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Abstract By means of M -structure and dimension theory, we generalize some known results and obtain
some new ones on almost transitivity in C0(L, X). For instance, if X has the strong Banach–Stone prop-
erty, then almost transitivity of C0(L, X) is divided into two weaker properties, one of them depending
only on topological properties of L and the other being closely related to the covering dimensions of L

and X. This leads to some non-trivial examples of almost transitive C0(L, X) spaces.
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1. Introduction

Every topological space considered here will be Hausdorff, even if it is not explicitly
stated. If X is a Banach space, G(X) denotes the group of surjective linear isometries
from X onto itself. Unless otherwise stated, in G(X) we consider the strong operator
topology, which it inherits from CL(X, X). Given a topological space T , by BC(T , X) we
denote the Banach space of bounded continuous functions from T into X, endowed with
the sup norm. L will denote a locally compact topological space, L̂ will be its one-point
compactification and we will suppose that L ⊂ L̂. Then C0(L, X) indicates the subspace
of BC(L, X) whose functions vanish at the infinity point ∞. If f ∈ C0(L, X), we will
denote by f̂ the only continuous extension of f to L̂.

Definition 1.1. Given x ∈ X, the orbit of x is the set G(x) = {Tx : T ∈ G}. It is said
that

(i) X is transitive if, for every x, y ∈ SX , there exists T ∈ G with Tx = y (in other
words, the orbit of every element with norm one is SX);

(ii) X is almost transitive if, for every x, y ∈ SX and ε > 0, there exists T ∈ G with
‖Tx − y‖ < ε (in other words, the orbit of every element with norm one is dense
in SX).
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The study of almost transitivity in C0(L, K), where K is the real or complex scalar field,
was begun by Wood in [20], where he poses the natural question about the triviality
of this study. In other words, if L has more than one point, can C0(L, K) be almost
transitive? In [7], Greim and Rajagopalan answer this question in the negative in the
real case, and obtain significant restrictions in the complex case. Further advances on
the subject are due to Cabello [3–5]. Finally, it is proved that the answer in the complex
case is affirmative [10,18].

Thus, considering the general case, almost transitivity in C0(L, X) becomes more mean-
ingful. Until now, the only results on that matter are due to Greim, Jamison and Kamin-
ska [8]. Our purpose is to shed more light on the subject.

Next we will introduce some topological results that will be necessary later.

Proposition 1.2 (see [12]). Let T be a normal topological space and let X be a
finite-dimensional Banach space. Given a closed set F ⊂ T and a continuous function
f : F → BX , there exists f̄ : T → BX , which is a continuous extension of f .

Proposition 1.3 (Dowker, see [15]). Let T be a collectionwise normal topological
space and let X be a Banach space. Given a closed set F ⊂ T and a continuous function
f : F → X, there exists f̄ : T → X, which is a continuous extension of f .

Actually, from the previous proposition we only need the following corollary. It is
straightforward to prove taking into account that every compact space is collectionwise
normal and that, if X is an infinite-dimensional Banach space, then SX is a retract of BX .

Corollary 1.4. Let K be a compact space and let X be an infinite-dimensional Banach
space. If F ⊂ K is closed and f : F → SX is continuous, then there exists f̄ : K → SX ,
which is a continuous extension of f .

From these results we deduce the following lemma.

Lemma 1.5. Let L be a locally compact space and let X be a Banach space. If K ⊂ L

is compact and f : K → SX is continuous, then there exists f̄ ∈ C0(L, X), which is a
continuous extension of f with ‖f̄‖ = 1.

2. Some facts from dimension theory

The concept ‘covering dimension’ will not be defined here. The covering dimension of a
completely regular topological space T will be denoted by dim T ; besides, the algebraic
dimension of a Banach space X as a vector space over K will be denoted by dimK X.
It is well known that if X is finite dimensional, then dimR X = dimX. If dimK X = ∞,
n is a natural number and L is any locally compact space, we will agree to write that
dim L � dimK X − n.

Proposition 2.1 (see [14]). If T is a topological space and F ⊂ T is closed, then
dim F � dim T .

Proposition 2.2 (see [14]). Let T be a normal topological space and let n � 0 be
an integer. If {Fi : i ∈ N} is a closed covering of T with dim Fi � n for every i ∈ N, then
dim T � n.
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Definition 2.3. Let T be a topological space.

(i) It is said that A ⊂ T is functionally closed if there exists a continuous function
f : T → [0, 1] such that A = f−1(0).

(ii) Let A, B be disjoint subsets of T . A closed set L ⊂ T is called a partition between
A and B if there exist disjoint open sets U, V ⊂ T such that A ⊂ U , B ⊂ V and
T \ L = U ∪ V .

Lemma 2.4 (see [16]). Let T be a topological space. If A and B are functionally
closed, disjoint subsets of T and a, b ∈ R with a < b, then there exists a continuous
function ϕ : T → [a, b] such that A = ϕ−1({a}) and B = ϕ−1({b}).

Lemma 2.5 (see [6]). Let T be a completely regular topological space and let n � 0
be an integer. The following assertions are equivalent.

(1) dim T � n.

(2) Given n + 1 pairs (A1, B1), . . . , (An+1, Bn+1) of functionally closed subsets of T
such that Ak ∩ Bk = ∅ for every k ∈ {1, . . . , n + 1}, there exist functionally closed
sets L1, . . . , Ln+1 ⊂ T such that L1 ∩ · · ·∩Ln+1 = ∅ and Lk is a partition between
Ak and Bk for every k ∈ {1, . . . , n + 1}.

