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Abstract

We study two-graded absolute valued algebras. These are two-graded algebras satisfying
solute value multiplicative property only on homogeneous elements. Thus, hexagonions (also
sedenions) and other sixteen-dimensional algebras arise as examples of these algebras.
parts of two-graded absolute valued algebras are the absolute valued algebras, while the o
are exactly the absolute valued triple systems. So, in a way these two-graded algebras giv
fying viewpoint of both structures. We also study the simplicity and give several ways to con
two-graded absolute valued algebras. We also provide a description of isomorphism classes
graded absolute valued algebras of dimensions 1, 2 and 4.
 2005 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

1.1. Let K denote the field of real or complex numbers. An absolute valued alg
over K is a non-zero algebraA (not necessarily associative or unital), overK provided
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with a norm| · | which endows the underlying vector spaceA with a normed structure, an
such that satisfies the absolute value multiplicative property in the sense that|xy| = |x||y|
for all x, y ∈ A. Some examples of absolute valued algebras areR, C, H (the algebra o
Hamilton quaternions), andO (the algebra of Cayley numbers), with norms equal to t
usual absolute values. Since the early paper of A. Albert [4] where it is proved that th
finite-dimensional absolute valued algebra isC in the complex case andR,C,H andO in
the real one, absolute valued algebras have been intensively studied by many auth
work [30], by Angel Rodríguez Palacios, is an excellent survey of the actual state
art. The following references are also fundamental for the reader: [4,5,15,19,21–23,
In some cases, the results arising in the literature give conditions on an absolute
algebra assuring that such an algebra is finite-dimensional. All such results rely m
less deeply on the famous Urbanik–Wright Theorem [33] asserting thatR, C, H andO are
the unique absolute valued real algebras with a unit.

1.2. Clearly, any finite-dimensional absolute valued algebra is a division algebra
versely, absolute valued division algebras are finite-dimensional [34]. It is easy to se
if two norms on a finite-dimensional algebra convert it into an absolute valued alg
then they must coincide (see, for instance, [15]). From here, it is also clear that an
morphism between two finite-dimensional absolute valued algebras is isometric. A p
determination of isomorphism classes for absolute valued real algebras of dimens
and 2 is given in [29], where the number of classes reduces to 1 and 4, respectively
a detailed determination for the four-dimensional ones appears in [28].

1.3. A two-graded algebraA is aK-algebra which splits into the direct sumA = A0 ⊕
A1 of K-submodules (called the even and the odd part respectively) satisfyingAαAβ ⊂
Aα+β for all α, β in Z2. The notions of homomorphism, subalgebra and ideal in the gr
sense will be used with its usual meaning. However:

Definition 1.1. A two-graded absolute valued algebra (two-graded a.v. algebra), is a
zero two-graded algebraA = A0 ⊕ A1 over K, K = R or C, endowed with two norm
| · | :Ai → K, i = 0,1, such that|xixj | = |xi ||xj |, for anyxi, xj ∈ A0 ∪ A1.

Let us note that the absolute value condition on the product only holds for the hom
neous elements inA. Clearly, if we fixxi ∈ Ai , i = 0,1, with |xi | = 1, then the restriction
to the homogeneous partsAj of theleft and right product operatorsL(xi),R(xi) :A → A,
defined byL(xi)(y) := xiy andR(xi)(y) = yxi , are isometric in the finite-dimension
case.

Two-graded a.v. algebras are a particular type of superalgebras. Of course Lie s
gebras are not absolute valued. A classification of associative two-graded a.v. alge
not difficult to improvise (it could be extracted from standard results on the classific
of prime associative superalgebras with non-zero socle). On the other hand, sinc
native prime superalgebras in characteristic different from two are associative or the
parts are zero, the study of the alternative superalgebras which are two-graded a.v. a
reduces to the associative case. Jordan superalgebras are different. A description
Jordan non-commutative superalgebras which admit a two-graded absolute valued
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structure would be interesting. Such algebras are necessarily finite-dimensional sin
even parts are absolute valued Jordan algebras, hence finite-dimensional. Relati
with other classes of superalgebras can not be discarded and probably they will d
consideration in future works.

From now on,all the two-graded a.v. algebras considered in this work, will be real
finite-dimensional, unless otherwise stated.

1.4. A notion related to that of two-graded a.v. algebras, is the concept of an ab
valued triple system (a.v. triple system in the sequel). LetT be a vector space overK. We
shall say thatT is atriple systemif it is endowed with a trilinear map

〈 〉 :T × T × T → T ,

called thetriple productof T . LetT , T ′ be triple systems, a bijective linear mapf :T → T ′
is called anisomorphismof triple systems if it satisfies

f
(〈xyz〉) = 〈

f (x)f (y)f (z)
〉

for anyx, y, z ∈ T . Triple systems appear in the literature as the natural ternary exte
of algebras and have been studied in the associative [12,31,32], non-associative [8,9
18] and general context [13]. An absolute valued triple system is defined as follows.

Definition 1.2. An absolute valued triple system (a.v. triple system), is a non-zero t
systemT overK, K = R or C, endowed with a norm| · | satisfying|〈xyz〉| = |x||y||z| for
anyx, y, z ∈ T .

Trivially, the odd part of any two-graded a.v. algebra can be endowed with an a.v.
system structure in many different ways. We shall investigate this relation in Section

The study of two-graded a.v. algebras arises naturally from that of a.v. triple sys
It supposes not only a way of extending the theory of absolute valued algebras to
algebraic structures but also the research of other objects related to them. Thus,
group aut(A) (and its Lie algebra der(A)), whenA is a two-graded a.v. algebra or an a
triple system, is an object of possible independent interest.

2. Construction of two-graded a.v. algebras

2.1. If A is a two-graded a.v. algebra, its even part is an a.v. algebra. But doe
converse hold? In other words: Given any a.v. algebra, is there a two-graded a.v. a
with non-zero odd part whose even part is the original given a.v. algebra? The ans
For any a.v. algebraA we can consider the two-graded a.v. algebraA × A with product

(x, y)(z, t) = (xz + yt, xt + yz), x, y, z, t ∈ A,

even partA × 0 ∼= A and odd part 0× A. This construction allows us to consider tw
graded a.v. algebras of double dimension than the dimension of any a.v. algebra. The
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Albert’s result in 1.1 gives us that there exist two-graded a.v. algebras of dimensions
2 in the complex case, and 1,2,4,8 and 16 in the real one. Reciprocally, letA be any
finite-dimensional two-graded a.v. algebraA = A0 ⊕ A1. If A1 = 0 then Albert’s results
in [4] implies dim(A) = dim(A0) ∈ {1,2,4,8}. If on the contrary we haveA1 �= 0, let us
fix v ∈ A1, v �= 0. Then the left product operatorsL(v) :A0 → A1 andL(v) :A1 → A0
are linear monomorphisms and so dim(A0) = dim(A1), now Albert’s result completes th
proof thatA has dimension 1,2,4,8 or 16. Moreover, in the complex case dim(A) ∈ {1,2}.

2.2. The construction in 2.1 suggests a slightly more general method for building
graded a.v. algebras.

Let A be a normed space andα :A×A → A a bilinear map satisfying|α(x, y)| = |x||y|
for all x, y ∈ A. Of courseA is an a.v. algebra relative to the productα (this will be
denoted by(A,α)). Suppose now that we have absolute valued productsα, β, γ , δ on the
underlying normed space ofA and define onA × A the product

(x, y)(z, t) = (
α(x, z) + β(y, t), γ (x, t) + δ(y, z)

)
, x, y, z, t ∈ A.

Then A × A is a two-graded a.v. algebra with even partA × 0 (isomorphic toA) and
odd part 0× A. Thus for every a.v. algebraA there is (possibly) an infinity of two-grade
a.v. algebrasB such thatB0 = A (takeB = A × A and any collection of absolute value
products{α,β, γ, δ}, for instance,α = β = γ = δ agreeing with the product ofA).

