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Abstract

We study two-graded absolute valued algebras. These are two-graded algebras satisfying the ab-
solute value multiplicative property only on homogeneous elements. Thus, hexagonions (also called
sedenions) and other sixteen-dimensional algebras arise as examples of these algebras. The even
parts of two-graded absolute valued algebras are the absolute valued algebras, while the odd parts
are exactly the absolute valued triple systems. So, in a way these two-graded algebras give a uni-
fying viewpoint of both structures. We also study the simplicity and give several ways to construct
two-graded absolute valued algebras. We also provide a description of isomorphism classes for two-
graded absolute valued algebras of dimensions 1, 2 and 4.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

1.1. Let K denote the field of real or complex numbers. An absolute valued algebra
over K is a non-zero algebrd (not necessarily associative or unital), ow€rmprovided
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with a norm| - | which endows the underlying vector spatevith a normed structure, and

such that satisfies the absolute value multiplicative property in the sengethat |x||y|

for all x, y € A. Some examples of absolute valued algebrafRar€, H (the algebra of
Hamilton quaternions), an® (the algebra of Cayley numbers), with norms equal to their
usual absolute values. Since the early paper of A. Albert [4] where itis proved that the only
finite-dimensional absolute valued algebr&ig the complex case ari@, C, H andQ in

the real one, absolute valued algebras have been intensively studied by many authors. The
work [30], by Angel Rodriguez Palacios, is an excellent survey of the actual state of the
art. The following references are also fundamental for the reader: [4,5,15,19,21-23,28,29].
In some cases, the results arising in the literature give conditions on an absolute valued
algebra assuring that such an algebra is finite-dimensional. All such results rely more or
less deeply on the famous Urbanik—Wright Theorem [33] assertindRthdt H andO are

the unique absolute valued real algebras with a unit.

1.2. Clearly, any finite-dimensional absolute valued algebra is a division algebra, con-
versely, absolute valued division algebras are finite-dimensional [34]. It is easy to see that
if two norms on a finite-dimensional algebra convert it into an absolute valued algebra,
then they must coincide (see, for instance, [15]). From here, it is also clear that any iso-
morphism between two finite-dimensional absolute valued algebras is isometric. A precise
determination of isomorphism classes for absolute valued real algebras of dimensions 1
and 2 is given in [29], where the number of classes reduces to 1 and 4, respectively, while
a detailed determination for the four-dimensional ones appears in [28].

1.3. Atwo-graded algebra is aK-algebra which splits into the direct sutn= Ag ®
Aj of K-submodules (called the even and the odd part respectively) satistyidg C
Agp forall e, g in Zo. The notions of homomorphism, subalgebra and ideal in the graded
sense will be used with its usual meaning. However:

Definition 1.1. A two-graded absolute valued algebra (two-graded a.v. algebra), is a non-
zero two-graded algebra = Ag ® A1 overK, K=R or C, endowed with two norms
|-]:4; = K,i=0,1, such thatx,'xj'| = |x;||x;|, foranyx;, x; € AgU Aj.

Let us note that the absolute value condition on the product only holds for the homoge-
neous elements iA. Clearly, if we fixx; € A;, i =0, 1, with |x;| = 1, then the restrictions
to the homogeneous pars of theleft and right product operator& (x;), R(x;): A — A,
defined byL(x;)(y) := x;y and R(x;)(y) = yx;, are isometric in the finite-dimensional
case.

Two-graded a.v. algebras are a particular type of superalgebras. Of course Lie superal-
gebras are not absolute valued. A classification of associative two-graded a.v. algebras is
not difficult to improvise (it could be extracted from standard results on the classification
of prime associative superalgebras with non-zero socle). On the other hand, since alter-
native prime superalgebras in characteristic different from two are associative or their odd
parts are zero, the study of the alternative superalgebras which are two-graded a.v. algebras
reduces to the associative case. Jordan superalgebras are different. A description of those
Jordan non-commutative superalgebras which admit a two-graded absolute valued algebra
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structure would be interesting. Such algebras are necessarily finite-dimensional since their
even parts are absolute valued Jordan algebras, hence finite-dimensional. Relationships
with other classes of superalgebras can not be discarded and probably they will deserve
consideration in future works.

From now onall the two-graded a.v. algebras considered in this work, will be real and
finite-dimensionalunless otherwise stated.

1.4. A notion related to that of two-graded a.v. algebras, is the concept of an absolute
valued triple system (a.v. triple system in the sequel).ZLéke a vector space ovét. We
shall say thaf is atriple systenif it is endowed with a trilinear map

WV TxTxT—T,

called thetriple productof T. Let T, T’ be triple systems, a bijective linear mgp7T — T’
is called arisomorphisnof triple systems if it satisfies

f(lxy2) =(f ) f) f (D)

foranyx, y,z € T. Triple systems appear in the literature as the natural ternary extension
of algebras and have been studied in the associative [12,31,32], non-associative [8,9,14,17,
18] and general context [13]. An absolute valued triple system is defined as follows.

Definition 1.2. An absolute valued triple system (a.v. triple system), is a non-zero triple
systemT overK, K =R or C, endowed with a norm:- | satisfying|(xyz)| = |x||y||z| for
anyx,y,zeT.

Trivially, the odd part of any two-graded a.v. algebra can be endowed with an a.v. triple
system structure in many different ways. We shall investigate this relation in Section 4.

The study of two-graded a.v. algebras arises naturally from that of a.v. triple systems.
It supposes not only a way of extending the theory of absolute valued algebras to other
algebraic structures but also the research of other objects related to them. Thus, the Lie
group aufA) (and its Lie algebra dén)), whenA is a two-graded a.v. algebra or an a.v.
triple system, is an object of possible independent interest.

2. Construction of two-graded a.v. algebras

2.1. If Ais atwo-graded a.v. algebra, its even part is an a.v. algebra. But does the
converse hold? In other words: Given any a.v. algebra, is there a two-graded a.v. algebra
with non-zero odd part whose even part is the original given a.v. algebra? The answer is:
For any a.v. algebrd we can consider the two-graded a.v. alge#tra A with product

(x,y)(z, 1) =(xz+yt,xt +yz), x,y,2,t €A,

even partA x 0= A and odd part < A. This construction allows us to consider two-
graded a.v. algebras of double dimension than the dimension of any a.v. algebra. Therefore,
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Albert’'s result in 1.1 gives us that there exist two-graded a.v. algebras of dimensions 1 and
2 in the complex case, and 2,4, 8 and 16 in the real one. Reciprocally, leétbe any
finite-dimensional two-graded a.v. algetda= Ag @ A1. If A1 = 0 then Albert’s results

in [4] implies dim(A) = dim(Ap) € {1, 2, 4, 8}. If on the contrary we havd1 £ 0, let us

fix v e A1, v ## 0. Then the left product operatofs(v): Ag — A1 and L(v): A1 — Ag

are linear monomorphisms and so ditg) = dim(A1), now Albert’s result completes the
proof thatA has dimension 22, 4, 8 or 16. Moreover, in the complex case din € {1, 2}.

2.2. The construction in 2.1 suggests a slightly more general method for building two-
graded a.v. algebras.

Let A be anormed space and A x A — A a bilinear map satisfyingx(x, y)| = |x||y|
for all x,y € A. Of courseA is an a.v. algebra relative to the product(this will be
denoted by(A, «)). Suppose now that we have absolute valued produgcss v, § on the
underlying normed space df and define om x A the product

(@) = (a2 + B, 0, y(x, 1) +8(y,2)), x,y,2,1 € A.

Then A x A is a two-graded a.v. algebra with even partx 0 (isomorphic toA) and
odd part Ox A. Thus for every a.v. algebra there is (possibly) an infinity of two-graded
a.v. algebras? such thatBy = A (take B = A x A and any collection of absolute valued
products{e, 8, v, 8}, for instanceq = 8 = y = § agreeing with the product of).

