real, Cadiz, Spain) and transferred to the laboratories
at the Faculty of Marine Science (Puerto Real, Cadiz). They were maintained in 400 | seawater aquaria with
an open system, natural photoperiod and at constant temperature (18 °C). The fish were fed daily with 1%
body weight using commercial dry pellets (Dibag-Diprotg SA, Segovia, Spain). They were fasted for 24 h
before hormone injection. Four different groups (11 fish per group) of seawater-acclimated seabream were
used. Hormone treatments were selected from the literature and previous works [27—30]. Fish were
anaesthetized with 2-phenoxyethanol (0.5 ml 17! water), weighed, and intraperitoneally (ip) implanted with
slow-release coconut oil implants. For this, fish were injected with 5 pl g~ ' body weight of coconut oil alone
(controls) or coconut oil containing ovine PRL (o0PRL, NIADDK-0oPRL-21, National Institute of Health,
Bethesda, MD, USA) (5ug g ' bw), recombinant bovine GH (rbGH, Monsanto Lot#M010-001,
distributed by National Institute of Health, Bethesda, MD, USA) (5ug g~ ' bw) or cortisol (H-2882,
hydrocortisone 21-hemisuccinate, Sigma, Madrid, Spain) (50 pg g~' body weight). Fish were sampled
7 days after implant. No mortality was observed during the experiment.

Plasma was obtained by standard protocols and stored at —80 °C until used. Total IgM levels and
alternative complement activity were determined. Plasma total IgM levels were measured by an indirect
enzyme-linked immunosorbent assay (ELISA) [31]. Briefly, flat-bottomed 96-well plates were coated
overnight with seabream plasma (plasma diluted 1/500 in 50 mM carbonate-bicarbonate buffer, pH 9.6).
Samples were blocked with bovine serum albumin and incubated for 1 h with the primary antibody (mouse
anti-gilthead seabream IgM monoclonal antibody; Aquatic Diagnostics Ltd., 1/100 in blocking buffer).
After incubation with the secondary antibody anti-mouse IgG-HRP (1/1000 in blocking buffer), samples
were developed with 3,3",5,5'-tetramethylbenzidine hydrochloride (TMB, Sigma) and H,0,. The plates
were read at 450 nm in a plate reader (BMG, Fluoro Star Galaxy). Negative controls consisted of samples
without plasma or primary antibody, and these OD values were subtracted for each sample value. Finally,
the activity of the alternative complement pathway was assayed using sheep red blood cells (SRBC,
Biomedics) as targets [32]. SRBC were washed in phenol red-free Hank’s buffer (HBSS) containing Mg>*
and EGTA and resuspended at 6% (v/v) in HBSS. Aliquots (100 pl) of test plasma as complement source,
diluted in HBSS, were added to 100 pl of SRBC in a flat-bottomed 96-well plate to give final plasma
concentrations ranging from 40 to 0.31%. After incubation for 90 min at 22 °C and the removal of unlysed
erythrocytes, the optical density was read at 550 nm in a plate reader. The values of maximum (100%) and
minimum (spontaneous) haemolysis were obtained by adding 100 ul of distilled water or HBSS to 100 pl
samples of SRBC, respectively. The degree of haemolysis (Y) (percentage of haemolytic activity with respect
to the maximum) was estimated and the lysis curve for each specimen was obtained by plotting Y/(1-Y)
against the volume of plasma added (ml) on a logjg-logio scaled graph. The volume of plasma producing
50% haemolysis (ACHs,) was determined and the number of ACHs, units ml~' was obtained for each
specimen. Both parameters were represented as means+ SE and analysed by one-way analysis of variance
(ANOVA, P<0.05) and a test of comparison of means.

The results show that a single ip injection of pituitary (PRL and GH) and interrenal (cortisol) hormones
changes the adaptive and innate humoral immune parameters of gilthead seabream after 7 days. Compared
with the control (injected with coconut oil alone) the circulating IgM levels (Fig. 1) decreased in fish treated
with rbGH and oPRL, but only to a statistically significant extent (P <0.05) with the latter. In contrast, the
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Fig. 1. Circulating IgM level, expressed as optical density at 450 nm, in plasma of gilthead seabream 7 days after intraperitoneal
injection of oPRL (5 pg g~' bw fish), tbGH (5 ug g~ bw fish) or cortisol (50 pg g~ ' bw fish). Data represent mean+SE (n=11).
Asterisks denote statistically significant differences (ANOVA one-way, P<0.05) with respect to the control group (injected with
coconut oil alone).

injection of cortisol produced a statistically significant increase in circulating IgM levels after 7 days
(Fig. 1). The alternative complement activity, however, was significantly decreased in fish injected with
rbGH and oPRL (P <0.1), while cortisol treatment did not produce any alteration in this activity (Fig. 2).