Let us denote byAα,β,γ,δ the two-graded a.v. algebra described above. Next we p
that any two-graded a.v. algebra with non-zero odd part, is of the formAα,β,γ,δ . Let C be a
division composition real algebra (so thatC = R, C, H or O). Let α ∈ SO(E) be a rotation
of the underlying Euclidean spaceE of C. Then there existβ,γ ∈ SO(E) such that

α(xy) = β(x)γ (y) for all x, y ∈ C. (1)

This triality property is easy to establish forC = R, C or H. For octonions, it is a di
rect application of triality (see, for instance, [27, Proposition 4, p. 227, and Proposit
p. 275]). By [4, Section 3, p. 497], we know that any a.v. algebraA is isomorphic with
C = R, C, H or O with product(x, y) �→ α(x)β(y) for suitable linear isometriesα,β of
the underlying Euclidean spaceE of C. We can suppose that the underlying Euclid
space ofA is alsoE. If the isomorphism isf :A → C then for any two elementsx, y ∈ A

we havexy = f −1(α(f (x))β(f (y))). Suppose now that we are working in the highe
dimensional case:C = O. If f turns out to be an element in SO(8), then applying triality
we havexy = β(x)γ (y) for certainβ,γ ∈ O(8). If f is not a rotation thenf = g ◦ −
wherex �→ x is the Cayley involution. In this casexy = g−1(α(f (x))β(f (y))), and ap-
plying triality to g we get the product ofA to be of the form(x, y) �→ β(y)γ (x) for certain
isometriesβ,γ ∈ O(8). As a corollary we have:

Theorem 2.1. Any two-graded a.v. algebra, with non-zero odd part,B is of the formC ×C

whereC is an a.v. algebra mounted overR, C, H or O, and the product inB is

(x, y)(z, t) = (
α1(x, z) + α2(y, t), α3(x, t) + α4(y, z)

)
.
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The productsαi :A × A → A (i = 1,2,3,4) take one of the possible forms:

(1) (x, y) �→ βi(x)γi(y), or
(2) (x, y) �→ βi(y)γi(x),

for some linear isometriesβi andγi of C.

Unfortunately the general form of a two-graded a.v. algebra is too complex so
allow a classification in the general case.

The proof of the following result is straightforward:

Theorem 2.2. We haveAα,β,γ,δ
∼= Aα′,β ′,γ ′,δ′ if and only if there exist linear isometrie

f,g :A → A such thatf α = α′(f × f ), fβ = β ′(g × g), gγ = γ ′(f × g), and gδ =
δ′(g × f ).

Of course the meaning off × f is the mapA × A → A × A such that(a, b) �→
(f (a), f (b)). The isometric character of the linear mapf,g :A → A is that |f (a)| =
|g(a)| = |a| for all a ∈ A. Observe that the conditionf α = α′(f × f ) is just the asser
tion thatf is an isomorphism of a.v. algebras(A,α) → (A,α′).

The previous theorem can be summarized in the formula

Aα,β,γ,δ
∼= Af α(f ×f )−1,fβ(g×g)−1,gγ (f ×g)−1,gδ(g×f )−1,

which has as a particular case

Aα,β,γ,δ
∼= Aα,β(g×g)−1,gγ (1×g)−1,gδ(g×1)−1, (2)

takingf = 1A (thenα = α′). To study degrees of freedom we have for choosingβ (onceα

has been fixed), we must study the action of the group of isometriesO(E) of the underlying
normed spaceE of A, on a certain set. Denoting byO(E) this group, that is,

O(E) = {
h ∈ EndK(E):

∣∣h(x)
∣∣ = |x|, ∀x ∈ E

}
,

we can defineM as the set of bilinear mapsρ :E × E → E such that|ρ(x, y)| = |x||y|
for all x, y ∈ E. That, isM is the set of all a.v. products. There is a natural actionO(E) ×
M → M given byh · ρ := ρ(h × h)−1, h ∈ O(E), ρ ∈ M . So Eq. (2) says thatAα,β,γ,δ

∼=
Aα,β ′,γ ′,δ′ whenβ ′ is in the orbit ofβ underO(E), and for suitableγ ′ andδ′.

2.3. As a particular case, which will be useful in last section, take the real
two-graded algebraA = C, so thatE = R

2 with the Euclidean inner product, defin
α(x, y) := σn(x)σm(x), andβ(x, y) := v1σi(x)σj (y) wheren,m, i, j ∈ {−1,1}, σ1 de-
notes the identity map,σ−1 the complex conjugation map and|v1| = 1. Then it is easy to
see thatβ is in the same orbit asβ ′(x, y) := v′

1σ−i (x)σ−j (y) for convenientv′
1. Indeed,

defineh : C → C to be the complex-conjugation, then for anya, b ∈ A we have:
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h · β(a, b) = β(h × h)−1(a, b) = β(a, b) = v1σi(a)σj (b) = v1σ−i (a)σ−j (b) = β ′(a, b),

so thath · β = β ′ takingv′
1 = v1.

2.4. Once we have defined two-graded a.v. algebras we must exhibit examples in
to have an idea of the amplitude the definition has. We have mentioned before the fa
the even part of a two-graded a.v. algebra is an a.v. algebra, while its odd part is
triple system. In a way, two-graded a.v. algebras contain a.v. algebras and also a.
systems. But if we want to give concrete examples of two-graded a.v. algebras, we m
it at three or four different levels of complexity.

Trivial two-graded a.v. algebras
In the first level we have thetrivial two-graded a.v. algebras. These are the two-grade

a.v. algebras with zero odd part (that is, they are simply a.v. algebras). These are no
esting for us since we are interested in real gradings not just the trivial ones. Of cou
finite-dimensional two-graded a.v. algebras in this item, have dimensions 1, 2, 4 or
simplest example being the base fieldR. Some more examples of algebras in this case
C,

∗
C, H,

∗
H, O,

∗
O andP. To recall the definition of these algebras, we must mention

for any real composition algebraC with Cayley involutionx �→ x, the algebra
∗
C is the one

whose underlying normed space agrees with that ofC, its product being the one given b
x · y = xy (juxtaposition denoting products inC). The algebraP of pseudo-octonions wa
introduced by S. Okubo in [26]. This is nothing more than the subspace ofM3(C) formed
by the zero trace matrices fixed by the involutionm �→ mt (conjugating and transposing
The product in this space of matrices is given byx · y := µxy + (1 − µ)yx − 1

3tr(xy)1,

whereµ is any of the root of 3µ(1 − µ) = 1. This algebraP is absolute valued for th
absolute value coming from the inner product(x|y) := 1

6tr(xy).

Non-simple two-graded a.v. algebras
In the second level of complexity we find the two-graded a.v. algebras construc

in 2.1. As we prove later, these are the only two-graded a.v. algebras which are no
ple (in the ungraded sense). Furthermore, the algebras in this level of complexity a
prime, and zero divisors live comfortably in them. These two-graded a.v. algebras s
another way in which the class of a.v. algebras can be embedded in that of two-grad
algebras. The classification of these non-simple two-graded a.v. algebras is equiva
the classification of a.v. algebras. The finite-dimensional two-graded a.v. algebras
item, have dimensions 2, 4, 8 or 16.

Cayley–Dickson process
In the third level of complexity we find those two-graded a.v. algebras constructed

an a.v. algebra with involution by the Cayley–Dickson process. So, if(A,−) is an a.v.
algebra with involutiona �→ a, then we shall denote by CD(A,−,µ), µ ∈ ±1, the algebra
whose underlying vector space isA × A with the product

(x, y)(x′, y′) := (xx′ + µy′y, xy′ + x′y),



498 A.J. Calderón Martín, C. Martín González / Journal of Algebra 292 (2005) 492–515

ions
-

l split
e-
phism:
, is
as a

a.v.

e
t

ras are

om
e
x-

ur
le

ing
beingA×0 the even part and 0×A the odd part. The algebras in this level have dimens
2, 4, 8 or 16 again. Among them, we find the real division algebrasC, H, O and the hexag
onions (or sedenions)X constructed by applying the Cayley–Dickson process toO with
the scalar−1. We also find the algebras of real split quaternions, the algebra of rea
octonions and that of real split hexagonionsXs . To investigate the simplicity of these alg
bras we shall need the fact that the only a.v. commutative algebras, are up to isomor
R, C or

∗
C. This fact, which is known as the commutative Urbanik–Wright Theorem

not difficult to prove directly in the finite-dimensional case, but it can be seen also
corollary of the well-known classification of flexible a.v. algebras [21]: The flexible
algebras areR, C,

∗
C, H,

∗
H, O,

∗
O, andP.

