
a

Using
tional

nverse

alculus
n the-
tisfies
J. Math. Anal. Appl. 311 (2005) 1–12

www.elsevier.com/locate/jma

On variational problems:
Characterization of solutions and duality

M. Arana-Jiméneza, R. Osuna-Gómezb,∗, G. Ruiz-Garzónc,
M. Rojas-Medard

a SIES Vega del Guadalete, Calle Merced, 7, San José del Valle, CP:11580, Cádiz, Spain
b Departamento de Estadística e I.O., Universidad de Sevilla, Spain
c Departamento de Estadística e I.O., Universidad de Cádiz, Spain

d DMA-IMECC-UNICAMP, CP 6065, 13081-970, Campinas-SP, Brazil

Received 18 February 2004

Available online 25 May 2005

Submitted by B.S. Mordukhovich

Abstract

In this paper we introduce a new class of pseudoinvex functions for variational problems.
this new concept, we obtain a necessary and sufficient condition for a critical point of the varia
problem to be an optimal solution, illustrated with an example. Also, weak, strong and co
duality are established.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

There exists a huge literature on the necessary and sufficient conditions on c
of variations, see, for instance, [1–4], for the classical results and to more moder
ory, see [5,6]. It is the well-known Euler necessary condition. The function that sa
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the Euler condition is called a stationary point of the problem or an extremal; gen
speaking, the converse is not true, i.e., the functions that satisfy the Euler conditi
not necessary solutions of the problem. Consequently, a more fine analysis is nee
decide if the extremal point is in fact the optimal solution. The classical approach
give higher order optimality conditions or to use some convexity hypotheses, see,
stance, [3,7,8]. In mathematical programming, the Kuhn–Tucker conditions are suf
for optimality if the functions involved are convex. In the last few years, attempts
been made to weaken the convexity hypotheses and thus to explore the extent of op
conditions applicability. As it is known, invexity has been introduced in optimization
ory by Hanson, see [9], as a substitute for convexity in constrained optimization. C
and Glover [10] showed that any differentiable scalar function is invex if and only if e
stationary point is a global minimizer. For constrained problems, the invexity define
Hanson is a sufficient condition but not a necessary condition for every Kuhn–Tucke
tionary point to be a global minimizer. Martin, see [11], defined a weaker invexity no
called Kuhn–Tucker invexity or KT-invexity, which is both necessary and sufficient to
tablish the Kuhn–Tucker optimality conditions in scalar programming problems. Inv
was extended to variational problems by Mond, Chandra and Husain, see [12] (se
[13–17]). In Section 2 we will give the preliminaries. In Section 3 we define the
concepts of L-(KT/FJ)-pseudoinvex functions. In Section 4 we establish a necessa
sufficient condition in order that a critical point of the Variational Problem be an opt
solution, i.e., it is obtained a characterization which has not been obtained to date. W
pose an example to illustrate the nature of L-KT-pseudoinvexity, and where the fun
involved are not invex. In Section 5 weak, strong and converse duality are establish

2. Preliminaries

Let us introduce the variational problem and definitions. LetI = [a, b] be a real in-
terval, and letf : I × Rn × Rn → R and g : I × Rn × Rn → Rm be continuously dif-
ferentiable functions with respect to each of their arguments. For notational conve
f (t, x(t), ẋ(t)) will be written f (t, x, ẋ), wherex : I → Rn, with derivativeẋ. Let us de-
note the partial derivative off with respect tot , x, and ẋ, by ft , fx , fẋ , respectively.
Analogously, we write the partial derivatives ofgt , gx , gẋ , using matrices withm rows
instead of one. LetX be denote the space of piecewise smooth functionsx : I → Rn with
the norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞,

where the differentiation operatorD is given by

u = Dx ⇔ x(t) = α +
t∫

a

u(s) ds,

whereα is a given boundary value. Therefore,D = d/dt except at discontinuities. The
we can consider the scalar Constrained Variational Problem:
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(CVP) Minimize F(x) =
b∫

a

f (t, x, ẋ) dt

subject to x(a) = α, x(b) = β,

g
(
t, x(t), ẋ(t)

)
� 0, t ∈ I.

We observe that the classical problem of the calculus of variations is a particular c
(CVP), because it is sufficient to putg ≡ 0. This last case we refer as (VP). We denote
K be the set of feasible solutions of (CVP), i.e.,

K = {
x ∈ X: x(a) = α, x(b) = β, g

(
t, x(t), ẋ(t)

)
� 0, t ∈ I

}
.