Let us denote by, g ,.s the two-graded a.v. algebra described above. Next we prove
that any two-graded a.v. algebra with non-zero odd part, is of the form,, s. LetC be a
division composition real algebra (so that= R, C, H or Q). Leta € SO(E) be a rotation
of the underlying Euclidean spaéeof C. Then there exisg, y € SO(E) such that

al(xy)=pBx)y(y) forallx,yeC. (1)

This triality property is easy to establish far =R, C or H. For octonions, it is a di-
rect application of triality (see, for instance, [27, Proposition 4, p. 227, and Proposition 2,
p. 275]). By [4, Section 3, p. 497], we know that any a.v. algebris isomorphic with

C =R, C, H or O with product(x, y) — a(x)B(y) for suitable linear isometriag, g of

the underlying Euclidean spade of C. We can suppose that the underlying Euclidean
space ofA is alsoE. If the isomorphism isf : A — C then for any two elements, y € A

we havexy = f~L(a(f(x)B(f(y))). Suppose now that we are working in the highest-
dimensional caseC = Q. If f turns out to be an element in $8), then applying triality
we havexy = B(x)y(y) for certaing, y € O(8). If f is not a rotation therf = g o —
wherex — X is the Cayley involution. In this casey = g~ 1(a(f(x))B(f(y))), and ap-
plying triality to g we get the product of to be of the form(x, y) — B(y)y (x) for certain
isometries, y € O(8). As a corollary we have:

Theorem 2.1. Any two-graded a.v. algebra, with non-zero odd p#&ris of the formC x C
whereC is an a.v. algebra mounted ovE&r, C, H or O, and the product irB is

(x, )z, 1) = (ea(x, 2) + a2y, 1), a3(x, 1) + a(y, 2)).
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The productsy; : A x A — A (i =1, 2, 3, 4) take one of the possible forms

1) x,y) = Bi(x)yi(y), or
(2) (x,y) = Bi(Myi(x),

for some linear isometries; andy; of C.

Unfortunately the general form of a two-graded a.v. algebra is too complex so as to
allow a classification in the general case.
The proof of the following result is straightforward:

Theorem 2.2. We haveA, g.,.s = Ay g5 if and only if there exist linear isometries
f.g:A— A such thatfa =a/(f x f), fB=p(g xg), gy =y'(f x g), and gé =
8'(g x f).

Of course the meaning of x f is the mapA x A — A x A such that(a, b) —
(f(a), f(b)). The isometric character of the linear mgpg: A — A is that|f(a)| =
|g(a)| = |a| for all @ € A. Observe that the conditiofic = a/'(f x f) is just the asser-
tion that f is an isomorphism of a.v. algebrés, a) — (A, o).

The previous theorem can be summarized in the formula

Aapy.8 = Afa(rx )L fBexe)Lgy(fxg)1edgx f)-t

which has as a particular case

Aa.py.8 = Ag pgxg)tgy(dxg)1gs(gxD) 1> ()

taking f = 14 (thena = '). To study degrees of freedom we have for choogirfgncex
has been fixed), we must study the action of the group of isomei&s of the underlying
normed spacé& of A, on a certain set. Denoting ¥y (E) this group, that is,

O(E) = {h € Endk(E): |h(x)| = x|, Vx € E},

we can defineM as the set of bilinear mapgs: E x E — E such thatip(x, y)| = |x]||y|
forall x, y € E. That, isM is the set of all a.v. products. There is a natural actiqi) x
M — M givenbyh - p:=p(h x h)™Y, h € O(E), p € M. So Eq. (2) says that, g, s =
Aq.p.y.5 Whenpg' is in the orbit of underO(E), and for suitable/” ands’.

2.3. As a particular case, which will be useful in last section, take the real a.v.
two-graded algebrad = C, so thatE = R? with the Euclidean inner product, define
a(x,y) = 0y (x)o,(x), and B(x, y) := vi0;(x)o;(y) wheren,m,i, j € {—1,1}, o1 de-
notes the identity may_1 the complex conjugation map ameh| = 1. Then it is easy to
see thaig is in the same orbit ag’(x, y) := vjo_;(x)o_;(y) for convenient;. Indeed,
definek : C — C to be the complex-conjugation, then for any> € A we have:
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h-B(a,b) = B(h x h)"Ya, b) = B(a,b) = vio; (@0 j(b) =vio_i(a)o_;(b) = p'(a,b),
so thath - = g’ takingvy = v1.

2.4. Once we have defined two-graded a.v. algebras we must exhibit examples in order
to have an idea of the amplitude the definition has. We have mentioned before the fact that
the even part of a two-graded a.v. algebra is an a.v. algebra, while its odd part is an a.v.
triple system. In a way, two-graded a.v. algebras contain a.v. algebras and also a.v. triple
systems. But if we want to give concrete examples of two-graded a.v. algebras, we must do
it at three or four different levels of complexity.

Trivial two-graded a.v. algebras

In the first level we have theivial two-graded a.v. algebrasThese are the two-graded
a.v. algebras with zero odd part (that is, they are simply a.v. algebras). These are not inter-
esting for us since we are interested in real gradings not just the trivial ones. Of course the
finite-dimensional two-graded a.v. algebras in this item, have dimensions 1, 2, 4 or 8; the
simPIest gxamp*le being the base fidSome more examples of algebras in this case are
C, C, H, H, O, O andP. To recall the definition of these algebras, we must mention that
for any real composition algebrawith Cayley involutionx — Xx, the algebra is the one
whose underlying normed space agrees with that dfs product being the one given by
x -y =Xy (juxtaposition denoting products {i). The algebra@ of pseudo-octonions was
introduced by S. Okubo in [26]. This is nothing more than the subspagé«f) formed
by the zero trace matrices fixed by the involutian— m' (conjugating and transposing).
The product in this space of matrices is giveniyy := uxy + (1 — n)yx — %tr(xy)l,
where u is any of the root of 3(1 — w) = 1. This algebrdP is absolute valued for the
absolute value coming from the inner producty) := tr(xy).

Non-simple two-graded a.v. algebras

In the second level of complexity we find the two-graded a.v. algebras constructed as
in 2.1. As we prove later, these are the only two-graded a.v. algebras which are not sim-
ple (in the ungraded sense). Furthermore, the algebras in this level of complexity are not
prime, and zero divisors live comfortably in them. These two-graded a.v. algebras suggest
another way in which the class of a.v. algebras can be embedded in that of two-graded a.v.
algebras. The classification of these non-simple two-graded a.v. algebras is equivalent to
the classification of a.v. algebras. The finite-dimensional two-graded a.v. algebras in this
item, have dimensions 2, 4, 8 or 16.

Cayley—Dickson process

In the third level of complexity we find those two-graded a.v. algebras constructed from
an a.v. algebra with involution by the Cayley—Dickson process. S@ jf-) is an a.v.
algebra with involutiorz — a, then we shall denote by G2, —, 1), u € 1, the algebra
whose underlying vector spacedsx A with the product

(Y = ex' + uy'y, Xy + xy),
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beingA x 0 the even part and¥ A the odd part. The algebras in this level have dimensions
2,4, 8 or 16 again. Among them, we find the real division algetrdg, O and the hexag-
onions (or sedenionsy constructed by applying the Cayley—Dickson proces® taith
the scalar—1. We also find the algebras of real split quaternions, the algebra of real split
octonions and that of real split hexagonidfis To investigate the simplicity of these alge-
bras we shaII need the fact that the only a.v. commutative algebras, are up to isomorphism:
R, C or C. This fact, which is known as the commutative Urbanik—Wright Theorem, is
not difficult to prove directly in the finite-dimensional case, but it can be seen also as a
corollary of the WeII known cla55|f|cat|on of flexible a.v. algebras [21]: The flexible a.v.
algebras ar®, C, (C H, IHI O, (O> andP.

Suppose now thaB is a two-graded a.v. algebr® = CD(A, —, u) where(A, —) is
an a.v. algebra with involution and = +1. Let I < B be a proper non-zero ideal &f. If
I N By # 0, asB is a division algebra in the graded sense, we immediately con&dudéd
contradicting the fact that is proper. If/ N B1 # 0 we obtain/ = B as before. Thus we
havel N Bo =1 N B1 =0. As a consequence, for fixed; € {0, 1}, i # j, we have that
for any x € B; there is a uniquer € B; such thatr + y € 1. If we denote byr:A — A
the map such thate, 7 (x)) € I for eachx € A, thenl = {(x, 7 (x)): x € A}. Sincel is an
ideal we havex, w(x))(a,b) € I,foralla,b, x € A. But

(x, n(x))(a, b) = (xa + ubn(x), b —l—arr(x)) el.