Suppose now thatB is a two-graded a.v. algebra,B = CD(A,−,µ) where(A,−) is
an a.v. algebra with involution andµ = ±1. Let I � B be a proper non-zero ideal ofB. If
I ∩B0 �= 0, asB is a division algebra in the graded sense, we immediately concludeB ⊂ I

contradicting the fact thatI is proper. IfI ∩ B1 �= 0 we obtainI = B as before. Thus w
haveI ∩ B0 = I ∩ B1 = 0. As a consequence, for fixedi, j ∈ {0,1}, i �= j , we have tha
for anyx ∈ Bi there is a uniquey ∈ Bj such thatx + y ∈ I . If we denote byπ :A → A

the map such that(x,π(x)) ∈ I for eachx ∈ A, thenI = {(x,π(x)): x ∈ A}. SinceI is an
ideal we have(x,π(x))(a, b) ∈ I , for all a, b, x ∈ A. But

(
x,π(x)

)
(a, b) = (

xa + µbπ(x), xb + aπ(x)
) ∈ I.

Taking b = 0 we get(xa, aπ(x)) ∈ I implying π(xa) = aπ(x). Analogously(a, b)(x,

π(x)) ∈ I implying (ax + µπ(x)b, aπ(x) + xb) ∈ I . For b = 0 we getπ(ax) = aπ(x).
Thus we have provedπ(xa) = aπ(x) andπ(ax) = aπ(x) for all a, x ∈ A. Takingx = 1 in
the previous equalities we getπ(a) = aπ(1) = aπ(1) for anya ∈ A. This impliesπ(1) = 0
or a = a for eacha ∈ A. The first possibility would implyπ = 0 and thenI = A × 0= B0
contradicting the factI ∩ B0 = 0. Hence necessarilya = a for anya ∈ A. In this caseA
is commutative and applying the above observation, we haveA ∼= R, C or

∗
C. Thus we

only have to worry about the non-simple algebras obtained as CD(C,−,±1) for C = R,C

or
∗
C. We shall see (paragraph above Theorem 3.1), that these non-simple algeb

isomorphic toC ×C with componentwise operations, even part the diagonal elements∆ =
{(x, x): x ∈ C} and odd part the antidiagonal elements∆′ = {(x,−x): x ∈ C}. However,
we are interested in the exploration of the different algebras CD(C,−,±1). So we analyze
the different cases.

(1) For C = R the only involution is the identity, so the only algebras arising fr
CD(R,1,±1) are C = CD(R,1,−1) and Cs = CD(R,1,1) (the algebra with bas
{1, i} such thati2 = 1, isomorphic toR × R with componentwise operations and e
change involution). The only non-simple one in this case is of courseCs .

(2) ForC = C with the identity involution we have CD(C,1,1) ∼= CD(C,1,−1) = CC
∼=

C ⊗R C (CC is the complex algebraC × C with componentwise operations). In o
case, we restrict scalars so as to considerCC as a real algebra. This is non-simp
indeed.

(3) Consider nowC = C with the complex conjugation as involution. The algebras aris
from CD(C,−,±1) are Hs = CD(C,−,1) ∼= M2(R) (split quaternions), andH =
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CD(C,−,−1) division quaternions. Both are simple so this case does not yield
simple examples.

(4) Consider now the caseC = ∗
C. How many involutions can we find in

∗
C? Any involution

in C is also an involution in
∗
C, but there are some more involutions in this algebra

is not difficult to check that there are six automorphisms (hence antiautomorp
given the commutativity of the algebra). Precisely

aut(
∗
C) = {

1,ω1,ω21,−,ω−,ω2−}
,

whereω = exp2πi/3 is a primitive cubic root of 1, and forj = 0,1,2, by ωj1 we
denote the mapx �→ ωjx, while ωj− is the mapx �→ ωjx. It is easy to prove tha
there are only four involutions in

∗
C: 1, −, ω− andω2−. We have to consider then th

eight algebras CD(
∗
C, σ,±1) with σ ∈ {1,−,ω−,ω2−}. In order to rule out possibl

isomorphisms among them, we have computed the set of idempotents in the al
as well as the sets of tripotents and antitripotents of the triple systems〈xyz〉 := (xy)z,
in each case. We recall that an elementx of a triple systemT is called atripotent
(respectivelyantitripotent), if 〈xxx〉 = x (respectively〈xxx〉 = −x). A complete de-
scription of this study is given in Fig. 1. The algebra CD(

∗
C,ω−, ε) is isomorphic (in

graded sense) to CD(
∗
C,ω2−, ε) for ε = ±1, the isomorphism is(x, y) �→ (ω2x,ω2y).

(a) The algebra CD(
∗
C,1,1) is isomorphic to

∗
C × ∗

C with componentwise operation
even part the diagonal∆ and odd part the antidiagonal∆′. This is of course
non-simple but the direct sum of the ideals

∗
C × 0 and 0× ∗

C. Since
∗
C has four

idempotents, this algebra has sixteen. Its odd part is the a.v. triple systemC with
the triple product〈abc〉 = (ab)c = abc. The tripotents of this a.v. triple system
are 0 and the whole unit sphereS1 of C. The only antitripotent is zero.

(b) The algebra CD(
∗
C,1,−1), which is simple, has only four idempotents and so

algebra is not isomorphic to the previous one.
(c) Let us consider now the algebra CD(

∗
C,−, ε) with ε = ±1. The odd part is the

a.v. triple systemC with triple product〈abc〉 = εabc. This has three tripotent
hence it is not isomorphic to any of the previous cases. It can be seen that
a simple two-graded a.v. algebra. The algebras CD(

∗
C,−,1) and CD(

∗
C,−,−1)

have isomorphic even parts and also the a.v. triple systems extracted from
odd parts are isomorphic. However they are not isomorphic since the sets of
potents are very different from a topological viewpoint. If fact in both cases
set of idempotents is infinite. But in CD(

∗
C,−,1) the set is not bounded, in th

sense that it is not contained in a closed ball of the underlying Euclidean s
while in CD(

∗
C,−,−1) it is. This implies the non-isomorphic character of the

algebras since an isomorphism would induce a homeomorphism between bo
of idempotents.

(d) The algebras CD(
∗
C,ω−,±1) are non-isomorphic to the previous ones. One

prove that there is no graded isomorphism between them.
Summarizing, the different algebras obtained from

∗
C by applying the Cayley–Dickso

process are the given in Fig. 1.
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Algebra Idempotents Tripotents Antitripotents

CD(
∗
C,1,1) 16 S1 ∪ {0} 1

CD(
∗
C,1,−1) 4 1 S1 ∪ {0}

CD(
∗
C,−,±1) ∞ 3 3

CD(
∗
C,ω−,±1) 4 1 1

Fig. 1. Algebras obtained fromC
∗
.

A sixteen-dimensional two-graded a.v. algebra
One of the relevant facts about two-graded a.v. algebras is that one can exhibit s

dimensional examples. Any algebra obtained from an eight-dimensional absolute
algebra by the Cayley–Dickson process is a sixteen-dimensional two-graded a.v. a
Consider, for instance, the a.v. algebra(O,−) wherex �→ x is the Cayley involution. Then
X = CD(O,−,−1) is the so called hexagonions which has been considered previou
many authors (see, for instance, [1,2,6,16,20,24]).

If we take a non-zero elementx = (a, b) ∈ X then the standard involution inX mapsx
to x := (a,−b). Therefore

xx = (a, b)(a,−b) = (aa + bb,−ab + ab) = (aa + bb,0).

Since the octonionic normz �→ zz is positive definite, the quadratic mapX → R1 given by
x �→ |x| := xx is also positive definite hence for a non-zerox ∈ X we havexx = xx = |x|
and any non-zero element has an inverse. Though this algebra has multiplicative in
it is not a division algebra, since an explicit computation proves that the hexagonion
zero divisors. In fact, the zero divisors of norm one in the hexagonions form a sub
that is homeomorphic to the exceptional Lie groupG2 (see [16,24]).