The next theorem collects some results which can be found in [16]. The theorem that
follows it is a finite-dimensional version, which also relies strongly on those results.

Theorem 2.6. If X is an infinite-dimensional Banach space and T is a completely
regular topological space, then

(1) the set {f ∈ BC(T , X) : f does not vanish} is dense in BC(T , X);

(2) given a closed set F ⊂ T , every continuous mapping f : F → SX that has a
continuous extension g : T → BX also has a continuous extension f̄ : T → SX .

Theorem 2.7. Let X be a finite-dimensional Banach space and let T be a completely
regular topological space. The following statements are equivalent.

(1) dim T � dim X − 1.

(2) The set {f ∈ BC(T , X) : f does not vanish} is dense in BC(T , X).

(3) Given a closed set F ⊂ T , every continuous mapping f : F → SX that has a
continuous extension g : T → BX also has a continuous extension f̄ : T → SX .

(4) Given a closed set F ⊂ T , for every continuous mapping f : F → SX that has
a continuous extension g : T → BX and every ε > 0 there exists a mapping
f̄ : T → SX such that ‖f̄(t) − f(t)‖ < ε for every t ∈ F .



516 A. Aizpuru and F. Rambla

Proof. (1) ⇔ (2) ⇔ (3) was proved in [16] and (3) ⇒ (4) is obvious; we will have
finished if we prove (4) ⇒ (1).

Besides, it is straightforward to see that our hypothesis is preserved by isomorphisms,
so we can suppose that X is (Rn, ‖·‖∞). Let (A1, B1), . . . , (An, Bn) be n pairs of function-
ally closed subsets of T such that Ak ∩ Bk = ∅ for every k ∈ {1, . . . , n}. By Lemma 2.4,
for every k there exists a continuous function ϕk : T → [−1, 1] such that Ak = ϕ−1

k (−1)
and Bk = ϕ−1

k (1). Let g : T → BX be defined by g(t) = (ϕ1(t), . . . , ϕn(t)); we have
that g is continuous and F = {t ∈ T : ‖g(t)‖∞ = 1} is closed, moreover Ak and Bk

are subsets of F for every k. Take f = g|F . Using the hypothesis we deduce that there
exists f̄ : T → SX with ‖f(t) − f̄(t)‖∞ < 1 for every t ∈ F . Denoting by f̄1, . . . , f̄n the
coordinate functions of f̄ , for every k ∈ {1, . . . , n} we define

Lk = f̄−1
k (0), Uk = f̄−1

k ((−∞, 0)) and Vk = f̄−1
k ((0,∞))

and then Ak ⊂ Uk, Bk ⊂ Vk, Uk ∩ Vk = ∅ and T \ Lk = Uk ∪ Vk, therefore every Lk

is a partition between Ak and Bk. Moreover, if x ∈ L1 ∩ · · · ∩ Ln, then f̄(x) = 0, which
is impossible. Consequently, L1 ∩ · · · ∩ Ln = ∅, and applying Lemma 2.5 we deduce
dim T � n − 1. �

3. Some facts from M-structure theory

The concepts ‘centralizer’ and ‘M -finite space’ will not be defined here. The centralizer
of a Banach space X will be denoted by Z(X). Every result and notion that appears in
this section has been taken from [2]. Proposition 3.2 does not appear explicitly in that
book, but it is a direct consequence of the results exposed there.

Definition 3.1. Let X be a Banach space. It is said that X has the strong Banach–
Stone (SBS) property if for any two locally compact spaces L, L′ and every surjective
linear isometry T : C0(L, X) → C0(L′, X) there exist a homeomorphism σ : L′ → L and
a continuous mapping h : L′ → G(X) such that Tf(t) = h(t)(f(σ(t))) for every t ∈ L′

and f ∈ C0(L, X).

Every Banach space X with dimK Z(X) = 1 (in particular, every smooth or strictly
convex space) has property SBS.

A Banach space X is M -finite if and only if it is linearly isometric to a finite product,
with the sup norm, of spaces with one-dimensional centralizer. Such a product can be
written in canonic form by grouping the factors that are linearly isometric (the process is
exactly the same as in the fundamental theorem of arithmetic). Two M -finite spaces are
linearly isometric if and only if they have the same canonic form. Every space without a
copy of c0 is M -finite. A C0(L) space is M -finite if and only if L is finite.

The next proposition presents a characterization of the surjective linear isometries in
C0(L, X) when X is an M -finite space.

Proposition 3.2. Let L be a locally compact space. If X is an M -finite Banach
space with canonic decomposition

∏r
i=1 Xi

ni , then for every surjective linear isometry
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T : C0(L, X) → C0(L, X) there exist i varying in {1, . . . , r}, homeomorphisms

ti : L × {1, . . . , ni} → L × {1, . . . , ni}

and continuous mappings ui : L × {1, . . . , ni} → G(Xi) such that, for every f =
(f1

1 , f1
2 , . . . , f1

n1
, . . . , fr

1 , . . . , fr
nr

) ∈ C0(L, X) and every l ∈ L, we have

Tf(l) = (u1(l, 1)f1
t12(l,1)

(t11(l, 1)), . . . , u1(l, n1)f1
t12(l,n1)(t

1
1(l, n1)), . . . , ur(l, 1)

fr
tr
2(l,1)(t

1
1(l, 1)), . . . , ur(l, nr)fr

tr
2(l,nr)(t

r
1(l, nr))).