Taking b = 0 we get(xa, am(x)) € I implying 7 (xa) = ax(x). Analogously(a, b)(x,
7 (x)) € I implying (ax + um(x)b, an(x) + xb) € I. Forb = 0 we getr (ax) = an(x).
Thus we have provetl(xa) = arm(x) andr (ax) = an (x) foralla, x € A. Takingx =11in
the previous equalities we geta) = ax (1) = an (1) foranya € A. Thisimpliest (1) =
ora = a for eacha € A. The first possibility would implyr = 0 and thenl = A x 0= By
contradicting the facf N Bo = 0. Hence necessarily=a for anya € A. In thls caseA
is commutative and applying the above observation, we 2R, C or C. Thus we
onl¥ have to worry about the non-simple algebras obtained a€Cb, +1) for C =R, C
or C. We shall see (paragraph above Theorem 3.1), that these non-simple algebras are
isomorphic toC x C with componentwise operations, even part the diagonal elereats
{(x,x): x € C} and odd part the antidiagonal elementts= {(x, —x): x € C}. However,
we are interested in the exploration of the different algebra@CB, £1). So we analyze
the different cases.

(1) For C =R the only involution is the identity, so the only algebras arising from
CD[R,1,+1) areC = CD(R, 1, —1) andC; = CD(R, 1, 1) (the algebra with base
{1, i} such that® = 1, isomorphic tdR x R with componentwise operations and ex-
change involution). The only non-simple one in this case is of callgse

(2) ForC = C with the identity involution we have C(@, 1,1) = CD(C, 1, —-1) =C¢c =
C ®r C (Cc is the complex algebr& x C with componentwise operations). In our
case, we restrict scalars so as to considgras a real algebra. This is hon-simple
indeed.

(3) Consider nowC = C with the complex conjugation as involution. The algebras arising
from CD(C, —, £1) areH; = CD(C, —, 1) = M2(R) (split quaternions), andl =
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CD(C, —, —1) division quaternions. Both are simple so this case does not yield non-
simple examples.

Consider now the cage= (C How many involutions can we find it? Any involution

in C is also an involution mC but there are some more involutions in this algebra. It

is not difficult to check that there are six automorphisms (hence antiautomorphisms
given the commutativity of the algebra). Precisely

aut(@) = {1, wl, a)zl, - w—, a)z—},

wherew = exp 2ri/3 is a primitive cubic root of 1, and fof = 0,1, 2, by /1 we

denote the map — w’x, while a)f— is the mapx — w/X. It is easy to prove that

there are only fourlnvolutlons iy 1, -, 0— anda) —. We have to consider then the

eight algebras C[ZC o,x1) with o € {1 —, w—, w?—}. In order to rule out possible
isomorphisms among them, we have computed the set of idempotents in the algebras,
as well as the sets of tripotents and antitripotents of the triple systeyas:= (xy)z,

in each case. We recall that an elememf a triple systemr’ is called atripotent

(respectivelyantitripoten), if (xxx) = x (respectlvely(xxx —x). A complete de-

scription of this study is glven in Fig. 1. The algebra @Dw— €)is |somorph|c (in

graded sense) to C([(E w?—, €) fore = +1, the |somorph|sm isc, y) > (02x, 02y).

(a) The algebra C[ZE 1,1) is isomorphic tat x € with componentwise operations,
even part the diagonal and odd part the antldlagona]/ This |s of course
non-simple but the direct sum of the idedls< 0 and 0x C. SinceC has four
idempotents, this algebra has sixteen. Its odd part is the a.v. triple s¢steitt
the triple product{abc) = (ab)c = abc. The tripotents of this a.v. triple systems
are 0 and the whole unit sphesé of C. The only antitripotent is zero.

(b) The algebra C[f: 1, —1), which is simple, has only four idempotents and so this
algebra is not isomorphic to the preV|ous one.

(c) Let us consider now the algebra (IID —, €) with e = +1. The odd part is the
a.v. triple systenC with triple product(abc) = eabé. This has three tripotents
hence it is not isomorphic to any of the previous cases. It can be seen that this is
a simple two-graded a.v. algebra. The algebrasf(:l} 1) and CI:((C ,—1
have isomorphic even parts and also the a.v. triple systems extracted from their
odd parts are isomorphic. However they are not isomorphic since the sets of idem-
potents are very different from a topolog|cal viewpoint. If fact in both cases the
set of idempotents is infinite. But in (ID —, 1) the set is not bounded, in the
sense that it |s not contained in a closed ball of the underlying Euclidean space,
while in CD(C ,—1) it is. This implies the non-isomorphic character of these
algebras since an isomorphism would induce a homeomorphism between both sets
of idempotents.

(d) The algebras C(IE w—, £1) are non-isomorphic to the previous ones. One can
prove that there is no graded isomorphism between them.

Summarizing, the different algebras obtained fr(ﬁrby applying the Cayley—Dickson

process are the given in Fig. 1.
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Algebra Idempotents ~ Tripotents  Antitripotents
cD(C. 1,1) 16 stuop 1

coé.1,-1) 4 1 slu{o)

D, - 1) oo 3 3

e, w—, +1) 4 1 1

Fig. 1. Algebras obtained fron.

A sixteen-dimensional two-graded a.v. algebra

One of the relevant facts about two-graded a.v. algebras is that one can exhibit sixteen-
dimensional examples. Any algebra obtained from an eight-dimensional absolute valued
algebra by the Cayley—Dickson process is a sixteen-dimensional two-graded a.v. algebra.
Consider, for instance, the a.v. algelita —) wherex — x is the Cayley involution. Then
X =CD(Q, —, —1) is the so called hexagonions which has been considered previously by
many authors (see, for instance, [1,2,6,16,20,24]).

If we take a non-zero element= (a, b) € X then the standard involution K mapsx
tox :=(a, —b). Therefore

xx = (a, b)(@, —b) = (aa + bb, —ab + ab) = (aa + bb, 0).

Since the octonionic norm— zZ is positive definite, the quadratic m&p— R1 given by
x — |x| ;= xX is also positive definite hence for a non-zera X we havexx = xx = |x|
and any non-zero element has an inverse. Though this algebra has multiplicative inverses,
it is not a division algebra, since an explicit computation proves that the hexagonions have
zero divisors. In fact, the zero divisors of norm one in the hexagonions form a subspace
that is homeomorphic to the exceptional Lie gra@p (see [16,24]).

There is also a way to introduce hexagonions by giving a suitable basis and its multipli-
cation table (see also [1]). Consider the real algebra with a fasis. ., e15} in which eg
is the unit of the algebra and for;j > 0 we have the multiplication rules

15

€i€j=—5ijeo+zeijkekv (3)
k=1

where$;; stands for the Kronecker delta, aag is the totally antisymmetric tensor such
thate;;x = 1 for (i, j, k) being one of the following triplets:

1,2,3), (14,5, (2,46, G470, 257, 17,6, 365,

1,8,9, (2,810, (3,811, 4,812, (58,13, (6,814, (7,8,15),
(13,1110, (1,13/12), (1,14,15, (2,9,11), (2,14,12), (2,15 13), (3,10,9),
(4,9,13), (4,10,14), (4,11, 15), (3,1512), (3,13 14), (5129 (5,10,1Y),
(5,14, 11, (6,159), (6,12 10), (6,11, 13, (7,9,14), (7,13 10), (7,12 11),

ande; jx = 0 in the remaining cases. Itis not difficult to prove that this algebra is isomorphic
to X. In order to see this, we can consider the basilaf O C X given by/{eo, ..., e3}
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such thateg is the unit of H and fori, j = 1, 2, 3 we havee;e; = —§;je0 + Z,le €ijkek
whered;; is as before and; ; is the totally antisymmetric tensor such thatz = 1. Con-
sider now any, in @ — H, orthogonal te; fori =0, ..., 3, and satisfyinges| = 1. Define
theneay; :=e;jeq (i =1, ..., 3). Thus we obtain a basfsgy, ..., e7} of O whose multipli-
cation relations arege; = ¢;eq = eg for all i, and fori, j > 0,e;e; = —8;je0+ ZZ:l €ijkek
whered;; is as before the Kronecker delta, angl is the totally antisymmetric tensor such
thate;jx = 1 for (i, j, k) equal to any of the following triplets

(17 27 3)1 (17 4, 5)7 (21 47 6)7 (3’ 41 7)’ (27 57 7)7 (11 79 6)1 (37 6, 5)7

ande;;; = 0 in the remaining cases. Finally, let us take an eleragatX — O orthogonal
toe; fori =0,...,7 and satisfyingeg| = 1. Defineeg,; :=ejeg fori =1,...,7. We
obtain in this case a basfgy, ..., e15} 0f X whose multiplicative relations are given by
Eq. (3).