There is also a way to introduce hexagonions by giving a suitable basis and its m
cation table (see also [1]). Consider the real algebra with a basis{e0, . . . , e15} in which e0
is the unit of the algebra and fori, j > 0 we have the multiplication rules

eiej = −δij e0 +
15∑

k=1

εijkek, (3)

whereδij stands for the Kronecker delta, andεijk is the totally antisymmetric tensor suc
thatεijk = 1 for (i, j, k) being one of the following triplets:

(1,2,3), (1,4,5), (2,4,6), (3,4,7), (2,5,7), (1,7,6), (3,6,5),

(1,8,9), (2,8,10), (3,8,11), (4,8,12), (5,8,13), (6,8,14), (7,8,15),
(1,11,10), (1,13,12), (1,14,15), (2,9,11), (2,14,12), (2,15,13), (3,10,9),

(4,9,13), (4,10,14), (4,11,15), (3,15,12), (3,13,14), (5,12,9) (5,10,15),
(5,14,11), (6,15,9), (6,12,10), (6,11,13), (7,9,14), (7,13,10), (7,12,11),

andεijk = 0 in the remaining cases. It is not difficult to prove that this algebra is isomo
to X. In order to see this, we can consider the basis ofH ⊂ O ⊂ X given by{e0, . . . , e3}
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such thate0 is the unit ofH and for i, j = 1,2,3 we haveeiej = −δij e0 + ∑3
k=1 εijkek

whereδij is as before andεijk is the totally antisymmetric tensor such thatε123 = 1. Con-
sider now anye4 in O−H, orthogonal toei for i = 0, . . . ,3, and satisfying|e4| = 1. Define
thene4+i := eie4 (i = 1, . . . ,3). Thus we obtain a basis{e0, . . . , e7} of O whose multipli-
cation relations aree0ei = eie0 = e0 for all i, and fori, j > 0,eiej = −δij e0+∑7

k=1 εijkek

whereδij is as before the Kronecker delta, andεijk is the totally antisymmetric tensor su
thatεijk = 1 for (i, j, k) equal to any of the following triplets

(1,2,3), (1,4,5), (2,4,6), (3,4,7), (2,5,7), (1,7,6), (3,6,5),

andεijk = 0 in the remaining cases. Finally, let us take an elemente8 ∈ X − O orthogonal
to ei for i = 0, . . . ,7 and satisfying|e8| = 1. Definee8+i := eie8 for i = 1, . . . ,7. We
obtain in this case a basis{e0, . . . , e15} of X whose multiplicative relations are given b
Eq. (3).

Some other algebras are also of interest from different viewpoints. For instanc
sixteen-dimensional two-graded a.v. algebras CD(O,−,1) of split hexagonions, or the a
gebras CD(

∗
O, σ, ε), with σ an involution of

∗
O andε = ±1, or CD(P, σ, ε). Of course the

twisted versions of these algebras are also worth to consider.

3. Simplicity of two-graded a.v. algebras

Finite-dimensional a.v. algebras are always division algebras. The bad news abo
graded a.v. algebras is that they are not necessarily simple. In fact, ifA is an a.v. algebra
thenB := A × A with the product

(x, y)(z, t) = (xz + yt, xt + yz)

is two-graded with even partA × 0 and odd part 0× A. However the subspace∆ =
{(x, x): x ∈ A} is a proper non-zero ideal ofB. Moreover,∆′ := {(x,−x): x ∈ A} is
also a proper non-zero ideal,B = ∆ ⊕ ∆′ and∆∆′ = ∆′∆ = 0, so zero divisors exist i
abundance.

But two-graded a.v. finite-dimensional algebras are division algebras in the g
sense: For any homogeneous elementa, the left and right multiplication operatorsL(a),
R(a), are invertible on the homogeneous parts. From this, it is a corollary the fac
two-graded a.v. algebras are simple in the graded sense. We pose the following qu
What conditions imply that a two-graded a.v. algebra is simple in the ungraded sens

To answer this question take a two-graded a.v. algebraA and a non-zero proper ide
I � A. If I ∩ A0 �= 0, then asA is a division algebra in the graded sense, we immedia
concludeA ⊂ I contradicting the fact thatI is proper. IfI ∩ A1 �= 0 we obtainI = A as
before. Thus we haveI ∩ A0 = I ∩ A1 = 0. Next we can take

π0(I ) := {a0 ∈ A0: ∃a1 ∈ A1; a0 + a1 ∈ I }
which is a non-zero ideal ofA0. Thenπ0(I ) = A0. Following this idea one can prove th
π1(I ) (defined similarly) is also the wholeA1. Define now the mapθ : A0 → A1 as fol-
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lows: For anya0 ∈ A0, one defineθ(a0) := a1 the unique element such thata0+a1 ∈ I . It is
easy to see now thatI = {a0+θ(a0): a0 ∈ A0}. Symmetrically we can defineθ ′ : A1 → A0
such thata1 �→ a0 (the unique even element such thata0 + a1 ∈ I ). Finally we can define a
linear mapΩ :A → A extendingθ andθ ′ and satisfyingΩ2 = 1A. Furthermore, this ma
satisfies the identities

Ω(xixj ) = Ω(xi)xj = xiΩ(xj ) and xixj = Ω(xi)Ω(xj )

for homogeneous elementsxi andxj .1 The idealI agrees with the set of alla0 + Ω(a0)

and then, definingJ as the set of alla0 − Ω(a0) one checks thatJ is a proper non-zero
ideal ofA such thatIJ = JI = I ∩ J = 0 andA = I ⊕ J (this last being a consequen
of:

a0 =
(

a0

2
+ Ω(a0)

2

)
+

(
a0

2
− Ω(a0)

2

)
,

a1 =
(

Ω(a1)

2
+ a1

2

)
−

(
Ω(a1)

2
− a1

2

)
,

for ai ∈ Ai , i = 0,1). Next we consider the two-graded a.v. algebraA0 × A0 with the
product(x, y)(z, t) = (xz + yt, xt + yz), even partA0 × 0, odd part 0× A0 and absolute
values|(a0,0)| := |a0|, |(0, a0)| := |a0|. Taking into account thatA = I ⊕J , we can define
the mapφ :A → A0 × A0 given by φ(a0 + Ω(a0)) := (a0, a0) and φ(a0 − Ω(a0)) :=
(a0,−a0) for anya0 ∈ A0. It is straightforward to prove thatφ is an isometric isomorphism
of two-graded a.v. algebras. Thus we have proved:

Theorem 3.1. Let A be a two-graded a.v. finite-dimensional algebra. Then we have
one of the following possibilities:

(1) A is simple as ungraded algebra.
(2) A ∼= B ×B for some a.v. algebraB, the product inA being(x, y)(x′, y′) = (xx′ +yy′,

xy′+yx′) for x, x′, y, y′ ∈ A, even partA0 = B×0, odd partA1 = 0×B and absolute
values|(x,0)| := |x|, |(0, y)| := |y|, x, y ∈ B.

As a consequence of the last theorem we can conclude that the worst two-grad
algebras (those which are not simple) are the best known since their study reduces
of a.v. algebras (with no gradings).

4. Two-graded a.v. algebras and a.v. triple systems

In this section we shall show how the theory of a.v. triple systems can be related
one of two-graded a.v. algebras. We recall that the definition of a.v. triple system is

1 We deduce from these equations thatΩ is in the centroid ofA. The study of the centroid is a subject deserv
some attention since it could provide alternative tools in the theory of two-graded a.v. algebras.
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in 1.4. The reader also can find some aspects of the theory of a.v. triple system in [1
In this section,T will denote a finite-dimensional a.v. triple system overK.

The key reference for a.v. triple systems will be [25]. In the finite-dimensional cas
absolute value comes from an inner product, so the results in [25] can be applied a
fundamental for our study.

Following the philosophy of [25], ifA = A0 ⊕ A1 is a two-graded a.v. algebra, th
its odd partA1 is an a.v. triple system by defining〈xyz〉 := (xy)z (or 〈xyz〉 := x(yz))
for x, y, z ∈ A1. These are called the left and right standard triples products inA1. Any
permutation of these triple products also provides us with an a.v. triple system str
to A1. These triple products defined as permutations of the standard ones will be
in the sequel,standard triple products. Two a.v. triples systemsT andT ′ are callediso-
topic (denotedT ∼ T ′) if there are linear isometriesFi :T → T ′ (i = 0,1,2,3) such that
F0(〈xyz〉) = 〈F1(x)F2(y)F3(z)〉 for anyx, y, z ∈ T . The notion of isotopy, as introduce
in [25], is more general. But working over the reals or complexes, it is equivalent t
previous one as the following result (inspired in [25]) proves.

