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Hydrolytic enzyme production byAspergillus awamori on grape pomace
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Abstract

Grape pomace, the main waste in the wine industry, has been shown to be the sole nutrient source for solid state fermentation to produce
hydrolytic enzymes (cellulases, xylanases and pectinases) usingAspergillus awamori. Petri dishes with this natural support inoculated with
spores were incubated under static conditions during 7 days and the enzymatic extracts obtained at different time intervals were analysed. The
enzymes analyses demonstrated that grape pomace could be competitive with other typical agroindustrial wastes used as substrates in SSF
processes.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid state fermentation (SSF) is a technique that has
een well known for centuries[1] and has lately become

ncreasingly important. The technique essentially involves
he growth of microorganisms on wet solid supports in the
bsence (or near absence) of free water. New interest in this

echnology derives from the fact that it is considered to be
n appropriate approach for processes including the biore-
ediation or the biodegradation of toxic compounds, the
etoxification of agricultural wastes, the biotransformation
f crops and biopulping, etc.[2–4]. Moreover, SSF has been
uccessfully applied in the preparation of new high value
roducts, such as secondary metabolites, organic acids, pes-

icides, aromatic compounds, fuels and enzymes[5–9]. The
dvantages of SSF in comparison to traditional submerged

ermentation are better yields, easier recovery of products,
he absence of foam formation and smaller reactor volumes.
oreover, contamination risks are significantly reduced due

o the low water contents and, consequently, the volume of
ffluents decreases[10]. It has been shown that for some
pecific processes, particularly enzyme production, the costs

of these techniques are lower and the production higher t
submerged cultures[11]. Examples of this situation include
cellulase production, which is estimated to be 100 times m
economical with SSF[12], and lipase production, which is
78% cheaper with SSF[13]. For this reason, many researche
have recently focused on the production of industrial e
zymes and, in particular, on reactor design[14–17], in the
search for new solid supports[18–20]or process optimization
[21–23].

A wide variety of natural solid supports have be
used for SSF, with crops and agroindustrial wastes
most studied; besides immobilizing the microorganism
these supports supply the main nutrients needed for gro
(minerals, vitamins, etc.). In the field of enzyme productio
several natural solids have been successfully employed:
wheat, corn, rice, sugar cane and beet, banana waste, po
tea, coccus, apple and citrus fruits, wheat flours and corn[9].
Of these supports, wheat fibres have been the most wi
investigated. However, a very few researchers have publis
work on grape pomace, which today is a very significa
waste product in agriculture industries. Grape pomace is
residue left after juice extraction by pressing grapes in
wine industry. In Spain alone, over 250 million kg of th
∗ Corresponding author. Fax: +34 956 01 6411.
E-mail address: ana.blandino@uca.es (A. Blandino).

by-product (constituted by seeds, skin and stem) are used
every year either as animal feed (with low nutritional value)

ed.
369-703X/$ – see front matter © 2005 Elsevier B.V. All rights reserv
oi:10.1016/j.bej.2005.04.020



C. Botella et al. / Biochemical Engineering Journal 26 (2005) 100–106 101

or for ethanol production by fermentation and distillation
(low level benefit). This material is under-exploited and most
of it is generally disposed in open areas, leading to serious
environmental problems. In contrast, the potential utility of
this waste for value-added products by SSF is promising. The
varietyPalomino fino, selected for the work described here,
has a high carbohydrate content (8% in the seeds, 13% in the
skin), with the fibre representing about 50% of the total mass.
The principal component of fibre is lignin representing 64%
of the fibre in the pips and 59% in the skin. The other majority
components of fibre are the hemicelluloses (18% of the fibre
in pips and 31% in skin) and cellulose (17.75% and 6% in pips
and skin, respectively). The minority component of the fibre
is pectin with only a 0.25% of fibre in pips and 4% in skin[24].
Several bioprocesses have been developed that use grape
pomace as the raw material for the production of bulk chem-
icals and fine products by SSF; these processes include the
production of citric acid[25], gluconic acid[26], carotenoids
[27], xanthan[28] and ethanol[29]. For example, grape
pomace has been reported to induce the production of lacase
enzyme in a submerged culture withTrametes versicolor [30]
and has been used as a solid support for the growth ofTricho-
derma viride with SSF[31]. However, this material has never
been specifically used as a solid support for enzyme produc-
tion.