Some other algebras are also of interest from different viewpoints. For instance, the
sixteen- d|menS|onaI two-graded a.v. aIgebras{@D— 1) of split hexagonions, or the al-
gebras CID(O) o, €), with ¢ an involution of® ande = 41, or CDO(P, o, €). Of course the
twisted versions of these algebras are also worth to consider.

3. Simplicity of two-graded a.v. algebras

Finite-dimensional a.v. algebras are always division algebras. The bad news about two-
graded a.v. algebras is that they are not necessarily simple. In factsién a.v. algebra,
thenB := A x A with the product

(x, y)(z,t) = (xz + yt, xt + yz)

is two-graded with even pa x 0 and odd part < A. However the subspaca =
{(x,x): x € A} is a proper non-zero ideal d8. Moreover, A’ := {(x, —x): x € A} is
also a proper non-zero ided,,= A ® A" andAA’ = A’A =0, so zero divisors exist in
abundance.
But two-graded a.v. finite-dimensional algebras are division algebras in the graded
sense: For any homogeneous elemerthe left and right multiplication operatods(a),
R(a), are invertible on the homogeneous parts. From this, it is a corollary the fact that
two-graded a.v. algebras are simple in the graded sense. We pose the following question:
What conditions imply that a two-graded a.v. algebra is simple in the ungraded sense?
To answer this question take a two-graded a.v. algdbeand a non-zero proper ideal
I<A.If INAg#D0,then asA is a division algebra in the graded sense, we immediately
concludeA c I contradicting the fact that is proper. If/ N A; # 0 we obtain/ = A as
before. Thus we havEn Ag =1 N A1 = 0. Next we can take

mo(l) :={ap € Ag: a1 € A1; ap+a1 €}

which is a non-zero ideal ofg. Thenmg(/) = Ag. Following this idea one can prove that
m1(I) (defined similarly) is also the wholé;. Define now the map : Ag — A1 as fol-
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lows: For anyug € Ag, one defin® (ap) := a1 the unique element such that+a; € 1. Itis
easy to see now thdt= {ag+ 0 (ap): ap € Ao}. Symmetrically we can defir : A1 — Ag
such thatz1 — ag (the unique even element such thatt a; € ). Finally we can define a
linear maps2: A — A extendingd and¢’ and satisfying22 = 1,. Furthermore, this map
satisfies the identities

.Q(X,'Xj) = .Q(x,-)xj =X,'.Q()Cj) and XiXj= .Q(x,').Q(Xj)

for homogeneous elements andxj.l The ideall agrees with the set of ally + 2 (ao)
and then, defining as the set of alig — £2(ag) one checks thaf is a proper non-zero
ideal of A suchthattJ =JI =1InJ=0andA =1 & J (this last being a consequence

of:
_ (a0 | £2(ao) ao  $2(ao)
ao—<2+ > >+<2 > )

4= <!2(a1) n ﬂ) _ (9(611) _ ﬂ)
2 2 2 2)

for a; € A;, i =0,1). Next we consider the two-graded a.v. algelAgax Ag with the
product(x, y)(z, t) = (xz + yt, xt + yz), even partAg x 0, odd part O<x Ag and absolute
values|(ao, 0)| := |aogl, |(0, ao)| := |ag|. Taking into account that = I & J, we can define
the mapg: A — Ag x Ag given by ¢ (ag + $2(ag)) := (ag, ag) and ¢ (ag — 2(aog)) :=
(ao, —ap) for anyag € Ag. Itis straightforward to prove thgtis an isometric isomorphism
of two-graded a.v. algebras. Thus we have proved:

Theorem 3.1. Let A be a two-graded a.v. finite-dimensional algebra. Then we have only
one of the following possibilities

(1) Ais simple as ungraded algebra.

(2) A= B x B for some a.v. algebr#&, the productinA being(x, y)(x’, ) = (xx’ +yy’,
xy +yx")forx,x’,y,y' € A,evenpartdp = B x 0, odd partA1; = 0x B and absolute
values|(x, 0)| := |x[, |(0, y)| :=|y|, x,y € B.

As a consequence of the last theorem we can conclude that the worst two-graded a.v.
algebras (those which are not simple) are the best known since their study reduces to that
of a.v. algebras (with no gradings).

4. Two-graded a.v. algebrasand a.v. triple systems

In this section we shall show how the theory of a.v. triple systems can be related to the
one of two-graded a.v. algebras. We recall that the definition of a.v. triple system is given

1 we deduce from these equations tiais in the centroid ofd. The study of the centroid is a subject deserving
some attention since it could provide alternative tools in the theory of two-graded a.v. algebras.
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in 1.4. The reader also can find some aspects of the theory of a.v. triple system in [10,11].
In this section,I" will denote a finite-dimensional a.v. triple system oler

The key reference for a.v. triple systems will be [25]. In the finite-dimensional case the
absolute value comes from an inner product, so the results in [25] can be applied and are
fundamental for our study.

Following the philosophy of [25], ifA = Ao & Aj is a two-graded a.v. algebra, then
its odd partA; is an a.v. triple system by definingyz) := (xy)z (or (xyz) := x(yz))
for x, y,z € A1. These are called the left and right standard triples products irAny
permutation of these triple products also provides us with an a.v. triple system structure
to A1. These triple products defined as permutations of the standard ones will be called
in the sequelstandard triple productsTwo a.v. triples system% and T’ are callediso-
topic (denotedr” ~ T”) if there are linear isometries; : T — T’ (i =0, 1, 2, 3) such that
Fo({xyz)) = (F1(x) F2(y) F3(z)) for any x, y, z € T. The notion of isotopy, as introduced
in [25], is more general. But working over the reals or complexes, it is equivalent to the
previous one as the following result (inspired in [25]) proves.

Lemmad4.l.LetT andT’ be a.v. triple systems, arfd : T — T’ norm similarities, that is,
|F;(x)| = a;|x| for all x € T, and somgnecessarily positiyes; e R, i =0, 1, 2, 3. Sup-
pose thatig = aiazas, and Fo({(xyz)) = (F1(x) F2(y) F3(z)) for anyx, y,z € T. Then the
mapsG; := ai_lF,- (i =0,1,2,3), are linear isometries providing an isotofy~ T'.

We have proved in 2.2 that for any a.v. algelrahere are (possibly) many two-graded
a.v. algebras whose even partisThus the even part of a two-graded a.v. algebra does not
characterize the whole algebra at all. However, the even parts of two-graded a.v. algebras
exhaust the class of all a.v. algebras.

Let us specify now, three ways of constructing a.v. triple systems from two-graded a.v.
algebras. IfA = Ag® A1 is a two-graded a.v. algebra, we can construct an a.v. triple system
over A1 by defining the triple produdtyz) := (xy)z. The second example is the one given
by the triple productxyz) := x(yz), while the third one is provided with the triple product
(xyz) := (xz)y. We say thatin a.v. triple system comes from a two-graded a.v. algebra
if it agrees with(A1, ()) for some of the previous triple systems.

Now we pose the following question: Is there for any a.v. triple systgnany two-
graded algebra whose odd parffigperhaps up to isotopy)? In other terms, does the class
of odd parts of two-graded a.v. algebras exhaust that of a.v. triple systems?