Lemma 4.1. LetT andT ′ be a.v. triple systems, andFi :T → T ′ norm similarities, that is
|Fi(x)| = ai |x| for all x ∈ T , and some(necessarily positive) ai ∈ R, i = 0,1,2,3. Sup-
pose thata0 = a1a2a3, andF0(〈xyz〉) = 〈F1(x)F2(y)F3(z)〉 for anyx, y, z ∈ T . Then the
mapsGi := a−1

i Fi (i = 0,1,2,3), are linear isometries providing an isotopyT ∼ T ′.

We have proved in 2.2 that for any a.v. algebraA, there are (possibly) many two-grad
a.v. algebras whose even part isA. Thus the even part of a two-graded a.v. algebra doe
characterize the whole algebra at all. However, the even parts of two-graded a.v. a
exhaust the class of all a.v. algebras.

Let us specify now, three ways of constructing a.v. triple systems from two-grade
algebras. IfA = A0⊕A1 is a two-graded a.v. algebra, we can construct an a.v. triple sy
overA1 by defining the triple product〈xyz〉 := (xy)z. The second example is the one giv
by the triple product〈xyz〉 := x(yz), while the third one is provided with the triple produ
〈xyz〉 := (xz)y. We say thatan a.v. triple system comes from a two-graded a.v. algebA
if it agrees with(A1, 〈 〉) for some of the previous triple systems.

Now we pose the following question: Is there for any a.v. triple systemT , any two-
graded algebra whose odd part isT (perhaps up to isotopy)? In other terms, does the c
of odd parts of two-graded a.v. algebras exhaust that of a.v. triple systems?

To answer this question we shall need the following:

Proposition 4.2. LetT be an a.v. triple system for which there is a two-graded a.v. alge
A such thatT = A1 with the triple product〈xyz〉 := (xy)z (respectively〈xyz〉 := x(yz) or
〈xyz〉 := (xz)y). Then, ifT ∼ T ′ for an a.v. triple system(T ′, 〈 〉′), there is a two-graded
a.v. algebraA′ whose odd part isT ′ and〈xyz〉′ := (xy)z (respectively〈xyz〉′ := x(yz) or
〈xyz〉′ := (xz)y) for anyx, y, z ∈ T ′.

Proof. Let consider the two-graded a.v. algebraA. As dim(A0) = dim(A1) (see 2.1), we
can suppose that the two-graded algebra whose odd part isT is A = T × T for a suit-
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able product such thatA0 = T × 0, A1 = 0 × T and(0, 〈abc〉) = ((0, a)(0, b))(0, c) for
a, b, c ∈ T .

As T ∼ T ′, there are linear isometriesFi :T → T ′ (i = 0,1,2,3) such thatF0(〈xyz〉) =
〈F1(x)F2(y)F3(z)〉′ for all x, y, z ∈ T . Define now the two-graded algebraA′ = T × T ′
with the product

(x, x′)(y, y′) = (
xy + F−1

1 (x′)F−1
2 (y′),F0

(
xF−1

3 (y′)
) + F0

(
F−1

3 (x′)y
))

.

This is a two-graded a.v. algebra with even partT × 0 and odd part 0× T ′. In this algebra
we have(0, x′)(0, y′) = (F−1

1 (x′)F−1
2 (y′),0) and

(
(0, x′)(0, y′)

)
(0, z′) = (

F−1
1 (x′)F−1

2 (y′),0
)
(0, z′) = (

0,F0
((

F−1
1 (x′)F−1

2 (y′)
)
F−1

3 (z′)
))

= (
0,F0

(〈
F−1

1 (x′)F−1
2 (y′)F−1

3 (z′)
〉)) = (

0, 〈x′y′z′〉′).
The rest of the cases are similar to the previous one.�

We now return to the fact that any a.v. triple system appears as the odd part o
two-graded a.v. algebra. To see this, as a consequence of Proposition 4.2, we on
to prove the result for one representative in the isotopy class of every a.v. triple sy
Thanks to K. McCrimmon [25], we can exhibit such a representative.

In the complex case any finite-dimensional a.v. triple system is one-dimensiona
isometrically isomorphic toC with the triple product〈xyz〉 = xyz, then it is immediate
to check that this a.v. triple system is the odd part of the two-graded a.v. complex a
C × C with product

(x, y)(x′, y′) = (xx′ + yy′, xy′ + yx′).

In the real case, any (finite-dimensional) a.v. triple system is isotopic to one o
following:

(I) Dimension one:T = R with 〈xyz〉 = xyz.
(II) Dimension two:T = C with 〈xyz〉 = xyz.

(III) Dimension four:T = H (real division quaternions) and〈xyz〉 is one of
(i) xyz,
(ii) xzy,

(iii) yxz.
(IV) Dimension eight:T = O (real division octonions) and〈xyz〉 is one of

(i) (xy)z,
(ii) (xz)y,

(iii) (yx)z,
(iv) x(yz),
(v) x(zy),
(vi) y(xz).
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So, it suffices for our purposes to prove that any of the a.v. triple systems above is t
part of a two-graded a.v. algebra. Consider first the case in whichT = R,C,H or O with
the triple product〈xyz〉 = (xy)z. This is the odd part of the two-graded a.v. algebraT × T

with product

(x, y)(x′, y′) = (xx′ + yy′, xy′ + yx′). (4)

As we check immediately, the identity(0, 〈xyz〉) = ((0, x)(0, y))(0, z) holds forx, y, z ∈ T .
This comprises cases (I), (II), (III)(i) and (IV)(i). IfT is as in (III)(ii) or (IV)(ii) then T

is the odd part of the two-graded a.v. algebra whose product is (4). In this case the
product is related to the binary product ofT × T by (0, 〈xyz〉) = ((0, x)(0, z))(0, y). For
cases (III)(iii) and (IV)(iii) we can takeT × T with the product

(x, y)(x′, y′) = (xx′ + y′y, xy′ + yx′),

and(0, 〈xyz〉) = ((0, x)(0, y))(0, z). The rest of the possibilities are similar. Summariz
all of this we can state:

Theorem 4.3. Any a.v. triple system is the odd part of a two-graded a.v. algebraA =
A0 ⊕ A1 with some of the triple products: (xy)z, x(yz) or (xz)y.

5. On the classification of two-graded a.v. algebras

As we said in 1.2, there is in the literature a precise determination of isomorp
classes for (ungraded) a.v. algebras of dimensions 1, 2 and 4. These, joint with the
in Section 2, lead us to study in this section the isomorphism classes for two-grad
algebras of dimensions 1,2 and 4. From now on, givenx, y ∈ K, K = R or C, the juxta-
positionxy will mean the usual product inK. The following lemma will be useful in ou
study.

Lemma 5.1. Let A = A0 ⊕ A1 be a two-graded a.v. algebra and letB0 be an a.v. algebra
such thatA0 ∼= B0. Then the direct sumB := B0 ⊕ A1 can be endowed with a two-grade
a.v. algebra structure, satisfyingA ∼= B.

Proof. Let us denote byφ the isomorphism fromA0 ontoB0. Then it is easy to verify tha
the product(b, x)(b′, x′) := (bb′ + φ(xx′),φ−1(b)x′ + xφ−1(b′)) endowsB = B0 ⊕ A1
with a structure of two-graded a.v. algebra, and thatµ : A → B defined byµ(x0, x1) :=
(φ(x0), x1) is an isomorphism. �

5.1. The results in 2.1 give the following:

Proposition 5.2. Let A = A0 ⊕ A1 be a one-dimensional two-graded a.v. algebra overK,
K = R or C. ThenA ∼= K ⊕ 0∼= K with the usual product and norm inK.
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5.2. In order to begin the study of two-dimensional two-graded a.v. algebrasA =
A0 ⊕ A1, we shall fix some notation. The two-graded a.v. real algebraR × R with the
product

(x, y)(u, v) = (xu + ε2yv, ε3xv + ε3yu),

whereεi ∈ ±1, i = 1,2,3, and the usual Euclidean norm will be denoted byA(ε1, ε2, ε3).
The two-graded a.v. complex algebraC × C with the product

(x, y)(u, v) = (xu + p1yv,p2xv + p3yu),

wherepi ∈ C with |pi | = 1, i = 1,2,3, and with the usual Euclidean norm, will be den
by A(p1,p2,p3).