4. Almost transitivity in C0(L, X): the general case

The intention of the next proposition is to contribute some information about some of
the cases when X is not an M -finite space.

Proposition 4.1. If X is a Banach space and L, L′ are locally compact spaces, then
C0(L, C0(L′, X)) is linearly isometric to C0(L × L′, X).

Proof. It is straightforward to prove that the natural mapping T : C0(L, C0(L′, X)) →
C0(L×L′, X) defined by Tf(t, t′) = f(t)(t′) is a well-defined surjective linear isometry. �

Taking into account that Wood’s conjecture is true in the real case, it is deduced from
the previous proposition that C0(L, C0(L′, R)) cannot be almost transitive if L × L′ has
more than one point.

In the general case we have already mentioned that Wood’s conjecture is false, but the
previous proposition can still be useful. For instance, if X is an SBS Banach space we
have that C0(L, c0(X)) is linearly isometric to C0(L×N, X), reducing our problem to the
study on SBS spaces that follows.

Definition 4.2. Let L be a locally compact space and let X be a Banach space. We
say that Y = C0(L, X)

(i) is almost positive transitive for x ∈ SX if, given ε > 0 and f1, f2 ∈ SY of the form
fi(t) = αi(t)x, with αi ∈ C0(L, R+) and ‖αi‖ = 1 for every i ∈ {1, 2}, there exists
T ∈ G(Y ) with ‖Tf1 − f2‖ < ε;

(ii) admits almost polar decompositions for x ∈ SX if, given ε > 0 and f ∈ SY , there
exists T ∈ G(Y ) with ‖T |f |x − f‖ < ε, where |f |x is defined by |f |x(t) = ‖f(t)‖x.

The previous definitions are inspired by [7]. Similar notions can be found in [4], [5]
and [9]. The idea, which is to split the almost transitivity of the space into two weaker
properties that are complementary in some sense, has turned out to be very fruitful.

It is straightforward to verify that, fixed x ∈ SX , the space C0(L, X) is almost transitive
if and only if it is almost positive transitive for x and admits almost polar decompositions
for x.

Let us recall that if X has the SBS property, then the elements of G(C0(L, X)) are of the
form Tf(t) = h(t)(f(σ(t))), where σ : L → L is a homeomorphism and h : L → G(X) is
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continuous. The next proposition (which is enunciated in [7] in a similar situation) shows
that, in this case, almost positive transitivity ‘depends’ on σ and, admitting almost polar
decompositions, on h.

Proposition 4.3. Let L be a locally compact space, let X be an SBS Banach space
and x ∈ SX . Let us write Y = C0(L, X). We have the following.

(1) If Y is almost positive transitive for x, then, given ε > 0 and f1, f2 ∈ SY of the
form fi(t) = αi(t)x, with αi ∈ C0(L, R+) for every i ∈ {1, 2}, there exists T ∈ G(Y )
of the form Tf(t) = f(σ(t)) with ‖Tf1 − f2‖ < ε. In other words, in the isometry
T the mapping h can be chosen to be always equal to the identity.

(2) If Y admits almost polar decompositions for x, then, given ε > 0 and f ∈ SY , there
exists T ∈ G(Y ) of the form Tf(t) = h(t)(f(t)) with ‖T |f |x − f‖ < ε. In other
words, in the isometry T the mapping σ can be chosen to be the identity.

Proof. (1) Just take into account that

‖α1(σ(t))x − α2(t)x‖ = |α1(σ(t)) − α2(t)|
= |‖h(t)(α1(σ(t))x)‖ − ‖α2(t)x‖|
� ‖h(t)(α1(σ(t))x) − α2(t)x‖.

(2) Just take into account that

‖h(t)(‖f(t)‖x) − f(t)‖
� ‖h(t)(‖f(t)‖x) − h(t)(‖f(σ(t))‖x)‖ + ‖h(t)(‖f(σ(t))‖x) − f(t)‖
= |‖f(t)‖ − ‖f(σ(t))‖| + ‖h(t)(‖f(σ(t))‖x) − f(t)‖
= |‖h(t)(‖f(σ(t))‖x)‖ − ‖‖f(t)x‖‖| + ‖h(t)(‖f(σ(t))‖x) − f(t)‖
� 2‖h(t)(‖f(σ(t))‖x) − f(t)‖.

�

Proposition 4.4. Let L be a locally compact space and let X be a Banach space. If
X is almost transitive and C0(L, X) admits almost polar decompositions for an x ∈ SX ,
then C0(L, X) admits almost polar decompositions for every y ∈ SX .

Proof. Take y ∈ SX and f ∈ SY . Given ε > 0, there exists T ∈ G(C0(L, X))
such that ‖Tf − |f |x‖ < 1

2ε. Let S ∈ G(X) be such that ‖Sx − y‖ < 1
2ε, we define

T̃ : C0(L, X) → C0(L, X) by T̃ f = S ◦ Tf , and it is clear that T̃ ∈ G(C0(L, X)). For every
t ∈ L we have

‖T̃ f(t) − |f |y(t)‖ � ‖S(Tf(t)) − S(‖f(t)‖x)‖ + ‖S(‖f(t)‖x) − ‖f(t)‖y‖
� ‖Tf(t) − ‖f(t)‖x‖ + ‖Sx − y‖ < ε.

�
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The next proposition shows that it has not been too restrictive to ask for X to be
almost transitive. Moreover, the first part should not be surprising, since in Proposi-
tion 4.3 we have already proved that if X is SBS, then almost positive transitivity of
C0(L, X) is an eminently topological property, because it depends strongly on the group
of homeomorphisms of L.