Definition 2.1. x̄ ∈ K is said to be an optimal solution or global minimum of (CVP) if

F(x̄) � F(x)

for all x ∈ K or equivalently,

�x ∈ K: F(x) < F(x̄).

We write in the followingfx(t) to denotefx(t, x(t), ẋ(t)) andfẋ(t) = fẋ(t, x(t), ẋ(t)).

Definition 2.2. x ∈ K is said to be a Fritz–John critical point if there existsτ ∈ R and
y ∈ X such that

τfx(t) + y(t)T gx(t) = d

dt

{
τfẋ(t) + y(t)T gẋ(t)

}
, (1)

y(t)T g(t, x, ẋ) = 0, (2)(
τ, y(t)

)
� 0,

(
τ, y(t)

) �= 0, (3)

∀t ∈ I , except at discontinuities.
As is usual in optimization theory, ifτ �= 0, we say that the problem is normal or regu

see [18], and in this case, we say that the critical point is a Kunh–Tucker critical point
that if the problem is normal, the condition (3) is reduced toy(t) � 0.

Remark 2.1. We observe that the above definitions are exactly the Euler necessary
tion for optimality of (CVP). We recall that some additional hypotheses are necess
guaranteeτ �= 0, these conditions are called qualification of restrictions (see [5]).

3. Invexity and pseudoinvexity

Mond, Chandra and Husain [12], extended the concept of invexity to continuous
tions:

Definition 3.1. The functionf (t, x, ẋ) is said to be invex at̄x ∈ X with respect toη if for
all x ∈ X there exists a vector functionη(t, x̄, x), with η(t, x, x) = 0 such that

f (t, x, ẋ) − f (t, x̄, ˙̄x) � f̄x(t)η(t, x̄, x) + f̄ẋ (t)
d

dt
η(t, x̄, x).
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Where we denotēfx(t) = fx(t, x̄, ˙̄x) andf̄ẋ (t, x̄, ˙̄x). If f does not depend explicitly ont ,
the previous definition essentially reduces to be the definition of invexity given by Ha
see [9]. We recall the definition of invexity for functionals given in [13,14].

Definition 3.2. The functionalF(x) = ∫ b

a
f (t, x, ẋ) dt is called invex at̄x ∈ K with respect

to η, if for all x ∈ X there exists a vector functionη(t, x̄, x) with η(t, x, x) = 0 such that

F(x) − F(x̄) �
b∫

a

{
f̄x(t)η(t, x̄, x) + f̄ẋ (t)

d

dt
η(t, x̄, x)

}
dt.

Looking for optimality sufficient conditions for (CVP), Mond and Husain [13] resor
to generalize convexity:

Definition 3.3. F is pseudoinvex at̄x ∈ X, with respect toη if for all x ∈ X there exists a
vector functionη(t, x̄, x), with η(t, x, x) = 0 such that

F(x) − F(x̄) < 0 ⇒
b∫

a

{
f̄x(t)η(t, x̄, x) + f̄ẋ (t)

d

dt
η(t, x̄, x)

}
dt < 0.

Under these generalized invexity conditions, Mond and Husain [13] got suffi
Kuhn–Tucker conditions. Let us consider the problem (CVP) andf , g, F(x) = ∫ b

a
f (t, x,

ẋ) dt andG(x) = ∫ b

a
g(t, x, ẋ) dt .

Definition 3.4. The pair(F,G) is said to be L-FJ-pseudoinvex atx̄ ∈ X, if for all x ∈ X,
τ̄ ∈ R and ȳ ∈ X, which verify (2) and (3), there exists a differentiable vector func
η(t, x, x̄, τ̄ , ȳ), with η(a, x, x̄, τ̄ , ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ), such that ifF(x) − F(x̄) < 0,
then

b∫
a

{(
τ̄ f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, τ̄ , ȳ)

+ (
τ̄ f̄ẋ (t) + ȳ(t)T ḡẋ (t)

) d

dt
η(t, x, x̄, τ̄ , ȳ)

}
dt < 0

or equivalently,

b∫
a

{(
τ̄ f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, τ̄ , ȳ)

+ (
τ̄ f̄ẋ (t) + ȳ(t)T ḡẋ (t)

) d

dt
η(t, x, x̄, τ̄ , ȳ)

}
dt � 0

impliesF(x) − F(x̄) � 0.
If the problem is normal, i.e,̄τ �= 0, and takingτ = 1, we say that the pair(F,G) is

L-KT-pseudoinvex at̄x ∈ X.
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If the previous definitions are reduced on the set of feasible solutions of (CVP),K , we
establish the following concepts:

Definition 3.5. The Constrained Variational Problem (CVP) is said to be L-FJ-pseudo
if it is verified by Definition 3.4 for allx, x̄ ∈ K . If the problem is normal, we say th
(CVP) is L-KT-pseudoinvex.