If A1 = 0 thenA = A0 is an a.v. algebra with dimension 2 and so it is well descri
in [29].

Then, let us suppose thatA1 �= 0. As A0 is an a.v. algebra and dimA0 = dimA1
(see 2.1), we have dimA0 = dimA1 = 1 and so it is easy to see thatA0 ∼= R in the real
case andA0 ∼= C in the complex one. Moreover,A1 ∼= K as vector spaces, so we can wr
A = K × K and, taking into account Lemma 5.1, the product inA can be expressed by

(x, y)(u, v) = (xu + y ◦ v, x � v + y � u) (5)

where the productsK × K → K, (a, b) �→ a ◦ b, (a, b) �→ a � b and(a, b) �→ a � b are
absolute valued.

Let us consider, for instance,(a, b) �→ a ◦ b. If we write k := 1 ◦ 1, then theK-linear
character of◦ givesx ◦ y = kxy. As |kxy| = |x||y| we have|k| = 1. The same applies t
� and� and so, ifK = R, thenk = ±1 and, taking into account (5),A is of the form
A(ε1, ε2, ε3) for someεi ∈ ±1, i = 1,2,3. If K = C, we conclude as in the real case th
A ∼= A(p1,p2,p3) for some|pj | = 1, j = 1,2,3.

Let us considerK = R and let us study the isomorphism classes of the alge
A(ε1, ε2, ε3). First, we observe that if

φ :A(ε1, ε2, ε3) → A
(
ε′

1, ε
′
2, ε

′
3

)
(6)

is an isomorphism, then its restriction to the homogeneous parts areR-linear isometries
on R with the Euclidean inner product, thereforeφ|A0 = ±Id andφ|A1 = ±Id, so we can
assert thatφ is of the formφ(x0, x1) = (±x0,±x1). Taking into account these possibiliti
for φ it is easy to check that (6) only holds ifε′

i = ε′
i for anyi = 1,2,3.

If K = C, then arguing as above we have that any isomorphism

φ :A(p1,p2,p3) → A
(
p′

1,p
′
2,p

′
3

)
,

is of the formφ(x0, x1) = (vx0,wx1) with v,w ∈ C satisfying|v| = |w| = 1. Then, it is
not difficult to check thatφ(x0, x1) := (x0,

√
p1x1) is an isomorphism fromA(p1,p2,p3)

onto A(1,p2,p3), and thatA(1,p2,p3) is not isomorphic to anyA(1,p′
2,p

′
3) if some

pj �= p′ , j = 2,3.
j
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Summarizing we have proved the following:

Theorem 5.3. LetA = A0 ⊕ A1 be a non-trivial two-dimensional two-graded a.v. algeb
overK.

(1) If K = R, thenA ∼= A(ε1, ε2, ε3) with εi ∈ ±1, i = 1,2,3. Moreover,A(ε1, ε2, ε3) ∼=
A(ε′

1, ε
′
2, ε

′
3) if and only ifεi = ε′

i for anyi = 1,2,3.
(2) If K = C, thenA ∼= A(1,p1,p2), with |pi | = 1, i = 1,2. Moreover,A(1,p1,p2) ∼=

A(1,p′
1,p

′
2) if and only ifpi = p′

i for anyi = 1,2.

As any complex finite-dimensional two-graded a.v. algebra has dimension 1
(see 2.1), we have completed the study of the complex case, therefore we confine ou
to the real case.

5.3. Let us study two-graded a.v. algebras of dimension 4. The first case to co
would be that in whichA has the trivial grading, that is,A is simply a four-dimensiona
a.v. algebra. These have been considered in [28, Proposition 2.1, p. 170]. In this ref
it is proved that up to isomorphism, any four-dimensional a.v. (real) algebra is on
algebrasH(a,b),

∗
H(a,b), ∗H(a,b) or H ∗(a, b) for somea, b ∈ S3 = {x ∈ H: |x| = 1}.

These algebras are calledprincipal isotopesof H and their products are, respective
axyb, axyb, xayb, andaxby, where the juxtaposition is the product inH and x �→ x

its Cayley involution. MoreoverH(a,b) ∼= H(a′, b′) (respectively
∗
H(a,b) ∼= ∗

H(a′, b′) or
∗H(a,b) ∼= ∗H(a′, b′) or H ∗(a, b) ∼= H ∗(a′, b′)) if and only if there is ap ∈ S3 ⊂ H

such thata′ = εpap−1 andb′ = δpbp−1, with ε, δ ∈ {−1,1}. It is possible to give a fur
ther refinement of this description. If we consider the standard basis{1, i, j, k} of H, with
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i andki = −ik = j , thenH = R1 ⊕ W

whereW = 1⊥ = span({i, j, k}). Taking S3, this is obviously a compact connected L
group, and it is easy to prove directly that one of its maximal tori is the subg
{exp(θi): θ ∈ R} ∼= S1 (see also [7, (3.7) Theorem, p. 173]). It is also a well-known
sult that in a compact connected Lie group, any element is conjugate to some elem
a pre-fixed maximal torus (see [7, (1.7) Main Lemma, p. 159], or [3]). In particula
any a ∈ S3 there is someq ∈ S3 such thatqaq−1 = exp(θi) for someθ ∈ [0,2π). Thus
H(a,b) ∼= H(exp(θi), b′) whereb′ = qbq−1. If a = 1 we haveH(1, b) ∼= H(1, qbq−1),
and for a suitableq we can writeqbq−1 = exp(φi) for someφ ∈ [0,2π), thenH(1, b) ∼=
H(1,exp(φi)). If a �= ±1, we can now consider an arbitrary elementq1 = exp(si) for
somes ∈ R. We also have an isomorphismH(exp(θi), b′) ∼= H(q1 exp(θi)q−1

1 , q1b
′q−1

1 ).
But q1 exp(θi)q−1

1 = exp(θi) for any suchq1. As a consequence we still have a cert
degrees of freedom to simplifyb′ by conjugating it with someq1 chosen as above. So
b′ = b′

0 + b′
1i + w′ for somew′ ∈ span({j, k}), then

q1b
′q−1

1 = b′
0 + b′

1i + q1w
′q−1

1 = b′
0 + b′

1i + q2
1w′

but q2
1w′ = exp(2si)w′ can have any value in span({j, k}) with the same norm asw′.

For instance,q2
1w′ = |w′|j for a suitableq1. Thereforeq1b

′q−1
1 = b′

0 + b′
1i + |w′|j

and b′ 2 + b′ 2 + |w′|2 = 1. Thus we may writeb′ = ρ cosφ, b′ = ρ sinφ, and |w′| =
0 1 0 1



508 A.J. Calderón Martín, C. Martín González / Journal of Algebra 292 (2005) 492–515

-

s

con-

:

f the
√
1− ρ2 for someφ,ρ ∈ R, 0� ρ � 1. In this wayq1b

′q−1
1 = ρ exp(φi) + √

1− ρ2j and

H(exp(θi), b′) ∼= H(exp(θi), ρ exp(φi) + √
1− ρ2j). Summarizing

H(a,b) ∼= H
(
exp(θi), ρ exp(φi) +

√
1− ρ2j

)
.

If we defineH(θ,φ,ρ) := H(exp(θi), ρ exp(φi)+√
1− ρ2j), we conclude that any four

dimensional absolute valued algebra is isomorphic to some of the algebrasH(θ,φ,ρ),∗
H(θ,φ,ρ), ∗H(θ,φ,ρ), or H ∗(θ,φ,ρ) where

W(θ,φ,ρ) := W
(
exp(θi), ρ exp(φi) +

√
1− ρ2j

)

for W ∈ {H,
∗
H, ∗H,H ∗}. The dependence ofW(a,b) (W as before) on the quaternion

a andb is thus replaced by the dependence ofW(θ,φ,ρ) on the three real numbersθ , φ

andρ. This will also give some advantages from the viewpoint of the isomorphism
ditions. Let us now bound the possible values of the three parametersθ , φ and ρ. We
already know thatρ ∈ [0,1]. Taking into account the relation:j exp(θ i)j−1 = exp(−θ i),
we can limit θ to be in the interval[0,π], and sincej exp(θi)j = exp((π − θ)i), we
can takeθ ∈ [0,π/2]. On the other hand, the relation−i(ρ exp(φi) + √

1− ρ2j)i =
−(ρ exp((φ + π)i) + √

1− ρ2j) implies that we can takeφ ∈ [0,π). Thus, we can claim

Theorem 5.4. Any absolute valued four-dimensional algebra is isomorphic to one o
algebrasW(θ,φ,ρ) with W ∈ {H,

∗
H, ∗H,H ∗}, θ ∈ [0,π/2], φ ∈ [0,π) and ρ ∈ [0,1].