Proposition 4.5. Let L be a locally compact space, let X be an SBS Banach space
and x ∈ SX . We have that

(1) C0(L, X) is almost positive transitive for x if and only if C0(L, R) is almost positive
transitive;

(2) if C0(L, X) admits almost polar decompositions for x, then X is almost transitive.

Proof. (1) It is immediate from Proposition 4.3.

(2) Take ε > 0. Given y ∈ SX , let f ∈ SY be such that for certain t0 ∈ L we have
f(t0) = y. There exists a continuous mapping h : L → G(X) such that ‖h(t)(‖f(t)‖x) −
f(t)‖ < ε for every t ∈ L. In particular, ‖h(t0)(‖f(t0)‖x) − f(t0)‖ = ‖h(t0)(x) − y‖ < ε.
Therefore, we have proved that the orbit of x is dense in SX . This implies immediately
that X is almost transitive. �

As a consequence, if X has property SBS, in C0(L, X) we will deal with properties
‘to admit almost polar decompositions’ and ‘to be almost positive transitive’ without
specifying which x ∈ SX .

It is well known that a finite-dimensional Banach space is almost transitive if and only
if it is a Hilbert space [19]. This leads to the following corollary.

Corollary 4.6. Let L be a locally compact space and let X be an SBS Banach space.
If X is finite dimensional and C0(L, X) admits almost polar decompositions, then X is a
Hilbert space.

In the following theorem, points (1) and (2) are slight generalizations of known
results [7, 8, 20], although the proofs are essentially the same. Points (3) and (4) are
new.

Theorem 4.7. Let L be a locally compact space with more than one point. If C0(L, R)
is almost positive transitive, then

(1) L has no compact open subset (in other words, L is not compact and L̂ is con-
nected);

(2) if K ⊂ L is compact and connected, then IntL K = ∅.

If, moreover, L is not connected, then

(3) no connected component of L is open (in particular, L has infinitely many connected
components);
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(4) given a compact set K ⊂ L and a clopen set O ⊂ L, there always exists a connected
component of O which does not intersect K.

Proof. (1) If K ⊂ L is a compact open proper subset, then there exist f, g ∈ C0(L, R+)
which satisfy ‖f‖ = ‖g‖ = 1, f(L) = {0, 1} and 1

2 ∈ g(L). It is clear that there does not
exist a homeomorphism σ : L → L with ‖f(t) − g(σ(t))‖ < 1

2 for every t ∈ L. If L is
compact, there exists f ∈ C0(L, R+) with {0, 1} ⊂ f(L) and ‖f‖ = 1. Obviously, we do
not have ‖f(t) − 1‖ < 1 for every t ∈ L.

(2) If K ⊂ L is compact and connected with U = IntL K �= ∅, as L is not compact
we have L \ K �= ∅ and there exist f, g ∈ C0(L, R+) which satisfy ‖f‖ = ‖g‖ = 1,
f(K) ⊂ [ 13 , 1], f(L \ K) ⊂ [0, 2

3 ], g(K \ U) = 0 and 1 ∈ f(U) ∩ g(U) ∩ g(L \ K). Let
σ : L → L be a homeomorphism with |f(t) − g(σ(t))| < 1

3 for every t ∈ L. There exists
t ∈ L such that σ(t) ∈ U and g(σ(t)) = 1, then f(t) > 2

3 and therefore t ∈ K and
σ(t) ∈ σ(K), thus σ(K)∩U �= ∅. Analogously, σ(K)∩L\K �= ∅. Besides, if t ∈ K, then
f(t) � 1

3 and g(σ(t)) > 0, which implies σ(t) /∈ K\U . We deduce that σ(K) ⊂ U∪(L\K),
and this contradicts the connectedness of K.

Now we assume that L is not connected.

(3) Let us suppose that C is an open connected component of L, as L is not connected
we have that C and L \ C are non-empty clopen subsets of L, and there exist f, g ∈
C0(L, R+) which satisfy ‖f‖ = ‖g‖ = 1, f(L \ C) = {0} and 1 ∈ f(C) ∩ g(C) ∩ g(L \ C).
If σ : L → L is a homeomorphism with |f(t) − g(σ(t))| < 1 for every t ∈ L, then
σ(C) ∩ C �= ∅ and σ(C) ∩ L \ C �= ∅, which contradicts the connectedness of C.

(4) Let us suppose that there exist a clopen set O ⊂ L and a compact set K ⊂ L

such that K intersects every connected component of O. We can assume that K ⊂ O.
If O were connected, it would be an open connected component of L; thus, there exist
U , V non-empty clopen sets such that U ∩ V = ∅ and U ∪ V = O. Taking into account
that K ∩ U and K ∩ V are compact sets which intersect every connected component
of U and V , respectively, there exist f, g ∈ C0(L, R+) which satisfy ‖f‖ = ‖g‖ = 1,
f(K ∩ U) = 1

2 , f(U) ⊂ [0, 1
2 ], g(K) = {1} and g(L \ O) = {0}. Let σ : L → L be a

homeomorphism and let M be a connected component of U . Thus, f(M) ⊂ [0, 1
2 ] and

there exists x ∈ M such that f(x) = 1
2 . Since U is clopen, M will also be a connected

component of L. This implies that σ(M) is a connected component either of L \ O, in
which case it would be g(σ(M)) = 0 and in particular g(σ(x)) = 0, or of O, in which
case there would exist y ∈ K ∩ σ(M), and we would obtain f(σ−1(y)) � 1

2 but g(y) = 1.
In both cases, it is impossible that |f(t) − g(σ(t))| < 1

2 for every t ∈ L. �

It is very tempting to affirm that there does not exist a locally compact space which
satisfies (1), (2), (3) and (4) in the previous theorem and, as a consequence, that if
C0(L, R) is almost positive transitive, then L must be connected. However, we have not
been able to prove or disprove it.