Some of the relationships between these definitions are as follows, the proof is e

Proposition 3.1. If (F,G) is L-KT-pseudoinvex at̄x ∈ X, thenF is pseudoinvex at̄x.

In relation to the concept of pseudoinvexity on the suggestion of [13], we propos
following result:

Proposition 3.2. Let x̄ ∈ K . If for all ȳ ∈ X such that(x̄, ȳ) verifies(2) and (3), with
τ = 1, the Lagrangian functionφ(x, ȳ) = ∫ b

a
{f (t, x, ẋ) + ȳ(t)T g(t, x, ẋ)}dt , with x ∈ K ,

is pseudoinvex at̄x, then(CVP) is L-KT-pseudoinvex.

Proof. Let ȳ be such that(x̄, ȳ) verifies (2) and (3), withτ = 1, and let us supposex ∈ K

such thatF(x) − F(x̄) < 0, i.e.,

b∫
a

f (t, x, ẋ) dt <

b∫
a

f (t, x̄, ˙̄x)dt.

Sincex is feasible and (3),̄y(t)T g(t, x, ẋ) � 0, ∀t ∈ I ; and moreover from (2), it follows

b∫
a

(
f (t, x, ẋ) + ȳ(t)T g(t, x, ẋ)

)
dt <

b∫
a

(
f (t, x̄, ˙̄x) + ȳ(t)T g(t, x̄, ˙̄x)

)
dt.

Sinceφ(·, ȳ) is pseudoinvex at̄x, there exists a differentiable functionη(t, x, x̄) such that

b∫
a

{(
f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄) + (

f̄ẋ (t) + ȳ(t)T ḡẋ (t)
) d

dt
η(t, x, x̄)

}
dt < 0,

and therefore, (CVP) is L-KT-pseudoinvex atx̄ with respect toη(t, x, x̄, ȳ) = η(t, x, x̄). �

4. Necessary and sufficient optimality conditions

In this section, first we prove the sufficiency of the Kuhn–Tucker optimality conditi
under L-KT-pseudoinvexity assumptions on (CVP). Analogous results are true for t
FJ-pseudoinvexity.

Theorem 4.1. If (CVP) is L-KT-pseudoinvex, then all Kuhn–Tucker critical points are
timal solutions.
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Proof. Let x̄ be a Kuhn–Tucker critical point,̄x ∈ K , i.e., there exists̄y ∈ X such that
(x̄, ȳ) verifies (1)–(3), withτ = 1. Let x ∈ K . Since (CVP) is L-KT-pseudoinvex, the
existsη(t, x, x̄, ȳ) = η(t, x, x̄,1, ȳ) differentiable, withη(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ)

which verifies Definition 3.4. It follows

b∫
a

{(
f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, ȳ) + (

f̄ẋ (t) + ȳ(t)T ḡẋ (t)
) d

dt
η(t, x, x̄, ȳ)

}
dt

=
b∫

a

{(
f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, ȳ)

− d

dt

(
f̄ẋ (t) + ȳ(t)T ḡẋ (t)

)
η(t, x, x̄, ȳ)

}
dt

+ (
f̄x(t) + ȳ(t)T ḡ(t, x, x̄, ȳ)

)∣∣t=b

t=a
(by integration by parts)

=
b∫

a

{
f̄x(t) + ȳ(t)T ḡx(t)

− d

dt

(
f̄ẋ (t) + ȳ(t)T ḡẋ (t)

)}
η(t, x, x̄, ȳ) dt = 0

(
by (1)

)
.

Since (CVP) is L-KT-pseudoinvex, it follows

F(x) − F(x̄) � 0 ∀x ∈ K.

Therefore,x̄ is an optimal solution of (CVP). �
We have proved that L-KT-pseudoinvexity is a sufficient condition, and now, we

going to prove that it is a necessary condition.

Theorem 4.2. If all Kuhn–Tucker critical points are optimal solutions for(CVP), then
(CVP) is L-KT-pseudoinvex.