Given the composition of grape pomace, the enzymes
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flasks were incubated at 30◦C for 5 days. After the incu-
bation period, 0.01% (v/v) Tween 80 solution (100 ml) was
added to the flasks and the spores were suspended by gentle
shaking. The number of spores was later counted in an Im-
proved Neubauer Counting Chamber (Assistent-Germany;
BDH).

2.2. Grape pomace

Industrial white grape pomace (P. fino variety) grown in
the Jerez-Xeres-Sherry area, in south-western Spain, was
used as the sole nutrient source for the fermentation stud-
ies and the production of hydrolytic enzymes. Samples of
freshly pressed white virgin marc were collected from a lo-
cal wine cellar and stored at−24◦C. For any given series
of experiments, sub-samples (250 g) were taken and dried
in an oven at 60◦C for 48 h. The solid was then milled in
a commercial mill and sieved. The mean diameter (D50, the
diameter below which 50% of the particles fall) of the milled
pomace was 0.74 mm.

2.2.1. Chemical analysis
After a preparatory separation of the stems, the chemical

content was analysed using the following techniques:
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ellulase, xylanase and pectinase were selected to te
roduction with SSF. Cellulase is the general term
group of enzymes consisting of endo-1,4-�-d-glucanas

EC 3.2.1.4), exo-1,4-�-glucanase (EC 3.2.1.91) and�-d-
lucosidase (EC 3.2.1.21). These enzymes are employ

eed, fuel and chemical industries for the processing of li
ellulosic materials. These enzymes, together with xyla
EC 3.2.1.8), are very common in the textile industry.
ectinase group is formed by five enzymes – pectinest
EC 3.1.1.11), endo-polygalacturonase (EC 3.2.1.15),
olygalacturonase (EC 3.2.1.67), pectin liase (EC 4.2.2
nd petate liase (EC 4.2.2.2) – and is commonly used i
roduction of juices and fruit extracts[9]. Finally,Aspergillus
wamori has been widely used in the production of such
ymes with SSF on other solid supports, such as wheat
32–34].

. Materials and methods

.1. Spore production

A. awamori 2B.361 U2/1, classified by the Commo
ealth Mycological Institute asAspergillus niger complex
as propagated and stored on 5% whole-wheat flour an
gar slants at 4◦C.

Spores stored on flour slants were washed with 0.
v/v) Tween 80 solution (10 ml). The spore solution (0.5
as spread on the surface of the solid flour medium (100

n 500 ml Erlenmeyer flasks, and the inoculated Erlenm
Moisture and ash content: A known weight of each samp
was heated to 90◦C in an oven for 24 h. The dried sampl
were weighed again and the moisture content was ca
lated. Ashing was performed by calcination of the sam
in a muffle furnace at 660◦C for 6 h.
Glucose: A Beckmann glucose analyser was used to
culate the glucose concentration in the grape pomace
Free amino nitrogen: This parameter was determined
the ninhydrin colorimetric method.
Total nitrogen: This parameter was measured as Total K
dahl Nitrogen (TKN) by the Nessler method.
Phosphorus: The determination of phosphorus in gra
pomace samples relied on the destruction of the sampl
acid digestion and the colorimetric determination (430 n
of the resulting phosphate.

.3. Fermentation procedure

The production of hydrolytic enzymes byA. awamori in
SF was evaluated in grape pomace using petri dishes

n diameter). Prior to inoculation, the solid was steriliz
n an autoclave for 20 min at 120◦C and 1.2 atm. To eac
late 10 g of sterilized solid was added, the required vol
f spore suspension to obtain a final spore concentratio
× 105 spores/g, and the appropriate amount of water ne

o adjust the moisture to the desired level (60%).
The petri dishes were incubated under static condition

0◦C during 7 days and samples in triplicate were withdra
t different time intervals (0 h, 11 h, 17 h, 22 h, 24 h, 48 h, 7
6 h, 120 h and 168 h).
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2.4. Enzyme assays

2.4.1. Extraction
The whole contents of each petri dish (10 g of fermented

material) were mixed with 50 ml of distilled water and incu-
bated for 30 min at 30◦C and at 220 rpm in a rotary shaker.
The suspension was then centrifuged at 10000 rpm for 10 min
and the resulting liquid – the enzymatic extract – was stored
at−20◦C until required for subsequent enzymatic analysis.