To answer this question we shall need the following:

Proposition 4.2. LetT be an a.v. triple system for which there is a two-graded a.v. algebra
A such thatl' = A1 with the triple productxyz) := (xy)z (respectivelyxyz) := x(yz) or
(xyz) := (x2)y). Then, ifT ~ T’ for an a.v. triple systeniT’, ()’), there is a two-graded
a.v. algebraA’ whose odd part ig” and (xyz)" := (xy)z (respectivelyxyz) := x(yz) or
(xyz) := (xz)y) foranyx, y,z € T'.

Proof. Let consider the two-graded a.v. algebraAs dim(Ag) = dim(A1) (see 2.1), we
can suppose that the two-graded algebra whose odd paridsA = T x T for a suit-
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able product such thatg =7 x 0, A1 =0 x T and (0, {abc)) = ((0,a)(0, b)) (0, c¢) for
a,b,ceT.

AsT ~ T’,there are linearisometrids: T — T’ (i =0, 1, 2, 3) such thatp({(xyz)) =
(F1(x)F2(y) F3(z))’ for all x, y, z € T. Define now the two-graded algebtd =T x T’
with the product

o, XN,y = (xy + FU OO F RO, Fo(x 3 t(Y)) + Fo(F3 H(x)y)).

This is a two-graded a.v. algebra with even gark 0 and odd part & 7”. In this algebra
we have(0, x')(0, y) = (F; *(x") F; ('), 0) and

((0,x')(0,¥))(0,2) = (F{ 1) F; 1 (), 0)(0, 2) = (0, Fo((F{ t() Fy t(v)) F5 ()
= (0, Fo((Fy ") F; () F3H@))) = (0, (x'y'2Y).

The rest of the cases are similar to the previous ore.

We now return to the fact that any a.v. triple system appears as the odd part of some
two-graded a.v. algebra. To see this, as a consequence of Proposition 4.2, we only need
to prove the result for one representative in the isotopy class of every a.v. triple system.
Thanks to K. McCrimmon [25], we can exhibit such a representative.

In the complex case any finite-dimensional a.v. triple system is one-dimensional and
isometrically isomorphic tcC with the triple productixyz) = xyz, then it is immediate
to check that this a.v. triple system is the odd part of the two-graded a.v. complex algebra
C x C with product

) Y) = (ex’ + yy xy + yx').

In the real case, any (finite-dimensional) a.v. triple system is isotopic to one of the
following:

(I) Dimension oneT =R with (xyz) = xyz.
(I) Dimension two:T = C with (xyz) = xyz.
(1) Dimension four:T = H (real division quaternions) andyz) is one of
(i) xyz,
(i) xzy,
(i) yxz.
(IV) Dimension eight.T = O (real division octonions) an¢kyz) is one of
(i) (yz,
(i) (x2)y,
(i) (yx)z,
(iv) x(yz),
(V) x(zy),
(Vi) y(x2).
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So, it suffices for our purposes to prove that any of the a.v. triple systems above is the odd
part of a two-graded a.v. algebra. Consider first the case in whiehR, C, H or O with

the triple product{xyz) = (xy)z. This is the odd part of the two-graded a.v. algebra T

with product

L Y) = x’ + yy xy + yx). (4)

As we check immediately, the identit9, (xyz)) = ((0, x)(0, ))(0, z) holdsforx, y,z € T.

This comprises cases (1), (1), (IIN(@) and (IV)(). It is as in (1)(ii) or (IV)(ii) then T

is the odd part of the two-graded a.v. algebra whose product is (4). In this case the triple
product is related to the binary productBfx T by (0, (xyz)) = ((0, x)(0, 2))(0, ). For

cases (ll)(iii) and (1V)(iii) we can takg x T with the product

(Y)Y = x4+ Yy, xy" + yx),

and(0, (xyz)) = ((0, x)(0, y))(0, z). The rest of the possibilities are similar. Summarizing
all of this we can state:

Theorem 4.3. Any a.v. triple system is the odd part of a two-graded a.v. algebea
Ap ® A1 with some of the triple productéxy)z, x(yz) or (xz)y.

5. On the classification of two-graded a.v. algebras

As we said in 1.2, there is in the literature a precise determination of isomorphism
classes for (ungraded) a.v. algebras of dimensions 1, 2 and 4. These, joint with the results
in Section 2, lead us to study in this section the isomorphism classes for two-graded a.v.
algebras of dimensions 2 and 4. From now on, given, y € K, K =R or C, the juxta-
positionxy will mean the usual product iK. The following lemma will be useful in our
study.

Lemmab.l. Let A = Ag & A1 be a two-graded a.v. algebra and 1By be an a.v. algebra
such thatAg = Bp. Then the direct sum® := By @ A1 can be endowed with a two-graded
a.v. algebra structure, satisfying = B.

Proof. Letus denote by the isomorphism fromig onto Bg. Then it is easy to verify that
the product(b, x)(»', x') := (b0’ + ¢ (xx'), ¢~ 2(b)x" + x¢~1(b')) endowsB = By ® A
with a structure of two-graded a.v. algebra, and thatA — B defined byu (xo, x1) :=
(¢ (x0), x1) is an isomorphism. O

5.1. Theresultsin 2.1 give the following:

Proposition 5.2. Let A = Ap @ A1 be a one-dimensional two-graded a.v. algebra dier
K=RorC. ThenA =K & 0= K with the usual product and norm K.
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5.2. In order to begin the study of two-dimensional two-graded a.v. algelras
Ao @ Aj, we shall fix some notation. The two-graded a.v. real algébraR with the
product

(x, ¥)(u,v) = (xu + €2yv, €3xv + €3yu),

wheree; € £1,i =1, 2, 3, and the usual Euclidean norm will be denotedAtys, €2, €3).
The two-graded a.v. complex algelftax C with the product

(x, y)(u, v) = (xu + p1yv, p2xv + p3yu),

wherep; € C with |p;| =1,i =1, 2, 3, and with the usual Euclidean norm, will be denote
by A(p1, p2, p3)-

If A1 =0thenA = Ag is an a.v. algebra with dimension 2 and so it is well described
in [29].

Then, let us suppose that; # 0. As Ag is an a.v. algebra and didy = dim A1
(see 2.1), we have ditig = dimA; = 1 and so it is easy to see thay = R in the real
case andig = C in the complex one. Moreoved; = K as vector spaces, So we can write
A =K x K and, taking into account Lemma 5.1, the productinan be expressed by

x,y)u,v)=@Cu+yov,xOv+yAu) (5)

where the productX x K — K, (a,b) > aob, (a,b) — aOb and(a,b) > a A b are
absolute valued.

Let us consider, for instancéy, b) — a o b. If we write k := 10 1, then theK-linear
character ob givesx o y = kxy. As |kxy| = |x]||y| we havelk| = 1. The same applies to
0 and A and so, ifK = R, thenk = +1 and, taking into account (54 is of the form
A(e1, €2, €3) for somee; € +£1,i =1, 2, 3. If K= C, we conclude as in the real case that
A = A(p1, p2, p3) forsomelp;|=1,=1,23.

Let us considerK = R and let us study the isomorphism classes of the algebras
A(e1, €2, €3). First, we observe that if

¢ :A(e1, €2, €3) — A(eq, €5, €3) ()

is an isomorphism, then its restriction to the homogeneous parfR-irear isometries
on R with the Euclidean inner product, therefapgs, = £1d and¢|4, = £Id, so we can
assert thap is of the forme (xg, x1) = (£x0, £x1). Taking into account these possibilities
for ¢ it is easy to check that (6) only holdsdf = ¢! for anyi =1, 2, 3.

If K= C, then arguing as above we have that any isomorphism

¢ A(p1, p2, p3) = A(p1. Pb. P3).

is of the forme¢ (xg, x1) = (vxg, wx1) With v, w € C satisfying|v| = |w| = 1. Then, it is
not difficult to check tha# (xo, x1) := (xo, /p1x1) IS an isomorphism from (p1, p2, p3)
onto A(1, p2, p3), and thatA(1, p2, p3) is not isomorphic to any (1, p5, py) if some
pj#p;Jj=23.
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Summarizing we have proved the following:

Theorem 5.3. Let A = Ag @ A1 be a non-trivial two-dimensional two-graded a.v. algebra
overkK.

(1) f K=R, thenA = A(e, €2, €3) With¢; € 1, i = 1, 2, 3. Moreover,A(eq, €2, €3) =
A(€], €5, €3) ifand only ife; = € foranyi =1, 2, 3.