Proof. Let x, x̄ ∈ K , (x̄, ȳ) verifies (2) and (3), withτ = 1, such thatF(x) − F(x̄) < 0.
We have to findη(t, x, x̄, ȳ) ≡ η(t, x, x̄,1, ȳ) differentiable, withη(a, x, x̄, ȳ) = 0 =
η(b, x, x̄, ȳ), such that

P
(
η(·, x, x̄, ȳ)

) =
b∫

a

{(
f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, ȳ)

+ (
f̄ẋ (t) + ȳ(t)T ḡẋ (t)

) d

dt
η(t, x, x̄, ȳ)

}
dt < 0.

And thus, supposeP(η(·, x, x̄, ȳ)) < 0 has no solutionη(t, x, x̄, ȳ), and thenP(η(·, x,

x̄, ȳ)) > 0 has no solution too, since we could consider−η(t, x, x̄, ȳ). Therefore,
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(
η(·, x, x̄, ȳ)

) =
b∫

a

{(
f̄x(t) + ȳ(t)T ḡx(t)

)
η(t, x, x̄, ȳ)

+ (
f̄ẋ (t) + ȳ(t)T ḡẋ (t)

) d

dt
η(t, x, x̄, ȳ)

}
dt = 0

∀η(t, x, x̄, ȳ) differentiable, with η(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ). From generalized
de Dubois–Raymond Lemma (see [1, p. 307]), we have

f̄ẋ (t) + ȳ(t)T ḡẋ (t)

is piecewise smooth and

f̄x(t) + ȳ(t)T ḡx(t) = d

dt

{
f̄ẋ (t) + ȳ(t)T ḡẋ (t)

}
,

and therefore,(x̄, ȳ) verifies (1)–(3), withτ = 1, i.e.,x̄ is a Kuhn–Tucker critical point, an
thenx̄ is an optimal solution for (CVP), which stands in contradiction toF(x)−F(x̄) < 0.
So, there existsη(t, x, x̄, ȳ) differentiable, withη(a, x, x̄, ȳ) = 0= η(b, x, x̄, ȳ), such that
P(η(·, x, x̄, ȳ)) < 0, and then, (CVP) is L-KT-pseudoinvex.�

Therefore, we have proved that L-KT-pseudoinvexity of (CVP) is both sufficient
necessary condition in order that a Kuhn–Tucker critical point is an optimal soluti
(CVP). In the same way, we can prove that L-FJ-pseudoinvexity of (CVP) is both nece
and sufficient condition for that its critical points to be optimal solutions.

Theorem 4.3. If all Fritz–John critical points are optimal solutions for(CVP), then(CVP)
is L-FJ-pseudoinvex.

Theorem 4.4. If (CVP) is L-FJ-pseudoinvex the all Fritz–John critical points are optim
solutions.

In the following, we consider an example to illustrate L-KT-pseudoinvexity.

Example. In this way, we present an example of L-KT-pseudoinvex variational prob
Besides, we prove that invexity of some of the functions involved in this variational p
lem is not verified, what is required in Mond, Chandra and Husain [12].

(P1) Minimize

1∫
0

(
1− ẋ(t)

)2
dt

subject to x(0) = 1, x(1) = 2,

1− x2(t) � 0, ẋ(t) − 10� 0,

where I = [0,1], f : [0,1] × R × R → R and g = (g1, g2) : [0,1] × R × R → R2,
f (t, x, ẋ) = (1 − ẋ(t))2, g1(t, x, ẋ) = 1 − x2(t), g2(t, x, ẋ) = ẋ(t) − 10. Let K be the
set of feasible solutions of (P1), then
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(i) Let us see that all Kuhn–Tucker critical points are optimal solutions of (P1).
Let x ∈ K . If x is a Kuhn–Tucker critical point, then there exists a piecewise sm
functiony = (y1, y2) such that

−2x(t)y1(t) = 2ẍ(t) + ẏ2(t), y1(t)
(
1− x2(t)

) = 0,

y2(t)
(
ẋ(t) − 10

) = 0.

Sincey1(t) � 0 andy2(t) � 0, these conditions are reduced to
(
x(t), y1(t), y2(t)

) = (ct + d,0,0), t ∈ [0,1] or(
x(t), y1(t), y2(t)

) = (10t + e,0, k), t ∈ [0,1],
with c, d, e, k ∈ R, k > 0. And sincey1, y2 are continuous andx ∈ K , by simple
calculations it is obtained that the Kuhn–Tucker critical point isx̄(t) = t + 1, with
y1(t) = 0 = y2(t), t ∈ [0,1]. Otherwise, and graphically, we have that the optim
solution of (P1) isx̄(t) = t + 1.