2.4.2. Analysis
• Reducing sugars were measured by the dinitrosalicylic

acid (DNS) method described by Miller[35]. Results were
expressed as glucose concentration using a calibration
curve.

• Cellulase activity was assayed using carboxymethyl cel-
lulose 1% (w/v) dissolved in 50 mM glycine/NaOH buffer
(pH 9) as a substrate. To 1 ml of carboxymethyl cellu-
lose solution, 0.5 ml of appropriately diluted enzyme was
added. The resulting solution was incubated at 50◦C for
10 min. The reaction was stopped by the addition of 2 ml
of 0.3 M trichloroacetic acid (TCA). The reducing sugars
concentration was then determined by the DNS method.
One enzyme activity unit was defined as the amount of
enzyme that released 1�mol of glucose per minute under
the assayed conditions.
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tion of the sample against a blank. The blank solution was
made by adding 5 ml of the enzymatic extract to 15 ml of
0.5% pectin and immediately boiling for 5 min to denatu-
ralize the enzymes. One endo-pectinase unit was defined
as the amount of enzyme that reduces the viscosity of the
pectin solution by 50% per minute under the conditions
stated above (50◦C and pH 5).

All the above measurements were made in triplicate, and
the enzymatic activities were expressed as activity units per
gram of dry substrate (IU/gds).

3. Results and discussion

3.1. Chemical composition

Application of the techniques outlined in Section2.2.1
enabled the analysis of the chemical content in terms of ash,
total sugar, nitrogen, phosphorus, amino nitrogen and glucose
in the grape pomace (Table 1). Attending to the composition,
this natural medium is a potentially good support for fungus
growth with SSF.

3.2. Enzyme production
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Xylanase activity was assayed using Birchwood xy
(Sigma) as a substrate. A 1.5 ml reaction mixture,
taining 0.5 ml of appropriately diluted enzyme solut
and 1 ml of a 0.5% (w/v) suspension of xylan in 0.05
citrate buffer, was made at pH 5.4. The mixture was in
bated at 50◦C for 10 min and the reaction stopped by
addition of 2 ml of TCA (0.3N) The reducing sugars p
duced were assayed by the DNS method usingd-xylose as
the standard. A unit of enzyme activity was defined as
amount of enzyme producing 1�mol of reducing sugar
per minute at pH 5.4 and at 50◦C.
Exo-polygalacturonase activity was assayed by meas
ing the release of reducing sugars by DNS method. In
case,d-galacturonic acid was used as the standard.
test tube, 1 ml of 0.5% pectin (from apple fruit) in 0.1
acetate buffer (pH 5) was added to 0.5 ml of the dilu
enzyme solution. After incubation for 10 min at 45◦C,
the reaction was stopped by the addition of 2 ml of T
(0.3N) and the released reducing sugars were measu
the DNS method. One unit of exo-polygalacturonase
tivity was defined as the activity that liberates 1�mol of
d-galacturonic acid per min at 45◦C and pH 5.
Endo-polygalacturonase activity was measured viscome
rically using a Cannon-Fenske routine viscosimeter. A
lution of 15 ml of 0.5% pectin (from apple fruit) in 0.1
acetate buffer (pH 5) was incubated in a water bath at 4◦C.
After the pectin solution had tempered, 5 ml of the en
matic extract was added and the mixture was incubate
10 min. The reaction was stopped by boiling for 5 min.
activity was calculated by measuring the viscosity red
The production of xylanase, cellulose and pectinase (e
olygalacturonase and exo-polygalacturonase) were st
y growing the fungus on petri dishes, as discussed in Se
.3.