(2) f K=C, thenA = A(1, p1, p2), with |p;| =1, i =1, 2. Moreover,A(1, p1, p2) =
A(L, p3. py) ifand only if p; = p! foranyi =1, 2.

As any complex finite-dimensional two-graded a.v. algebra has dimension 1 or 2
(see 2.1), we have completed the study of the complex case, therefore we confine ourselves
to the real case.

5.3. Let us study two-graded a.v. algebras of dimension 4. The first case to consider
would be that in whichA has the trivial grading, that i4 is simply a four-dimensional
a.v. algebra. These have been considered in [28, Proposition 2.1, p. 170]. In this reference,
it is proved that up to isomorphism, any four-dimensional a.v. (real) algebra is one the
algebrasH (a, b), H(a b), *H (a,b) or H*(a, b) for somea, b € §% = {x e H: |x| = 1}.
These algebras are callgdincipal isotopesof H and their products are, respectively:
axyb, axyb, xayb, andaxby, where the juxtaposition is the product]}m andx X
its Cayley involution. MoreoveH (a, b) = H(a', b’) (respectlverH (a,b) = H (a’,b) or
*H(a,b) =*H(d',b') or H*(a,b) = H*(d’,}")) if and only if there is ap € 53 cH
such thata’ = epap~—t andb’ = spbp~1, with €, 8 € {—1, 1}. It is possible to give a fur-
ther refinement of this description. If we consider the standard b&sis;, k} of H, with
i?=j2=k?=-1,ij=—ji =k, jk=—kj =i andki = —ik = j, thenH=R1@® W
where W = 1+ = span({i, j, k}). Taking S3, this is obviously a compact connected Lie
group, and it is easy to prove directly that one of its maximal tori is the subgroup
{exp0i): 0 € R} = St (see also [7, (3.7) Theorem, p. 173]). It is also a well-known re-
sult that in a compact connected Lie group, any element is conjugate to some element in
a pre-fixed maximal torus (see [7, (1.7) Main Lemma, p. 159], or [3]). In particular for
anya € S there is some € $3 such thatgag—! = exp(#i) for somed € [0, 27). Thus
H(a,b) = H(exp0i),b') whereb' = gbq~1. If a =1 we haveH (1,b) = H(1, gbq™ 1),
and for a suitablg we can writegbg 1 = exp(¢i) for some¢ € [0, 27), thenH (1, b) =
H(, exp(¢i)). If a # 41, we can now consider an arbitrary element= exp(sz) for
somes € R. We also have an isomorphisi(exp(6i), b") = H(q1exp0i)q, ,qlb’q1 b,
But g1 exp(ez)q = exp(fi) for any suchg;. As a consequence we still have a certain
degrees of freedom to simplifiy by conjugating it with some1 chosen as above. So if
b’ = by + bji + w' for somew’ € spari{;, k}), then

q1b'qy "t = by + byi +q1w'q; T = b+ bi + gfw'

but qlw’ = exp(2si)w’ can have any value in spdr, k}) with the same norm as/’.
For mstanceglw = |w'|j for a suitableq;. Thereforeqlb’ql’l = by + bji + [w'|j
andl/2 + l/2 + |w'|? = 1. Thus we may writéb, = p cosg, b’ = psing, and|w’| =
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V11— p2forsomep,peR,0< p< 1. Inth|swayqlb’q1 = pexp(gi) ++/1— p2j and
H (exp8i), b') = H(exp@i), p exp(¢i) + /1 — p2j). Summarizing

H(a,b) = H(exp(ei), pexXppi) + /1 — ij).

If we defineH (0, ¢, p) := H(exp(8i), p exp(¢pi) ++/1 — p2j), we conclude that any four-
dlmenS|onaI absolute valued algebra is isomorphic to some of the algétiga®, p),
H(@ ¢,0),*H(@, ¢, p),or H*(0, ¢, p) where

WO, b, p) = W(exp(ei), pexp(gi) + /1 — ,02j)

for W € {H, ﬁ], *H, H*}. The dependence d¥ (a, b) (W as before) on the quaternions

a andb is thus replaced by the dependencélofd, ¢, p) on the three real numbefs ¢
and p. This will also give some advantages from the viewpoint of the isomorphism con-
ditions. Let us now bound the possible values of the three paramttgrsand p. We
already know thap € [0, 1]. Taking into account the relationi:exp(d i) j ~* = exp(—0 i),

we can limité to be in the interval0, 7], and sincej exp(fi)j = exp((wr — 6)i), we

can takef e [0, r/2]. On the other hand, the relationi(p exp(gi) + /1 — p2j)i =
—(pexp((¢ +m)i) ++/1— p2j) implies that we can take < [0, ). Thus, we can claim:

Theorem 5.4. Any absolute valued four-dimensional algebra is isomorphic to one of the
algebrasW 9, ¢, p) with W € {H, H *H,H*}, 0 € [0,7/2], ¢ € [0,7) and p € [0, 1].

If & =0 thenp = 1 and, with the above conditions for the parameteis(d, ¢, p) =
W', ¢, p)ifand only ifd =6’, ¢ = ¢’ and p = p’ except in the cases

(1) 6=0, p=1. We haveW (0,¢,1) =W (0, ¢’,1) ifand only if¢’ = ¢ or ¢' =7 — ¢.

(2) 0 =m/2. In this caseW (7/2, ¢, p) =W (x/2,¢', p') ifand only if p = p’, ¢’ = ¢ Or
¢ =7 —9¢.

(3) p =0, in which caseW (9, ¢,0) = W (9, ¢’, 0) for arbitrary ¢ and¢’'.

Proof. The only thing we have to prove is the isomorphism condition. Suppo®e ¢, p)
=wW®, ¢, p), with6,0’,¢,¢" €[0,7/2] andp, p’ € [0, 1]. Then, there exists @ € H,
lg| =1, such that

expo’i) = eq expBi)g L,
P exp(@') +/1— p'2) =8q (pexp@i) +/1- p2) )7,

with €, § € {—1, 1}. Thus by writingg = g1 + g2 with g1 € spar{1, i}), g2 € span{}, k}),
we conclude

expd’ig, = eq,expi) forr=1,2, @)

o exp(@'i)g1+ /1 — p'2jq2 = 8q1p €XP($i) + 8g2,/ 1 — p?, (8)



A.J. Calderén Martin, C. Martin Gonzalez / Journal of Algebra 292 (2005) 492-515 509

o' exp@i)g2 +/1— p'2jq1=8qz2p exp(gi) + g1,/ 1 — p?j. )

Sinceq = g1 + g2 # 0, we shall distinguish three cases:

(@) If g1 # 0 andgz # 0, then asq; commutes with ex@i), we have by Eq. (7)
expdi) = eexp(d’i). Fore = 1 this impliesd = 6’. Fore = —1, we getd’ =0 + = which
is impossible given the restrictions on the parameters. Then necessarilyand by (7)
exp(0’i)g2 = g2 exp(9i) = exp(—0i)g2. We concluded =6’ = 0 and sop = p’ = 1. Tak-
ing now into account Egs. (8) and (9), we have @p)q, = 8q, exp(¢i), r = 1, 2. Arguing
as above we also get that necessatily 1 and¢ = ¢’ = 0.

(b) If g1 # 0 andg> = 0, we obtain as in (ak = 1 andd = ¢’. By taking norms in
Eq. (8) we obtainp = o'.

Q) If p=p" #£0, then expgp’i) = s exp(¢pi) and fors = 1 we concludey’ = ¢. Fors§ =
—1 we havep’ = ¢ + 7 which is impossible ifp, ¢’ € [0, 7).

2) lfp=p"=0,W®H,¢,00 =W, 0) for any ¢, ¢’. So we can choos¢ = 0 and
we have exception (3) in the theorem.