Question 4.8. Does there exist a locally compact space satisfying conditions (1), (2),
(3) and (4) of Theorem 4.7?
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Question 4.9. Let L be a locally compact space and let X be an SBS Banach space.
If C0(L, X) is almost positive transitive, is L necessarily connected?

Of course, a negative answer to Question 4.8 implies automatically an affirmative
answer to Question 4.9.

Proposition 4.10. Let L be a locally compact space and let X be a Banach
space. If C0(L, X) is almost transitive and X is M -finite, with canonic decomposition
X =

∏r
i=1 Xni

i , then r = 1.

Proof. Suppose that r � 2. For every i ∈ {1, 2}, fix ηi ∈ C0(L, Xi) with ‖ηi‖ = 1,
and let θi : L → Xi be the constant function zero.

Take f ∈ SC0(L,X), which satisfies f1
1 = η1 and f2

j = θ2 for every j ∈ {1, . . . , n2}, and
g ∈ SC0(L,X), which satisfies g2

1 = η2. Taking into account Proposition 3.2, it is clear that
there does not exist T ∈ G(C0(L, X)) with ‖Tf − g‖ < 1. �

Let us note that in the previous proposition we deduce X = Xn1
1 and therefore C0(L, X)

is linearly isometric to C0(L × {1, . . . , n1}, X1). This proves that, when studying almost
positive transitivity of C0(L, X), where X is an M -finite space, we can restrict ourselves to
the case when X has property SBS. Moreover, we might formulate the following question.

Question 4.11. Let L be a locally compact space and let X be a Banach space.
If C0(L, X) is almost positive transitive and X is M -finite, can we affirm that X has
property SBS?

Of course, an affirmative answer to Question 4.9 would automatically imply an affir-
mative answer to Question 4.11.

We will now study the role that is played by admitting almost polar decompositions.
A curious relationship between the covering dimensions of L and X appears. The impor-
tance of covering dimension in this problem had already been noted in [5].

Proposition 4.12. Let L be a locally compact space, let X be a Banach space and
x ∈ SX . Let us consider the following assertions.

(a) C0(L, X) admits almost polar decompositions for x.

(b) Given a compact set K ⊂ L, ε > 0 and a continuous mapping f : K → SX , there
exists h : L → G(X) continuous with ‖h(t)(x) − f(t)‖ < ε for every t ∈ K.

(c) Given a compact set K ⊂ L, ε > 0 and a continuous mapping f : L → SX , there
exists h : L → G(X) continuous with ‖h(t)(x) − f(t)‖ < ε for every t ∈ K.

(d) dimL � dim X − 1.

(e) dim K � dim X − 1 for every compact set K ⊂ L.

We have

(1) If X has property SBS, then (a) ⇒ (b).
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(2) (b) ⇒ ((c) ∧ (e)).

(3) ((c) ∧ (d)) ⇒ (a).

(4) (d) ⇒ (e) and, if L is σ-compact, then (d) ⇔ (e).

Proof. (1) By Lemma 1.5, there exists g ∈ SC0(L,X) such that g|K = f . Using the
hypothesis, we deduce that there exists a continuous mapping h : L → G(X) with
‖g(t) − h(t)(‖g(t)‖x)‖ < ε for every t ∈ L. If t ∈ K, then

‖f(t) − h(t)(x)‖ = ‖g(t) − h(t)(‖g(t)‖x)‖ < ε.

(2) (b) ⇒ (c) is trivial. To prove (e) from (b), we can assume that X is finite dimen-
sional. Let F ⊂ K be closed, let f : F → SX be continuous and ε > 0. Since F is
compact, there exists h : L → G(X) continuous with ‖h(t)(x) − f(t)‖ < ε for every
t ∈ F . Let ρ : K → SX be given by ρ(t) = h(t)(x). We have ‖ρ(t) − f(t)‖ < ε for every
t ∈ F . Thus dimK � dim X − 1.

(3) Take f ∈ SC0(L,X) and ε ∈ (0, 2]. The set K = {t ∈ L̂ : ‖f̂(t)‖ � 1
2ε} is a compact

subset of L. By Lemma 1.5, there exists g : L → BX continuous and such that g(t) =
f(t)/‖f(t)‖ for every t ∈ K. By Theorems 2.6 and 2.7, there also exists f̄ : L → SX

continuous and such that f̄(t) = f(t)/‖f(t)‖ if t ∈ K. Let h : L → G(X) be a continuous
mapping with ‖h(t)(x) − f̄(t)‖ < ε for every t ∈ K. We define T : C0(L, X) → C0(L, X)
by Tu(t) = h(t)(u(t)), and we have that, if t ∈ K, then

‖T |f |x(t) − f(t)‖ = ‖‖f(t)‖h(t)(x) − f(t)‖
= ‖‖f(t)‖h(t)(x) − ‖f(t)‖f̄(t)‖ < ε,

and, if t /∈ K, then
‖T |f |x(t) − f(t)‖ � 2‖f(t)‖ < ε.