(ii) The problem (P1) is L-KT-pseudoinvex.
By applying Definition 3.5 to (P1), given(x, x̄, y1, y2) which verifies (2) and (3), ther
existsη such that

1∫
0

((
1− ẋ(t)

)2 − (
1− ˙̄x(t)

)2)
dt < 0

⇒
1∫

0

(
y1(t)

(−2x̄(t)
)
η + (

2
( ˙̄x(t) − 1

) + y2(t)
)
η̇
)
dt < 0.

To prove L-KT-pseudoinvexity, suppose it is not verified, i.e., if

1∫
0

((
1− ẋ(t)

)2 − (
1− ˙̄x(t)

)2)
dt < 0

then

1∫
0

(
y1(t)

(−2x̄(t)
)
η + (

2
( ˙̄x(t) − 1

) + y2(t)
)
η̇
)
dt = 0

for all η, what is equivalent to differential equations in (i), and it is only verified
x̄(t) = t + 1. And

F(x) − F(x̄) =
1∫

0

((
1− ẋ(t)

)2 − (
1− ˙̄x(t)

)2)
dt =

1∫
0

(
1− ẋ(t)

)2
dt � 0,

for all x ∈ K . Then, it is not verifiedF(x) − F(x̄) < 0, and therefore (P1) is L-KT
pseudoinvex.
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Moreover,g1(t, x, ẋ) = 1 − x2(t) is not invex, because from Definition 3.1, givenx,
x̄ ∈ K , g1 is invex if there existsη such that

x̄2(t) − x2(t) � 2
(
x̄(t) − 1

)
η, t ∈ [0,1].

But this condition is not verified. For example, take

x̄(t) =
{

1, t ∈ [0,1/2],
2t, t ∈ [1/2,1], and x(t) = t + 1, t ∈ [0,1].

Consequently,g is not invex.

So, and firstly, (P1) verifies that all Kuhn–Tucker critical point are optimal solutions.
ondly, by Theorem 4.1, (P1) is a L-KT-pseudoinvex variational problem, which is sh
in (ii). And finally, invexity is not verified for (P1) and, however, some authors (see [
require it for optimality results.

5. Duality

We establish duality between (CVP) and the next dual problem (CVD1), whi
a modified Mond–Weir type dual problem formulated by Bector, Chandra and Hu
see [18].

(CVD1) Maximize

b∫
a

f (t, u, u̇) dt

subject to u(a) = α, u(b) = β,

fu(t) + y(t)T gu(t) = d

dt

{
fu̇(t) + y(t)T gu̇(t)

}
, t ∈ I,

y(t)T g(t, u, u̇) = 0,

y(t) � 0, t ∈ I.

We recall thatfu(t) = fu(t, u, u̇) andfu̇(t) = fu̇(t, u, u̇). Analogously forg. Let H be the
feasible set of (CVD1).

Theorem 5.1 (Weak duality). Let x ∈ K and (u, y) ∈ H . If (F,G) is L-KT-pseudoinve
at u, then

∫ b

a
f (t, x, ẋ)dt �

∫ b

a
f (t, u, u̇) dt .

Proof. Suppose
∫ b

a
f (t, x, ẋ) dt �

∫ b

a
f (t, u, u̇) dt is not verified, i.e.,F(x) − F(u) < 0.

Since(u, y) verifies the third and fourth restrictions in (CVD1), and since (F,G) is L-
pseudoinvex, there exists a differentiable functionη(t) = η(t, x,u, y), with η(a, x,u, y) =
0= η(b, x,u, y) such that

b∫ {(
fu(t) + y(t)T gu(t)

)
η(t) + (

fu̇(t) + y(t)T gu̇(t)
) d

dt
η(t)

}
dt < 0. (4)
a
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On the other hand,

b∫
a

{(
fu(t) + y(t)T gu(t)

)
η(t) + (

fu̇(t) + y(t)T gu̇(t)
) d

dt
η(t)

}
dt

=
b∫

a

{(
fu(t) + y(t)T gu(t)

)
η(t) −

(
d

dt

(
fu̇(t) + y(t)T gu̇(t)

))
η(t)

}
dt

+ (
fu̇(t) + y(t)T gu̇(t)

)
η(t)

∣∣t=b

t=a
(by integration by parts)

=
b∫

a

{
fu(t) + y(t)T gu(t) −

(
d

dt

(
fu̇(t) + y(t)T gu̇(t)

))}
η(t) dt = 0,

where we use the second restriction in (CVD1). This is a contradiction with (4). There

b∫
a

f (t, x, ẋ) dt �
b∫

a

f (t, u, u̇) dt. �

As a consequence of previous theorem, if(F,G) is L-KT-pseudoinvex, then

b∫
a

f (t, x, ẋ) dt �
b∫

a

f (t, u, u̇) dt, ∀x ∈ K, ∀(u, y) ∈ H.