(c) If g1 =0 andgz # 0, theng = g2 € span{{;j, k}). From Eq. (7), ex@’i)g2 =
€q2exp0i) = e exp(—0i)gz. This implies exj®’i) = ¢ exp(—0i). Hence, fore = 1 we
haved’ = —0, and for9, 6’ € [0, /2] this is only possible i =6’ =0 and sq = p’ = 1.
By arguing now as in (b) with Eqg. (9), we obtain that= ¢’ = 0 in cases = 1, and that
¢+ ¢ =m in cases = —1. Fore = —1 we get ex’i) = —exp(—0i) = exp((wr — 6)i)
implying 8 = 6’ = 7 /2. By taking norms in Eq. (9), we obtajn= p’.

Q) If p=p"#0, Eqg. (3) now gives exp’i) = § exp(—¢i), and by arguing as above we
geteithep =¢' =0if s=1,0r¢p +¢' =7 if § = —1.

2) If p=p’'=0,we haveW (z/2,¢,0) = W(x/2,¢',0) for any¢ and¢’. Thus we can
take¢’ = 0 and we obtain exception (3) in the theorenm

Finally, let us consider the problem of the classification of non-trivial four-dimen-
sional two-graded a.v. real algebras. Let us derfdte= {x € R?: |x| = 1}, O(2) the
group of all isometries iR2, O+ (2) :={f € O2): det(f) =1} andO~(2) :={f €
O(2): det(f) = —1}. In this study we are going to develop the techniques introduced
in5.2.

Asin 5.2, the casd 1 = 0 is the one we have just described. So, we thke: 0. As Ag
is an a.v. algebra and digy = dim Al*(see 2.1), we have dirig =dim A4 = 2 and so by
applying [29, Lemma 24y = C, *C, C, or C*, where the products ifiC, C, andC* are
respectivelyx - y :=Xxy, x - y :=Xxy andx - y := xy. Moreover,A; = C as vector spaces,
so we can writedA = C x C and, by Lemma 5.1, the product itncan be expressed by

(x,y)(u,v)=(on(x)am(u)—i—yov,xljv—i—yAu) (20)
where anyo,,, o, is either the identity map or the complex conjugation map, and where

the productsC x C — C, (a,b) — aob, (a,b) — ab and(a, b) — a A b are absolute
valued. As in 2.3¢g1 denote the identity map i@ ando_1 the complex conjugation map.
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Lemma5.5. Any mapo, [J, A :C x C — C given in(10)is eitherC-linear or C-conjugate-
linear in any variable.

Proof. Let us consider, for instancéy, b) — a o b. Fix x € ST and writev := L(x)(1),
(L(x) denotes the left product operator, see 1.3). Sih¢e) € O(2), we have two pos-
sibilities: In the first oneL(x) € O (2), hence by applying elemental results in linear
algebra,L(x)(i) = iv and thenL(x)(z) = zv for any z € C. In the second possibility,
L(x) € O~ (2), thenL(x)(i) = —iv and we havd.(x)(z) = 7v.

In the first possibilityL (x)(zz") = zz'v = zL(x)(z'), that is, L(x) is C-linear. In the
second possibility we similarly obtaih(x) is conjugate-linear. This clearly extends to any
x € C by a connection argument. We argue in a similar way for the right product operators
and so(a, b) — a o b is eitherC-linear orC-conjugate-linear in any variable. The same
applies ford andA. O

By Lemma 5.5, if we denote d1 =, (v € S1), we havex o y = vo; (x)o;(y) where
any oy is either the identity map or the complex conjugation map. The same appliés to
andA and so we can write the productihas

(x, Y) (1, v) = (04 (X)om () 4 v10; (¥)7; (v), V20, (x)0g (V) + V30, (V)05 (1)) (11)

wheren,m, i, j, p,q,r, s € £1 and anyy € S*.

For each multindex: = (0, o1, 07, 0}, 0p, 04, 07, 05), denote byA, (vy, vz, v3) the
algebraA with the productin (11).

Let us observe that if

¢ 1Ay (v1, v2,v3) = Ay (V] V5, V3) (12)

is an isomorphism, wherg’ = (0,,0,,,0/,0},0},,04,0/,0), then its restriction to the
homogeneous parts

Bla, 12,0900 AN Pl(A, (v1,v2,03)15

are linear isometries ofi with the Euclidean inner product, thus eitlggn, (z) := kz with
|k| =1 or ¢la,(z) :=tz with |t| = 1. The same applies 9|4, and we can assert the
following:

Lemma 5.6. Any isomorphisng between four-dimensional two-graded a.v. algebras is of
one of the following types

(1) ¢(x0,x1) = (kxo, tx1),
(2) ¢(xo0,x1) = (kxo, 1X1),
(3) ¢(xo0,x1) = (kXo,1x1),
(4) ¢(x0, x1) = (kXo, tX1),

with [k| = |¢t] = 1.
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The following easy lemma will be useful to simplify computations.

Lemma 5.7. If vo; (x)o;(y) = wo,(x)o,(y) for any x, y € C, wherev, w are non-zero
fixed elements if. Theno; =0, ando; = o,,.

In the next theorem we determine the valuesgfo,,, o/, 0}, 0}, 0, 0/, 0{, v}, V3, V3
in (12), fromoy,, 0, 07, 0, 0p, 04, 0y, 05, V1, v2 @ndvg. That is, we give the isomorphism
classes of four-dimensional two-graded a.v. algebras. Let us observe that in this theorem
we are going to consider far j only the cases = j =1 andi =1, j = —1, since the
remaining cases & j = —1 andi = —1, j = 1) are reduced to these ones as consequence
of 2.3.

Theorem 5.8. Let A be a four-dimensional two-graded a.v. algebra with non-trivial odd
part, thenA is isomorphic to one of the type

Ap(v1, v2, v3).
Moreover, the isomorphism classes in the family of these algebras are described by
Ap(v1, v2,v3) = A1, 1, 81) = Ap(a2, 2, 82) = A (3, v3, 83) = Ap (04, v4, 84),

wherem = (0, 0y, 0-;,0_j,0_),04,0,,0_) and

{kizvl, ifi=j=1, ki?vy, ifi=j=1,
a1 = . a2 = .
kv1, ifi=1, j=-1, kvq, ifi=1, j=-1,
{ktzvl, ifi=j=1, kt?v1, ifi=j=1,
a3z = . a4 = .
kv, ifi=1, j=—1, kv,  fi=1, j=—1,
kvo, if p=qg=1, kvo, if p=qg=1,
y t?kvo, ifp=1g=-1, " t?kvy, ifp=1g=-1,
1= . 2= .
kva ifp=-1¢g=1, kvz, ifp=-1¢g=1,
t%kvo, if p=g=-—1, 1%k, ifp=g=-1,
kv_z7 |fp:q:1’ kvz, pr=q=1,
ktlvs, if p=1 ¢g=-1, t2kvo, if p=1 ¢g=-1,
Y3I=43 — . Ya=43 - .
kvo, ifp=-14¢g=1, kv, ifp=-1¢=1
t%kvy, if p=g=—1, %kvy, if p=g=—1,
kvs, ifr=s=1, kva, ifr=s=1,
kvs, ifr=1, s =-1, kvs, ifr=1, s =-1,
=9 oo 2= oo .
tkvz, ifr=-1 s=1, tkvz, ifr=-1 s=1,
t2kvs, ifr=s=-1, t2kvz, fr=s=-1,
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ks, ifr=s=1, kvs, fr=s=1,

kva, ifr=1, s=-1, kva, ifr=1, s=-1,
832 2, — . 642 2 .

tkvz, ifr=-1 s=1, tkvy, ifr=-1 s=1,

t2kvg, ifr=s=-1, 2kvg, ifr=s=-1,

for somer € S1, wherek =1ifn=m=10rn#m, andk = J1if n =m = —1.
Proof. Let us suppose is as in the first possibility of Lemma 5.6, that is,
& (x0, x1) = (kxo, tx1) with |k| = |t] = 1.
We have for any
(x,y), (u,v) € Ap(v1, v2, v3)
thate ((x, y)(u, v)) = ¢(x, y)¢(u, v), SO:
(kow (X)om () + kv10i (3)0j (V), 1v20 (x)0g (V) + 1V30, (¥)og (1))
= (0, ()0, (K)o, ()0, () + v10] ()0 [ ()] (V)o [ (v),
V30, (K)o, (10, ()0, (v) + v30, ()oy (K)o, (y)a; w)). (13)
Takingy = v =0n (13), we conclude
(kow (x)om (u), 0) = (o, (k)o,, (K)o, (x)a,, (1), 0).
Lemma 5.7 gives
N
Then, we also have = o, (k)o,, (k), and we obtain the following three possibilities:

(3) If n=m =1, thenk =k? and sok = 1.
(2) If n=m = —1, thenk = k2, and from here = /1.
@) lfn=1l,m=—-1lorn=-1,m=1,thenk =1.