Therefore, ‖T |f |x − f‖ < ε.

(4) This is immediately deduced from Propositions 2.1 and 2.2. �

5. Almost transitivity in C0(L, X), where X is a Hilbert space

Proposition 5.1. Given n ∈ {1, 2, 4, 8} and 2n symbols

{a1, a2, . . . , an,−a1,−a2, . . . ,−an},

there exists a square matrix of order n which satisfies the following conditions.

(i) Its elements belong to the set of symbols.

(ii) Its first column is (a1, a2, . . . , an).

(iii) It is formally orthogonal.
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Proof.

(a),

(
a −b

b a

)
,

⎛
⎜⎜⎜⎝

a −b c d

b a −d c

c −d −a −b

d c b −a

⎞
⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f g h

b −a d −c −f e −h g

c −d −a b g −h −e f

d c −b −a h g −f −e

e f −g −h −a −b c d

f −e h −g b −a d −c

g h e f −c −d −a −b

h −g −f e −d c b −a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�

We cannot extend Proposition 5.1 to any n ∈ {16, 32, . . . }. This is an easy consequence
of the next assertion.

Proposition 5.2 (see [1]). Given n ∈ N, the following statements are equivalent.

(i) There exist n − 1 continuous mappings v1, v2, . . . , vn−1 : SRn → SRn such that
vi(x) is orthogonal to x for every i ∈ {1, . . . , n − 1} and x ∈ SRn , and the vectors
v1(x), v2(x), . . . , vn−1(x) are linearly independent for every x ∈ SRn .

(ii) n ∈ {1, 2, 4, 8}.

Now we will give six preliminary results, dealing with SX -valued and G(X)-valued
functions, towards Theorem 5.10.

Lemma 5.3. Let (xn)n∈N be a sequence of elements of l2 convergent to x0 ∈ l2.
Then, for every k ∈ N, the sequence (zn)n∈N defined by zn(j) = x0(k)x0(j)(1 + xn(1)) −
xn(k)xn(j)(1 + x0(1)) is included in l2 and converges to 0.

Proof. For the sake of simplicity we will write xab instead of xa(b). For every j ∈ N

we have

(x0kx0j(1 + xn1) − xnkxnj(1 + x01))2

= x2
0k(1 + xn1)2x2

0j + x2
nk(1 + x01)2x2

nj − 2x0kxnk(1 + x01)(1 + xn1)x0jxnj

= x2
0k(1 + xn1)2x2

0j + x2
nk(1 + x01)2x2

nj − x0kxnk(1 + x01)(1 + xn1)(x2
0j + x2

nj)

+ x0kxnk(1 + x01)(1 + xn1)(x0j − xnj)2

= (x2
0k(1 + xn1)2 − x0kxnk(1 + x01)(1 + xn1))x2

0j + (x2
nk(1 + x01)2

− x0kxnk(1 + x01)(1 + xn1))x2
nj + x0kxnk(1 + x01)(1 + xn1)(x0j − xnj)2

= Anx2
0j + Bnx2

nj + Cn(x0j − xnj)2,
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where (An)n∈N, (Bn)n∈N are sequences convergent to zero and (Cn)n∈N is a bounded
sequence. Therefore,

‖zn‖2 =
∞∑

j=1

(Anx2
0j + Bnx2

nj + Cn(x0j − xnj)2)

= An‖x0‖2 + Bn‖xn‖2 + Cn‖xn − x0‖2

and from this we deduce the desired result. �

Proposition 5.4. Let X be a Hilbert space and e1 ∈ SX . There exists H : SX \
{−e1} → G(X) continuous and such that H(x)(e1) = x for every x ∈ SX \ {−e1}.

Proof. The case dim X = 1 is trivial. Otherwise, let (e1, (eα)α∈Λ) be an orthonormal
basis of X. Take Γ = Λ ∪ {1}. We define H(x)(e1) = x and, for β ∈ Λ,

H(x)(eβ) =
(

−xβ ,

(
δαβ − xαxβ

x1 + 1

)
α∈Λ

)

(where δij = 0 if i �= j and δij = 1 if i = j) and we extend H(x) by linearity. Let us see
that H satisfies the required properties.

Take x ∈ SX \ {−e1}. If α, β ∈ Γ , it is straightforward to prove that

(H(x)(eα) | H(x)(eβ)) = δαβ ,

from which (H(x)(eα))α∈Γ is an orthonormal basis of X. If y ∈ X, then, by Pythagoras’s
theorem,

‖H(x)(y)‖2 =
∥∥∥∥ ∑

α∈Γ

yαH(x)eα

∥∥∥∥
2

=
∑
α∈Γ

|yα|2‖H(x)eα‖2

=
∑
α∈Γ

|yα|2 = ‖y‖2.

Hence, H(x) is a surjective linear isometry.
Let (xn)n∈N be a sequence convergent to certain x in SX\{−e1}. Let us fix y ∈ X, given

ε > 0 there exists M ⊂ Γ which is finite and such that
∑

i∈Γ\M |yi|2 < 1
16ε2. Besides, by

Lemma 5.3, for every i ∈ M we have limn yi(H(xn)(ei) − H(x)(ei)) = 0, therefore there
exists n0 ∈ N such that, if n � n0, then

∑
i∈M ‖yi(H(xn)(ei) − H(x)(ei))‖ < 1

2ε. Joining
both inequalities, for every n � n0 we have

‖H(xn)(y) − H(x)(y)‖ �
∥∥∥∥ ∑

i∈M

yi(H(xn)(ei) − H(x)(ei))
∥∥∥∥

+
∥∥∥∥ ∑

i∈Γ\M

yi(H(xn)(ei) − H(x)(ei))
∥∥∥∥ < ε,

from which we deduce that H(xn) converges to H(x) in the strong operator topology. �
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Corollary 5.5. Let X be a Hilbert space and e1 ∈ SX . If f : L → SX is continuous and
nowhere equal to −e1, then there exists h : L → G(X) continuous with h(t)(e1) = f(t)
for every t ∈ L.