If θ = 0 then ρ = 1 and, with the above conditions for the parameters,W(θ,φ,ρ) ∼=
W(θ ′, φ′, ρ′) if and only ifθ = θ ′, φ = φ′ andρ = ρ′ except in the cases:

(1) θ = 0, ρ = 1. We haveW(0, φ,1) ∼= W(0, φ′,1) if and only ifφ′ = φ or φ′ = π − φ.
(2) θ = π/2. In this caseW(π/2, φ,ρ) ∼= W(π/2, φ′, ρ′) if and only ifρ = ρ′, φ′ = φ or

φ′ = π − φ.
(3) ρ = 0, in which caseW(θ,φ,0) ∼= W(θ,φ′,0) for arbitrary φ andφ′.

Proof. The only thing we have to prove is the isomorphism condition. SupposeW(θ,φ,ρ)
∼= W(θ ′, φ′, ρ′), with θ, θ ′, φ,φ′ ∈ [0,π/2] andρ,ρ′ ∈ [0,1]. Then, there exists aq ∈ H,
|q| = 1, such that

exp(θ ′i) = εq exp(θi)q−1,

ρ′ exp(φ′i) +
√

1− ρ′2j = δq
(
ρ exp(φi) +

√
1− ρ2j

)
q−1,

with ε, δ ∈ {−1,1}. Thus by writingq = q1 + q2 with q1 ∈ span({1, i}), q2 ∈ span({j, k}),
we conclude

exp(θ ′i)qr = εqr exp(θi) for r = 1,2, (7)

ρ′ exp(φ′i)q1 +
√

1− ρ′2jq2 = δq1ρ exp(φi) + δq2

√
1− ρ2j, (8)
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ρ′ exp(φ′i)q2 +
√

1− ρ′2jq1 = δq2ρ exp(φi) + δq1

√
1− ρ2j. (9)

Sinceq = q1 + q2 �= 0, we shall distinguish three cases:
(a) If q1 �= 0 and q2 �= 0, then asq1 commutes with exp(θi), we have by Eq. (7

exp(θi) = ε exp(θ ′i). Forε = 1 this impliesθ = θ ′. Forε = −1, we getθ ′ = θ + π which
is impossible given the restrictions on the parameters. Then necessarilyε = 1 and by (7)
exp(θ ′i)q2 = q2 exp(θi) = exp(−θi)q2. We concludeθ = θ ′ = 0 and soρ = ρ′ = 1. Tak-
ing now into account Eqs. (8) and (9), we have exp(φ′i)qr = δqr exp(φi), r = 1,2. Arguing
as above we also get that necessarilyδ = 1 andφ = φ′ = 0.

(b) If q1 �= 0 andq2 = 0, we obtain as in (a),ε = 1 andθ = θ ′. By taking norms in
Eq. (8) we obtainρ = ρ′.

(1) If ρ = ρ′ �= 0, then exp(φ′i) = δ exp(φi) and forδ = 1 we concludeφ′ = φ. For δ =
−1 we haveφ′ = φ + π which is impossible ifφ,φ′ ∈ [0,π).

(2) If ρ = ρ′ = 0, W(θ,φ,0) ∼= W(θ,φ′,0) for any φ,φ′. So we can chooseφ = 0 and
we have exception (3) in the theorem.

(c) If q1 = 0 and q2 �= 0, thenq = q2 ∈ span({j, k}). From Eq. (7), exp(θ ′i)q2 =
εq2 exp(θi) = ε exp(−θi)q2. This implies exp(θ ′i) = ε exp(−θi). Hence, forε = 1 we
haveθ ′ = −θ , and forθ, θ ′ ∈ [0,π/2] this is only possible ifθ = θ ′ = 0 and soρ = ρ′ = 1.
By arguing now as in (b) with Eq. (9), we obtain thatφ = φ′ = 0 in caseδ = 1, and that
φ + φ′ = π in caseδ = −1. Forε = −1 we get exp(θ ′i) = −exp(−θi) = exp((π − θ)i)

implying θ = θ ′ = π/2. By taking norms in Eq. (9), we obtainρ = ρ′.

(1) If ρ = ρ′ �= 0, Eq. (3) now gives exp(φ′i) = δ exp(−φi), and by arguing as above w
get eitherφ = φ′ = 0 if δ = 1, orφ + φ′ = π if δ = −1.

(2) If ρ = ρ′ = 0, we haveW(π/2, φ,0) ∼= W(π/2, φ′,0) for anyφ andφ′. Thus we can
takeφ′ = 0 and we obtain exception (3) in the theorem.�

Finally, let us consider the problem of the classification of non-trivial four-dim
sional two-graded a.v. real algebras. Let us denoteS1 := {x ∈ R

2: |x| = 1}, O(2) the
group of all isometries inR2, O+(2) := {f ∈ O(2): det(f ) = 1} andO−(2) := {f ∈
O(2): det(f ) = −1}. In this study we are going to develop the techniques introdu
in 5.2.

As in 5.2, the caseA1 = 0 is the one we have just described. So, we takeA1 �= 0. AsA0
is an a.v. algebra and dimA0 = dimA1 (see 2.1), we have dimA0 = dimA1 = 2 and so by
applying [29, Lemma 2]A0 ∼= C, ∗

C,
∗
C, or C

∗, where the products in∗C,
∗
C, andC

∗ are
respectivelyx · y := xy, x · y := xy andx · y := xy. Moreover,A1 ∼= C as vector spaces
so we can writeA = C × C and, by Lemma 5.1, the product inA can be expressed by

(x, y)(u, v) = (
σn(x)σm(u) + y ◦ v, x � v + y � u

)
(10)

where anyσn,σm is either the identity map or the complex conjugation map, and w
the productsC × C → C, (a, b) �→ a ◦ b, (a, b) �→ a �b and(a, b) �→ a �b are absolute
valued. As in 2.3,σ1 denote the identity map inC andσ−1 the complex conjugation map
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Lemma 5.5. Any map◦,�,� :C×C → C given in(10) is eitherC-linear or C-conjugate-
linear in any variable.

Proof. Let us consider, for instance,(a, b) �→ a ◦ b. Fix x ∈ S1 and writev := L(x)(1),
(L(x) denotes the left product operator, see 1.3). SinceL(x) ∈ O(2), we have two pos
sibilities: In the first one,L(x) ∈ O+(2), hence by applying elemental results in line
algebra,L(x)(i) = iv and thenL(x)(z) = zv for any z ∈ C. In the second possibility
L(x) ∈ O−(2), thenL(x)(i) = −iv and we haveL(x)(z) = zv.