Taking in (13),x =u = 0 we have
(kvloi (»)oj(v),0) = (v’loi’(t)a; (t)cri’(y)oi;(v), 0).

Lemma 5.7 now gives

o =0, aj/-zoj.
Now, we also havév; = vjo;(t)o;(¢), and as above we obtain the following possibili-

ties:
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(1) If i = j =1, thenkvy = v}¢?, that isv} = ki?v;.
(2) If i = j = —1, thenkvy = v}72, that isv] = kt?vs.
@) Ifi=1j=—-1ori=-1j=1,then] =kv;.

Taking now in (13),y = u = O we obtain as in the previous cases the following possi-
bilities:

(1) If p=gq =1, thenv) = kvy.

(2) If p=q=—1,them), = kt2vs.
(3) If p=1,q = —1, thenv), = kt?v,.
4) If p=-1,q =1, thenv, = kv>.

And finally, by taking in (13)x = v = 0 we have

(1) If r =5 =1, thenvj = kvs.

(2 Ifr=s5=-1, thenvy = kt?v3.
(3) Ifr=1,s=—1, thenvg = kvs.
(4) If r = —1,5 =1, thenv = kt?vs.

A similar study for the remaining possibilities f@f in Lemma 5.6 completes the
proof. O

6. Some open questions

Of course the problem of the classification of two-graded a.v. algebras in dimensions
greater than 4 is a problem which seems to be difficult to accomplish even for the simpler
case of eight-dimensional a.v. algebras, that is, with trivial grading. However some partial
results probably could be given by imposing additional restrictions on the algebras under
study. Many other interesting question can be posed in relation with these algebras. For
instance:

(1) We have stated the fact that any finite-dimensional a.v. triple system is the odd part
of a suitable two-graded a.v. algebra. Is this also true without assuming the finite-
dimensional hypothesis on the triple system?

(2) The study of the automorphisms and derivations of these algebras seems also to be a
natural question.

(3) Given the diversity of algebras we find in the class of two-graded a.v. algebras, one
could think about some interesting subclass of them. For instance the alternative two-
graded a.v. algebras or more generally the flexible ones. A classification of these would
be also an interesting result with applications to a.v. triple systems.

(4) Under which conditions does an infinite-dimensional two-graded a.v. algebra turn out
to be finite-dimensional? This suggests the study of algebraic two-graded a.v. algebras.



514 A.J. Calderén Martin, C. Martin Gonzalez / Journal of Algebra 292 (2005) 492-515

Acknowledgment

We thank the referee for the detailed reading of this work and for the suggestions which
have improved the final version of the same.

References

[1] K. Abdel-Khalek, The ring division self duality, hep-th/9710177, 1997.
[2] K. Abdel-Khalek, Beyond octonions, math-ph/0002023, 2000.
[3] J.F. Adams, Lectures on exceptional Lie groups, in: Z. Mahmud, M. Mimura (Eds.), Chicago Lectures in
Math. Ser., vol. xiv, 1996.
[4] A.A. Albert, Absolute valued real algebras, Ann. of Math. 48 (1947) 495-501.
[5] A.A. Albert, Absolute valued algebraic algebras, Bull. Amer. Math. Soc. 55 (1949) 763—-768.
[6] J.C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2001) 145-205.
[7] T. Brocker, T. tom Dieck, Representations of Compact Lie Groups, Springer, New York, 1985.
[8] A.J. Calderdn, C. Martin, O *-triples and JordarH *-pairs, in: Ring Theory and Algebraic Geometry,
Dekker, 2001, pp. 87-94.
[9] A.J. Calderén, C. Martin, Hilbert space methods in the theory of Lie triple systems, in: Recent Progress in
Functional Analysis, in: North-Holland Math. Stud., 2001, pp. 309-319.
[10] A.J. Calderon, C. Martin, Absolute valued triple systems, Internat. Math. J. 32 (6) (2004) 2443-2455.
[11] A.J. Calderdn, C. Martin, A geometric approach to four-dimensional absolute valued triple systems, in:
Algebras, Rings and Their Representations, in: Lecture Notes in Pure and Appl. Math., Dekker, in press.
[12] A. Castellén, J.A. Cuenca, AssociatifE -triple systems, in: Workshop on Non-associative Algebraic Mod-
els, Nova Sci. Publ., New York, 1992, pp. 45-67.
[13] A. Castellén, J.A. Cuenca, The centroid and metacentroid &f &triple system, Bull. Soc. Math. Belg. 45
(1993) 85-93.
[14] A. Castell6n, J.A. Cuenca, C. Martin, Special Jord&htriple systems, Comm. Algebra 28 (2000) 4699—
4706.
[15] J.A. Cuenca, A. Rodriguez, Absolute valuesiiralgebras, Comm. Algebra 23 (1995) 1709-1740.
[16] F.R. Cohen, On Whitehead squares, Cayley—Dickson algebras and rational functions, Bol. Soc. Mat. Mexi-
cana 37 (1992) 55-62.
[17] J.R. Faulkner, Dynkin diagrams for Lie triple systems, J. Algebra 62 (1980) 384—392.
[18] N.C. Hopkins, Some structure theory for a class of triple systems, Trans. Amer. Math. Soc. 1 (1985) 203—
212.
[19] K. EI-Amin, M.l. Ramirez, A. Rodriguez, Absolute-valued algebraic algebras are finite-dimensional, J. Al-
gebra 195 (1997) 295-307.
[20] J. Lohmus, E. Paal, L. Sorgsepp, Non-associative Algebras in Physics, Hadronic Press, Palm Harbor, FL,
1994.
[21] M.L. EI-Mallah, Absolute valued algebras containing a central idempotent, J. Algebra 128 (1990) 180-187.
[22] M.L. El-Mallah, Absolute valued algebras containing a central element, Italian J. Pure Appl. Math. 3 (1998)
103-105.
[23] M.L. EI-Mallah, Absolute valued algebras satisfyitg x, x2) =0, Arch. Math. 77 (2001) 378-382.
[24] R. Guillermo Moreno, The zero divisors of the Cayley—Dickson algebras over the real numbers, preprint
available at g-alg/9710013.
[25] K. McCrimmon, Quadratic forms permitting triple composition, Trans. Amer. Math. Soc. 275 (1983) 107—
130.
[26] S. Okubo, Pseudo-quaternion and pseudo-octonion algebras, Hadronic J. 1 (1978) 1250-1278.
[27] M. Postnikov, Lecons de Géométrie. Groupes et Algébres de Lie, Editions Mir, 1985.
[28] M.I. Ramirez, On four-dimensional absolute-valued algebras, in: Proceedings of the International Confer-
ence on Jordan Structures, Univ. Malaga, Malaga, 1999, pp. 169-173.
[29] A. Rodriguez, Absolute valued algebras of degree two, in: Non-Associative Algebra and Its Applications,
Kluwer Acad. Publ., 1994, pp. 350-357.



A.J. Calderén Martin, C. Martin Gonzalez / Journal of Algebra 292 (2005) 492-515 515

[30] A. Rodriguez, Absolute-valued algebras and absolute-valuable Banach spaces, in: Proceedings of the First
International Course of Mathematical Analysis in Andalucia, 2004.

[31] R. Shaw, Ternary composition algebras. I. Structure theorems: Definite and neutral signatures, Proc. Soc.
London Ser. A 431 (1990) 1-9.

[32] R. Shaw, Ternary composition algebras. II. Automorphism groups and subgroups, Proc. Soc. London Ser.
A 431 (1990) 21-36.

[33] K. Urbanik, F.B. Wright, Absolute valued algebras, Proc. Amer. Math. Soc. 11 (1960) 861—-866.

[34] F.B. Wright, Absolute valued algebras, Proc. Natl. Acad. Sci. USA 39 (1953) 330-332.