Corollary 5.6. Let X be a Hilbert space. Given e1 ∈ SX , the following statements
are equivalent.

(1) If f : L → SX is continuous, there exists h : L → G(X) continuous with ‖h(t)(e1)−
f(t)‖ < 2 for every t ∈ L.

(2) If f : L → SX is continuous, there exists h : L → G(X) continuous with h(t)(e1) =
f(t) for every t ∈ L.

Proof. Let f : L → SX and h : L → G(X) be continuous mappings with ‖h(t)(e1) −
f(t)‖ < 2 for every t ∈ L. The mapping ρ : L → SX given by ρ(t) = h(t)−1(f(t)) is
continuous and satisfies ‖ρ(t) − e1‖ < 2 for every t ∈ L, therefore ρ is nowhere equal
to −e1. Let h2 : L → G(X) be continuous with h2(t)(e1) = ρ(t) for every t ∈ L. The
mapping h3 = hh2 : L → G(X) is continuous and satisfies h3(t)(e1) = h(t)h2(t)(e1) =
h(t)ρ(t) = f(t) for every t ∈ L. �

Proposition 5.7. Let X be a Hilbert space and e1 ∈ SX . If dim L � dim X −2, given
ε > 0 and f : L → SX continuous, there exists g : L → SX continuous which is nowhere
equal to −e1 and such that ‖g(t) − f(t)‖ < ε for every t ∈ L.

Proof. Let (e1, (eα)α∈Λ) be an orthonormal basis of X seen as a real space: in this
way we can write X = R ⊕2 Y , where Y is a Hilbert space and (eα)α∈Λ is a basis of Y .
Let us consider u = (fα)α∈Λ : L → BY . Since dimL � dim X−2 = dimY −1 there exists
v : L → BY which does not vanish and with ‖u − v‖ < 1

2ε. Now we define g : L → SX

by g(t) = (f1(t)2 + ‖v(t)‖2)−1/2(f1(t), v(t)), then g is continuous and for every t ∈ L we
have

‖g(t) − f(t)‖ = ‖(f1(t)2 + ‖v(t)‖2)−1/2(f1(t), v(t)) − (f1(t), u(t))‖
� |(f1(t)2 + ‖v(t)‖2)−1/2 − 1|‖(f1(t), v(t))‖ + ‖(f1(t), u(t)) − (f1(t), v(t))‖
� |(f1(t)2 + ‖v(t)‖2)1/2 − 1| + ‖u − v‖
= |‖(f1(t), v(t))‖ − ‖(f1(t), u(t))‖| + ‖u − v‖
� ‖(0, u(t) − v(t))‖ + ‖u − v‖ � 2‖u − v‖ < ε.

Moreover, g is nowhere equal to −e1 because v does not vanish. �

Corollary 5.8. Let X be a Hilbert space and e1 ∈ SX . If dim L � dim X − 2 and
f : L → SX is continuous, then there exists h : L → G(X) continuous with h(t)(e1) = f(t)
for every t ∈ L.

Corollary 5.9. If X is an infinite-dimensional Hilbert space, then C0(L, X) admits
almost polar decompositions.

Proof. It is a direct consequence of Proposition 4.12 together with Corollary 5.8. �



526 A. Aizpuru and F. Rambla

Theorem 5.10. Let L be a locally compact space and n ∈ N. Let us consider the
following statements.

(1) dimL � n dimR K + χ{1,2,4,8}(n) − 2.

(2) C0(L, (Kn, ‖ · ‖2)) admits almost polar decompositions.

(3) dimK � n dimR K − 1 for every compact set K ⊂ L.

We have (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2). Let us suppose first that n ∈ {1, 2, 4, 8}, and so dimL � n − 1.
Take f : L → SKn . Let A be a formally orthogonal matrix with the properties men-

tioned in Proposition 5.1 and whose first column is (f1, f2, . . . , fn). If we define h : L →
G(Kn) by

h(t) = A(t) =

⎛
⎜⎜⎜⎜⎝

f1(t) ∗ · · · ∗
f2(t) ∗ · · · ∗

...
...

. . .
...

fn(t) ∗ · · · ∗

⎞
⎟⎟⎟⎟⎠ ,

then it is clear that h(t)(e1) = f(t) for every t ∈ L. Now apply Proposition 4.12.
In the case when n ∈ N \ {1, 2, 4, 8} we have dim L � n − 2 and the result follows from

Corollary 5.8 and Proposition 4.12.

(2) ⇒ (3). We have already proved this (Proposition 4.12). �

Note that, taking into account what we have proved up until now, if L is σ-compact
and n ∈ {1, 2, 4, 8}, then the three statements in the previous theorem turn out to be
equivalent.

Example 5.11. Let us see that if n ∈ N\{1, 2, 4, 8}, then C(SRn , (Rn, ‖ ·‖2)) does not
admit almost polar decompositions, and therefore in the previous theorem (3) ⇒ (2) is
not true in general.