An electron micrograph (×2000) was obtained on a sa
le from the second day (Fig. 1). The picture shows th
rouped spores ofA. awamori with a rough surface texture

The evolution of enzymatic activity, reducing sugars
H on usingA. awamori on grape pomace as a fermenta
edium is plotted inFig. 2.
The behaviour ofA. awamori in producing xylanase, ce

ulase and exo-polygaracturonase followed similar patt
nzymatic activity was not detected at the beginning o

ermentation, suggesting that the enzymes were prod
nly by the fungus and that the enzyme content of the
ace was negligible. The trends show a sharp increase
ctivity of these enzymes in the early stages of incuba
ith a maximum value attained within the first 24 h. A

able 1
hemical analysis of grape pomace.

hemical analysis

omponent Composition
(w/w) db (%)

oisture 7.66
sh 6.20
lucose 7.13
itrogen 1.5
rotein (N × 6.25) 9.32
hosphorus 0.14
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Fig. 1. Electron micrograph (×2000) of spores ofA. awamori under SSF
conditions.

duction in the enzyme activity was observed after the first
few days of fermentation.

The xylanase activity (Fig. 2a) reached a maximum value
after 24 h of fermentation (40.4± 15.6 IU/gds) after which

a reduction in its activity was observed. On the seventh day,
an activity of only 3.5 IU/gds was measured. Comparing
the xylanase production on grape pomace with the corre-
sponding ones for other agricultural residues, it seems that
grape pomace is a good potential substrate for the synthesis
of this enzyme. Thus, whenPenicillium decumbens was
grown on a mixture of 90% corn straw and 10% wheat bran
moistened with 25 ml of a mineral solution, 13.59 IU/gds
of xylanase were measured after 4 days of culture at 28◦C
[36]. Couri et al.[37] also studied the production of xylanase
by A. niger using different agroindustrial residues – mango
peel and wheat bran – as the solid substrate. For those
experiments, 40 g of the sterile fermented solid containing a
moisture level of around 60% was incubated at 32◦C. When
wheat bran was used as the substrate, xylanase activities
around 100 IU/gds were reached after 72 h of incubation.
When mango peel was used, maximum xylanase activity
(50.4 IU/gds) was reached after 24 h of fermentation. In the
same line, the production of xylan-degrading enzymes by a

F
b

ig. 2. Evolution of the enzymatic activity of xylanase (a), cellulase (b), exo
y A. awamori on grape pomace.
-PG (c), endo-PG (d), concentration of reducing sugars (e) and pH (f) produced
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koji mold, Aspergillus oryzae RIB 128, has been tested on
dried wheat bran, rice bran and orange peel[38]. The highest
productivity – about 60 IU/gds – was reached when wheat
bran was used as the substrate. For those experiments, the
moisture content of the solid was adjusted to 67%, and solid
state cultures were grown at 30◦C for 4 days. The production
of xylanase by the bacterial strainBacillus licheniformis
has been reported by Archana and Satyanarayana[39]. In
this case, a maximum activity of 16.8 IU/gds was mea-
sured after 72 h of inoculating the strain on 10 g of wheat
bran with 25 ml of a mineral solution, and incubated at
50◦C.

Cellulases (Fig. 2b) were not excreted until 17 h after the
inoculation, with the highest value reached within the first
24 h. This activity (9.6± 0.76 IU/gds) remained constant
until the third day. The activity subsequently decreased
to 1.0 IU/gds on the fifth day. A previous study described
in the literature shows that different agricultural wastes
containing lignin inhibit cellulase activity on cellulose[40].
This observation could also explain the lower values for
the enzyme studied here. In order to evaluate the goodness
of grape pomace as substrate for the synthesis of cellulase,
different agricultural residues reported in literature have been
compared considering endoglucanase activity or CMCase.
Yang et al.[36] reported the growth ofP. decumbens on a
mixture of 90% corn straw and 10% wheat bran (moistened
w 5 IU
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wheat as a substrate. In the case of endo-PG, the difference
is even more marked: maximum activity of 0.014 IU/gds in
whole wheat and 0.113 IU/gds in grape pomace. On the basis
of these results, it can be seen that grape pomace is a more
effective medium than wheat for the production of pectinase
enzymes. Since the microorganism and the conditions of
cultivation were the same, the differences outlined above
may be well related to the chemical compositions of the
media – principally the fibre content (2.7% in wheat and
40% in grape pomace) – which affects the fungal growth
and the enzyme synthesis.