In the first possibilityL(x)(zz′) = zz′v = zL(x)(z′), that is,L(x) is C-linear. In the
second possibility we similarly obtainL(x) is conjugate-linear. This clearly extends to a
x ∈ C by a connection argument. We argue in a similar way for the right product ope
and so(a, b) �→ a ◦ b is eitherC-linear orC-conjugate-linear in any variable. The sam
applies for� and�. �

By Lemma 5.5, if we denote 1◦ 1 = v, (v ∈ S1), we havex ◦ y = vσi(x)σj (y) where
anyσl is either the identity map or the complex conjugation map. The same applies�
and� and so we can write the product inA as

(x, y)(u, v) = (
σn(x)σm(u) + v1σi(y)σj (v), v2σp(x)σq(v) + v3σr(y)σs(u)

)
(11)

wheren,m, i, j,p, q, r, s ∈ ±1 and anyvk ∈ S1.
For each multiindexn = (σn, σm,σi, σj , σp,σq, σr , σs), denote byAn(v1, v2, v3) the

algebraA with the product in (11).
Let us observe that if

φ :An(v1, v2, v3) → An′(v′
1, v

′
2, v

′
3) (12)

is an isomorphism, wheren′ = (σ ′
n, σ

′
m,σ ′

i , σ
′
j , σ

′
p,σ ′

q, σ ′
r , σ

′
s), then its restriction to the

homogeneous parts

φ|(An(v1,v2,v3))0 and φ|(An(v1,v2,v3))1,

are linear isometries onC with the Euclidean inner product, thus eitherφ|A0(z) := kz with
|k| = 1 or φ|A0(z) := tz with |t | = 1. The same applies toφ|A1 and we can assert th
following:

Lemma 5.6. Any isomorphismφ between four-dimensional two-graded a.v. algebras i
one of the following types:

(1) φ(x0, x1) = (kx0, tx1),
(2) φ(x0, x1) = (kx0, tx1),
(3) φ(x0, x1) = (kx0, tx1),
(4) φ(x0, x1) = (kx0, tx1),

with |k| = |t | = 1.
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The following easy lemma will be useful to simplify computations.

Lemma 5.7. If vσi(x)σj (y) = wσm(x)σn(y) for any x, y ∈ C, wherev,w are non-zero
fixed elements inC. Thenσi = σm andσj = σn.

In the next theorem we determine the values ofσ ′
n, σ ′

m, σ ′
i , σ ′

j , σ ′
p, σ ′

q , σ ′
r , σ ′

s , v′
1, v′

2, v′
3

in (12), fromσn,σm,σi, σj , σp,σq, σr , σs, v1, v2 andv3. That is, we give the isomorphis
classes of four-dimensional two-graded a.v. algebras. Let us observe that in this th
we are going to consider fori, j only the casesi = j = 1 andi = 1, j = −1, since the
remaining cases (i = j = −1 andi = −1, j = 1) are reduced to these ones as consequ
of 2.3.

Theorem 5.8. Let A be a four-dimensional two-graded a.v. algebra with non-trivial o
part, thenA is isomorphic to one of the type

An(v1, v2, v3).

Moreover, the isomorphism classes in the family of these algebras are described by

An(v1, v2, v3) ∼= An(α1, γ1, δ1) ∼= An(α2, γ2, δ2) ∼= Am(α3, γ3, δ3) ∼= Am(α4, γ4, δ4),

wherem = (σn, σm,σ−i , σ−j , σ−p,σq, σr , σ−s) and

α1 =
{

kt2v1, if i = j = 1,

kv1, if i = 1, j = −1,
α2 =

{
kt2v1, if i = j = 1,

kv1, if i = 1, j = −1,

α3 =
{

kt2v1, if i = j = 1,

kv1, if i = 1, j = −1,
α4 =

{
kt2v1, if i = j = 1,

kv1, if i = 1, j = −1,

γ1 =




kv2, if p = q = 1,

t2kv2, if p = 1, q = −1,

kv2 if p = −1, q = 1,

t2kv2, if p = q = −1,

γ2 =




kv2, if p = q = 1,

t2kv2, if p = 1, q = −1,

kv2, if p = −1, q = 1,

t2kv2, if p = q = −1,

γ3 =




kv2, if p = q = 1,

kt2v2, if p = 1, q = −1,

kv2, if p = −1, q = 1,

t2kv2, if p = q = −1,

γ4 =




kv2, if p = q = 1,

t2kv2, if p = 1, q = −1,

kv2, if p = −1, q = 1,

t2kv2, if p = q = −1,

δ1 =




kv3, if r = s = 1,

kv3, if r = 1, s = −1,

t2kv3, if r = −1, s = 1,

2

δ2 =




kv3, if r = s = 1,

kv3, if r = 1, s = −1,

t2kv3, if r = −1, s = 1,

2
t kv3, if r = s = −1, t kv3, if r = s = −1,
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δ3 =




kv3, if r = s = 1,

kv3, if r = 1, s = −1,

t2kv3, if r = −1, s = 1,

t2kv3, if r = s = −1,

δ4 =




kv3, if r = s = 1,

kv3, if r = 1, s = −1,

t2kv3, if r = −1, s = 1,

t2kv3, if r = s = −1,

for somet ∈ S1, wherek = 1 if n = m = 1 or n �= m, andk = 3
√

1 if n = m = −1.

Proof. Let us supposeφ is as in the first possibility of Lemma 5.6, that is,

φ(x0, x1) = (kx0, tx1) with |k| = |t | = 1.

We have for any

(x, y), (u, v) ∈ An(v1, v2, v3)

thatφ((x, y)(u, v)) = φ(x, y)φ(u, v), so:

(
kσn(x)σm(u) + kv1σi(y)σj (v), tv2σp(x)σq(v) + tv3σr(y)σs(u)

)
= (

σ ′
n(k)σ ′

m(k)σ ′
n(x)σ ′

m(u) + v′
1σ

′
i (t)σ

′
j (t)σ

′
i (y)σ ′

j (v),

v′
2σ

′
p(k)σ ′

q(t)σ ′
p(x)σ ′

q(v) + v′
3σ

′
r (t)σ

′
s(k)σ ′

r (y)σ ′
s(u)

)
. (13)

Takingy = v = 0 in (13), we conclude

(
kσn(x)σm(u),0

) = (
σ ′

n(k)σ ′
m(k)σ ′

n(x)σ ′
m(u),0

)
.

Lemma 5.7 gives

σ ′
n = σn, σ ′

m = σm.

Then, we also havek = σn(k)σm(k), and we obtain the following three possibilities:

(3) If n = m = 1, thenk = k2 and sok = 1.
(2) If n = m = −1, thenk = k2, and from herek = 3

√
1.

(3) If n = 1, m = −1 orn = −1, m = 1, thenk = 1.

Taking in (13),x = u = 0 we have

(
kv1σi(y)σj (v),0

) = (
v′

1σ
′
i (t)σ

′
j (t)σ

′
i (y)σ ′

j (v),0
)
.

Lemma 5.7 now gives

σ ′
i = σi, σ ′

j = σj .

Now, we also havekv1 = v′
1σi(t)σj (t), and as above we obtain the following possib

ties:
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(1) If i = j = 1, thenkv1 = v′
1t

2, that isv′
1 = kt2v1.

(2) If i = j = −1, thenkv1 = v′
1t

2, that isv′
1 = kt2v1.

(3) If i = 1, j = −1 or i = −1, j = 1, thenv′
1 = kv1.

Taking now in (13),y = u = 0 we obtain as in the previous cases the following po
bilities:

(1) If p = q = 1, thenv′
2 = kv2.

(2) If p = q = −1, thenv′
2 = kt2v2.

(3) If p = 1, q = −1, thenv′
2 = kt2v2.

(4) If p = −1, q = 1, thenv′
2 = kv2.

And finally, by taking in (13),x = v = 0 we have

(1) If r = s = 1, thenv′
3 = kv3.

(2) If r = s = −1, thenv′
3 = kt2v3.

(3) If r = 1, s = −1, thenv′
3 = kv3.

(4) If r = −1, s = 1, thenv′
3 = kt2v3.

A similar study for the remaining possibilities forφ in Lemma 5.6 completes th
proof. �

6. Some open questions

Of course the problem of the classification of two-graded a.v. algebras in dimen
greater than 4 is a problem which seems to be difficult to accomplish even for the s
case of eight-dimensional a.v. algebras, that is, with trivial grading. However some
results probably could be given by imposing additional restrictions on the algebras
study. Many other interesting question can be posed in relation with these algebra
instance:

(1) We have stated the fact that any finite-dimensional a.v. triple system is the od
of a suitable two-graded a.v. algebra. Is this also true without assuming the
dimensional hypothesis on the triple system?

(2) The study of the automorphisms and derivations of these algebras seems also
natural question.

(3) Given the diversity of algebras we find in the class of two-graded a.v. algebra
could think about some interesting subclass of them. For instance the alternativ
graded a.v. algebras or more generally the flexible ones. A classification of these
be also an interesting result with applications to a.v. triple systems.

(4) Under which conditions does an infinite-dimensional two-graded a.v. algebra tu
to be finite-dimensional? This suggests the study of algebraic two-graded a.v. alg
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