Indeed, if C(SRn , (Rn, ‖ · ‖2)) admits almost polar decompositions, by virtue of Corol-
lary 5.6 together with Proposition 4.12, there would exist h : SRn → G(Rn) continu-
ous with h(t)(e1) = t for every t ∈ SRn . Writing h in matricial form, and calling its
columns v0, v1, . . . , vn−1, we would have that vi(t) is orthogonal to v0(t) = t for every
i ∈ {1, . . . , n − 1} and the vectors v1(x), v2(x), . . . , vn−1(x) are linearly independent for
every x ∈ SRn . This contradicts Proposition 5.2.

It is straightforward to see that if C0(L, (Cn, ‖·‖2)) admits almost polar decompositions,
then C0(L, (R2n, ‖ · ‖2)) also admits them, thus the previous example can be also used in
the complex case (in dimensions one, two and four).

In order to see what happens with (2) ⇒ (1) in Theorem 5.10 we need a previous
result.

Proposition 5.12. Let L be a locally compact space. The space C0(L, R) admits
almost polar decompositions if and only if dim L̂ = 0.
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Proof. Necessity. Suppose that C0(L, R) admits almost polar decompositions. If M

is a connected subset of L and x, y ∈ M are distinct points, then we can construct
f ∈ C0(L, R) with f(x) = 1 and f(y) = −1. There must exist a continuous mapping
h : L → {−1, 1} such that |h(t)|f(t)| − f(t)| < 2 for every t ∈ L. In particular h(x) = 1,
h(y) = −1 and therefore h(M) = {−1, 1}, which is a contradiction since M is connected.

From this we deduce that L is totally disconnected and it was proved in [7] that this
implies that L is zero dimensional. This in turn implies that L̂ is zero dimensional, and
for compact Hausdorff spaces (see [6]) this is the same as having covering dimension zero.

Sufficiency. If dim L̂ = 0 then, by Theorem 5.10, C(L̂, R) admits almost polar decompo-
sitions. If f ∈ C0(L, R) and ε > 0, then there exists a continuous function h : L̂ → {−1, 1}
such that ‖h(t)|f̂(t)| − f̂(t)‖ < ε for every t ∈ L̂, in particular ‖h(t)|f(t)| − f(t)‖ < ε for
every t ∈ L, so C0(L, R) admits almost polar decompositions. �

Example 5.13. In [17], Rajagopalan constructs under the continuum hypothesis (CH)
a locally compact space L which is scattered, countably compact, first countable and
such that dim L̂ = 0 but dimL �= 0. Therefore, under CH the implication (2) ⇒ (1) of
Theorem 5.10 is not true in general.

We do not know if there is a counterexample to (2) ⇒ (1) without requiring CH; it
should be noticed that Rajagopalan’s example has many properties we do not need here.

6. Examples and some more questions

We introduce some terminology to gain convenience when managing the examples.

Definition 6.1. Let L be a locally compact space with more than one point.

(i) We will say that L is an L0-space if C0(L, C) is almost transitive.

(ii) We will say that L is an L1-space if C0(L, C) is transitive.

In [7] it is proved that if there exists an L0-space, then there exists an L1-space and
that an L1-space never satisfies the first axiom of countability. In [18] and [10] it is
proved that if L is a locally compact, non-compact space and L̂ is the topological space
known as a pseudoarc, then L is an L0-space. However, such an L cannot be an L1-
space because the pseudoarc is metrizable. Moreover, the aforementioned L is unique up
to homeomorphisms, because the pseudoarc is a homogeneous topological space. Thus,
the actual state of knowledge on Li-spaces is summarized as: there exist at least two
L0-spaces, one of them is an L1-space and the other is not.

Coming to the general case, and taking into account everything which has been proved
up until now, we deduce the following proposition.

Proposition 6.2. If X is a Hilbert space with dim X � 2 and L is a σ-compact
L0-space, then C0(L, X) is almost transitive.

Proof. Proposition 4.5 plus Theorem 5.10 plus the observation after Theorem 5.10.
�
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It is not difficult to prove that if L̂ is the pseudoarc, then L is connected (every
composant of the pseudoarc is dense in it (see [11] or [13])), therefore we have the
following proposition.

Proposition 6.3. If L is a locally compact space, L̂ is the pseudoarc and n ∈ N, then
none of the spaces C0(L, (Rn, ‖ · ‖∞)) and C0(L, (Cn+1, ‖ · ‖∞)) is almost transitive.

Proof. The case of C0(L, R) is a consequence of Wood’s conjecture in the real case.
Alternatively, we can deduce it from Theorem 5.10, because L̂ is a metrizable continuum
and therefore dimL = 1. Since L is σ-compact, this contradicts the mentioned theorem
together with the observation that follows it.

For the remaining cases, apply connectedness of L plus Proposition 4.1 plus Theo-
rem 4.7. �

Nevertheless, we have the following question.

Question 6.4. If L is an L1-space, is C0(L, (C2, ‖ · ‖∞)) almost transitive?

The authors’ opinions on this question differ: A.A. believes the answer is ‘no’ while
F.R. believes it is ‘yes’. Note that a locally compact space L with C0(L, (C2, ‖ · ‖∞))
almost transitive is enough to answer Questions 4.9 and 4.11 in the negative.

Finally, a question that has not been completely solved and which was also treated
in [8].

Question 6.5. If K is a compact space with more than one point, does there exist a
Banach space X such that C(K, X) is almost transitive?

As observed before, in such a case, X cannot be M -finite.
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