In fish, the mammalian hypothalamus-pituitary-adrenal (HPA)-axis has its equivalent in the
hypothalamus-pituitary-interrenal (HPI)-axis, which interacts with the immune system. Within the HPI-
axis, the effects of PRL, GH and cortisol have been studied although mechanisms involved in the
neuroendocrine-immune system interactions are still under investigation and some evidence exists of a bi-
directional effect. The synthesis of hormones by the immune cells and of cytokines by the neuroendocrine
cells, as well as their respective receptors, has been documented. Thus, several HPA-axis hormones (ACTH,
PRL, GH, CRH, endorphins, etc.) are produced in mammalian and fish leucocytes [2,15,33,34]. Moreover,
pituitary cells, for example, are able to express cytokines (IL-1, TNF, IFN, IL-6) and respond to them,
implying the presence of specific receptors [3]. These findings suggest some degree of interaction between
hormones and cytokines in both endocrine and immune organs. Although the production of cytokines by
endocrine cells and hormones by leucocytes is quite low their effects are amplified due to the paracrine and
autocrine actions [3].

We have studied for the first time the influence of HPI-axis hormones on the humoral parameters of the
Mediterranean teleost gilthead seabream. Our previous results in seabream indicated that, following acute
stress, the plasma levels of cortisol and glucose increased, which correlated well with the general
immunodepression seen in several humoral (complement activity) and cellular innate activities
(phagocytosis, respiratory burst and cytotoxicity) [7—9,35]. In these studies, the circulating cortisol
concentrations of resting fish (around 5 ng cortisol ml~! serum) increased up to 70—140 ng ml~"' in stressed
specimens. In this work and, in the same specimens, the circulating cortisol levels showed up to a 10-fold
increase (50—70 ng/ml) 7 days after ip injection with 50 pg g ' bw fish of cortisol [28,29]. Our results also
show that cortisol implants (50 ug g~' bw) result in an increase in the humoral immune parameters,
especially the circulating IgM levels, which no other study has documented. Moreover, cortisol implants
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Fig. 2. Alternative complement activity, expressed as ACHs, units ml~', in plasma of gilthead seabream 7 days after intraperitoneal
injection of oPRL (5 pg g~" bw fish), rbGH (5 pg g~! bw fish) or cortisol (50 pg g~! bw fish). Data represent mean+SE (n=11). Asterisks
denote statistically significant differences (ANOVA one-way, P <0.1) with respect to the control group (injected with coconut oil alone).

of 100 ug g~ ' bw produced very similar effects (data not shown). According to previous data, fish
transferred to hypersaline water will increase cortisol release to act as hypoosmoregulatory hormone
[28,29]. Similar findings in our lab showed that in seabream specimens adapted to hypersaline water
(55 ppt) for 14 days the circulating IgM levels increased but there was no effect on the complement activity
[36]. More studies should be carried out to ascertain whether these plasma cortisol levels reached after stress
or osmotic shock affect adaptive and innate immune responses, such as circulating levels of total IgM or
alternative complement activity, in different ways.

On the other hand, the use of oPRL and rbGH hormones decreased the alternative complement activity
as well as the levels of circulating IgM in seabream. Some mammalian hormones have been successfully
used in fish, including S. aurata, where they show similar functions but with a lower efficiency [27,30].
However, recent advances have made available some piscine hormones, for which the effects described are
similar to those found when using mammalian hormones [14—16]. In euryhaline teleosts, including gilthead
seabream, PRL is involved in acclimation to hypoosmotic environments [30,37]. In addition, adaptation to
low salinities increases PRL mRNA expression and plasma levels in several fish species, including gilthead
seabream [29,38,39]. However, the role of GH in osmoregulation is confusing since it behaves differently
depending on the fish species and the water salinity [30,40]. To date, no clear osmoregulatory role of GH
has been reported in gilthead seabream [30]. With respect to the immune system, similar effects have been
noted for PRL and GH, both HPI-axis hormones acting as immunostimulants. Strikingly, our results
contradict the literature showing that the humoral parameters are depressed. Moreover, these results agree
well with our previous data, in which these two humoral parameters, together with the peroxidase content,
in seabream specimens acclimated to hypoosmotic media decreased or were not affected [36]. Interestingly,
these conditions increased PRL mRNA expression in seabream pituitary cells but reduced the GH
expression and perhaps its circulating levels (Laiz-Carrion et al., unpublished data). Unfortunately,
a method to measure the plasma PRL and GH levels in gilthead seabream is not available yet. These
contradictory findings in seabream could reflect the great differences seen, for example, in several fish
species after osmotic media changes. More studies should be carried out to ascertain the role of PRL and
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GH in the gilthead seabream immune system and to clarify whether they affect the humoral and cellular
immune functions differently.

To conclude, we have shown the in vivo effects of oPRL, rbGH and cortisol on the circulating IgM levels
and alternative complement activity of seabream, as two major immune status indicators. Cortisol
increased whilst PRL and GH decreased, respectively, both immunological parameters, which agrees with
previous results in seabream and links the endocrine—immune system interactions with the osmoregulatory
system. In light of the results obtained the interactions between endocrine—immune—osmoregulatory
systems and stress seem to be very complex and deserve deeper investigations.
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