The behaviour of the reducing sugars shows a peculiar
trend (Fig. 2e). During the first phase of growth, the microor-
ganism consumed the free sugar contained in the substrate.
After 22 h, the total concentration of free reducing sugars
was very low (less than 0.05 M) and the fungi began to use
their hydrolytic enzymes to obtain other carbon sources. The
concentration grew and a peak was reached after 24 h. Later
the sugars were consumed and the concentration decreased
exponentially, coinciding with a fall in the concentration of
xylanase, cellulase and exo-PG. This situation could suggest
that for these three enzymes, the high concentration of sugars
favours the enzymatic production. In contrast, the production
of endo-PG would show a catabolic repression when the re-
ducing sugar concentration in the medium is high and this
would explain the increasing trend observed for this enzyme.
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ith a mineral solution) and produced a maximum of 9.0
f cellulase per gram of dry substrate, after 4 days of cu
t 28◦C. Jecu[41] obtained a maximum production f

his enzyme of 296 IU/gds using a milled mix of wh
traw and wheat bran (9:1) with an initial humidity of 74
sing A. niger, grown during 96 h of incubation at 30◦C.
rishna [42] grew Bacillus subtilis on banana wastes
rder to measure CMCase activity and obtained 9.6 IU
fter 72 h (moisture 70%; pH 7.0) at 35◦C with additiona
ineral nutrients. The same author tested SSF with w
ran, rice bran and rice straw obtaining 4–10-fold lo
ctivities with the same microorganism. Jha et al.[43] used
oyhull (material produced during soybean process
ith added urea (2%, w/w) and the fungusPhanerochaete

hrysosporium to enhance cellulase yields of 74.8 IU/gd
5◦C.

The exo-polygalacturonase (exo-PG) activity (Fig. 2c)
eached a maximum of 25.0± 9.61 IU/gds between 11
nd 24 h and thereafter decreased until reached a va
.7 IU/gds on the fifth day. This enzyme is produced ea
ith a high activity value. However, endo-polygalacturon

endo-PG) activity (Fig. 2d) did not appear during the fir
4 h and then increased progressively, stabilising wit
ctivity of 0.113± 0.0033 IU/gds between the fifth and
eventh day. Pectinase production in grape pomace w
ompared with the data reported for the production of
nzyme usingA. awamori on whole wheat[44]. In the latte
ase, a maximum exo-PG activity of 9.18 IU/gds was fo
he results obtained with grape pomace showed tha
ctivity measured was almost 2.5 times higher than u
The graph representing the pH (Fig. 2f) shows a constan
alue of around 3.8 during the first 24 h and a slight decre
hereafter. This decrease could be linked to the releas
rganic acids during the growth of fungi. After the third da

he pH increases as the reducing sugar level is very low
his increase is due to the utilisation of organic acids as ca
ources when the sugar is limited.

. Conclusions

Grape pomace, the main polluting waste from the w
industry, is a good natural medium for SSF. Its chem
composition is rich in the main nutrients required for t
growth of a wide range of microorganisms. The low c
of this material makes it potentially promising for su
applications.
The growth behaviour ofA. awamori on grape pomace
as the sole nutrient source for producing xylanase, ce
lase and exo-polygaracturonase followed similar patte
A rapid rise in the activity of these enzymes was o
served in the early stages of incubation (within the fi
24 h). Xylanase and exo-polygalacturonase activities w
high compared with corresponding values in the literatu
showing good future prospects for industrial applicatio
Cellulase activity is inhibited.
Endo-polygalacturonase shows a catabolic repres
when the reducing sugar concentration in the medium
high (during the first few hours) and its activity increas
when the reducing sugars decrease.
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