Once weak duality has been established, strong and converse duality follows:

Theorem 5.2 (Strong duality). Let x̄ be an optimal normal solution of(CVP). If (F,G) is L-
KT-pseudoinvex, then there existsȳ ∈ X such that(x̄, ȳ) is an optimal solution of(CVD1),
and their objective function values are equal at these points.

Proof. Sincex̄ is an optimal normal solution of (CVP), from Valentine necessary co
tion, see [8] (see also [4]), there existsȳ ∈ X such that(x̄, ȳ) verifies

fx(t) + ȳ(t)T gx(t) = d

dt

{
fẋ(t) + ȳ(t)T gẋ(t)

}
,

ȳ(t)T g(t, x̄, ˙̄x) = 0,

ȳ(t) � 0, t ∈ I.

Therefore,(x̄, ȳ) ∈ H . From Theorem 5.1,(x̄, ȳ) is an optimal solution of (CVD1), an
obviously, the objective function values of (CVD1) and (CVP) are equal.�

We now consider the converse dual problem, that is, of finding conditions under
the existence of optimal solution to problem (CVD1) implies the existence of an op
solution to problem (CVP).
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Theorem 5.3 (Converse duality). Let (ū, ȳ) be an optimal solution of(CVD1). If ū ∈ K

and(F, G) is L-KT-pseudoinvex, then̄u is an optimal solution of(CVP) and their objective
function values are equal at these points.

Proof. Since(F,G) is L-KT-pseudoinvex, and from Theorem 5.1, it follows that

b∫
a

f (t, x, ẋ) dt �
b∫

a

f (t, ū, ˙̄u)dt,

∀x ∈ K . And sinceū ∈ K , it follows that ū is an optimal solution of (CVP), and the
objective function values are equal at this point.�

We continue our duality study with the dual problem (CVD2), as follows:

(CVD2) Maximize

b∫
a

f (t, u, u̇) dt

subject to u(a) = α, u(b) = β,

τfu(t) + y(t)T gu(t) = d

dt

{
τfu̇(t) + y(t)T gu̇(t)

}
, t ∈ I,

y(t)T g(t, u, u̇) = 0,(
τ, y(t)

)
� 0, t ∈ I.

Again, letH be the feasible set of (CVD2). Proceeding in the same way as in the p
of Theorems 5.1–5.3, but under L-FJ-pseudoinvexity, we state the following duality r
between (CVP) and (CVD2).

Theorem 5.4 (Weak duality). Letx ∈ K , (u, τ, y) ∈ H . If (F,G) is L-FJ-pseudoinvex atu,
then

∫ b

a
f (t, x, ẋ) dt �

∫ b

a
f (t, u, u̇) dt .

As a consequence of this theorem, if(F,G) is L-FJ-pseudoinvex, then

b∫
a

f (t, x, ẋ) dt �
b∫

a

f (t, u, u̇) dt, ∀x ∈ K, ∀(u, τ, y) ∈ H.

Theorem 5.5 (Strong duality). Let x̄ be an optimal solution of(CVP). If (F, G) is L-FJ-
pseudoinvex, then there existsτ̄ ∈ R, ȳ ∈ X such that(x̄, τ̄ , ȳ) is an optimal solution o
(CVD2), and their objective function values are equal at this point.

Theorem 5.6 (Converse duality). Let (ū, τ̄ , ȳ) be an optimal solution of(CVD2). If ū ∈ K

and(F, G) is L-FJ-pseudoinvex, then̄u is an optimal solution of(CVP) and their objective
function values are equal.
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6. Conclusion

In this paper, we have studied the properties of the functions of a constrained varia
problem, such that from a critical point it follows an optimal solution. These propertie
L-KT-pseudoinvexity and L-FJ-pseudoinvexity, and we have proved that these are
sary and sufficient conditions for a critical point to be an optimal solution of the variat
problem: a characterization. The nature of these results has been illustrated with an
ple of L-KT-pseudoinvex variational problem, in which invexity conditions are not veri
Also, we have proved that the problems (CVP) and (CVD1) are a dual pair subject to
pseudoinvexity conditions; and (CVP) and (CVD2), under L-FJ-pseudoinvexity condi
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