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Abstract

In this paper we introduce a new class of pseudoinvex functions for variational problems. Using
this new concept, we obtain a necessary and sufficient condition for a critical point of the variational
problem to be an optimal solution, illustrated with an example. Also, weak, strong and converse
duality are established.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Variational problem; Pseudoinvexity; Critical point; Duality

1. Introduction

There exists a huge literature on the necessary and sufficient conditions on calculus
of variations, see, for instance, [1-4], for the classical results and to more modern the-
ory, see [5,6]. It is the well-known Euler necessary condition. The function that satisfies
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the Euler condition is called a stationary point of the problem or an extremal; generally
speaking, the converse is not true, i.e., the functions that satisfy the Euler condition are
not necessary solutions of the problem. Consequently, a more fine analysis is needed to
decide if the extremal point is in fact the optimal solution. The classical approach is to
give higher order optimality conditions or to use some convexity hypotheses, see, for in-
stance, [3,7,8]. In mathematical programming, the Kuhn—Tucker conditions are sufficient
for optimality if the functions involved are convex. In the last few years, attempts have
been made to weaken the convexity hypotheses and thus to explore the extent of optimality
conditions applicability. As it is known, invexity has been introduced in optimization the-
ory by Hanson, see [9], as a substitute for convexity in constrained optimization. Craven
and Glover [10] showed that any differentiable scalar function is invex if and only if every
stationary point is a global minimizer. For constrained problems, the invexity defined by
Hanson is a sufficient condition but not a necessary condition for every Kuhn-Tucker sta-
tionary point to be a global minimizer. Martin, see [11], defined a weaker invexity notion,
called Kuhn—Tucker invexity or KT-invexity, which is both necessary and sufficient to es-
tablish the Kuhn—Tucker optimality conditions in scalar programming problems. Invexity
was extended to variational problems by Mond, Chandra and Husain, see [12] (see also
[13-17]). In Section 2 we will give the preliminaries. In Section 3 we define the new
concepts of L-(KT/FJ)-pseudoinvex functions. In Section 4 we establish a necessary and
sufficient condition in order that a critical point of the Variational Problem be an optimal
solution, i.e., it is obtained a characterization which has not been obtained to date. We pro-
pose an example to illustrate the nature of L-KT-pseudoinvexity, and where the functions
involved are not invex. In Section 5 weak, strong and converse duality are established.

2. Preliminaries

Let us introduce the variational problem and definitions. Let [a, b] be a real in-
terval, and letf: 1 x R* x R" - R andg:I x R" x R" — R™ be continuously dif-
ferentiable functions with respect to each of their arguments. For notational convenience
[, x(t), x()) will be written f (¢, x, x), wherex : I — R", with derivativex. Let us de-
note the partial derivative of with respect tor, x, andx, by f;, f:, fi, respectively.
Analogously, we write the partial derivatives gf, g., g:, using matrices withn rows
instead of one. LeX be denote the space of piecewise smooth functiari's— R" with
the norm

Xl =1lxlloo + DX |lco,

where the differentiation operatdr is given by
t
u=Dx <& x(1) =a+/u(s)ds,
a

whereq is a given boundary value. Therefo®,= d/dr except at discontinuities. Then,
we can consider the scalar Constrained Variational Problem:
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b
(CVP) Minimize F(x):/f(t,x,)'c)dz

subjectto  x(a) =«, x(b) =B,
g(t,x(1),%(1)) <0, rel.

We observe that the classical problem of the calculus of variations is a particular case of
(CVP), because it is sufficient to pgt= 0. This last case we refer as (VP). We denote by
K be the set of feasible solutions of (CVP), i.e.,

K={xeX: x(@=a, x(b)=4, g(t,x(t),x(1)) <0, te1}.

Definition 2.1. x € K is said to be an optimal solution or global minimum of (CVP) if
F(x) < F(x)

for all x € K or equivalently,
IxeK: Fx) <F®).

We write in the followingf, (¢) to denotef, (¢, x(¢), X (¢)) and f; (1) = fi (¢, x(¢), X(2)).

Definition 2.2. x € K is said to be a Fritz—John critical point if there existg R and
y € X such that

d
Tf(®) + y(0)7 ge (1) = E{Tf;c ®) +y®) gz (1)}, 1)
y) g(t,x, %) =0, )
(t.y®) =0,  (r,y(®)#0, ®3)

Vt € I, except at discontinuities.

As is usual in optimization theory, #f # 0, we say that the problem is normal or regular,
see [18], and in this case, we say that the critical point is a Kunh—Tucker critical point. Note
that if the problem is normal, the condition (3) is reduced ¢ > O.

Remark 2.1. We observe that the above definitions are exactly the Euler necessary condi-

tion for optimality of (CVP). We recall that some additional hypotheses are necessary to
guarantee # 0, these conditions are called qualification of restrictions (see [5]).

3. Invexity and pseudoinvexity

Mond, Chandra and Husain [12], extended the concept of invexity to continuous func-
tions:

Definition 3.1. The functionf (¢, x, x) is said to be invex at € X with respect to; if for
all x € X there exists a vector functioft(z, x, x), with (¢, x, x) = 0 such that

. - - d
f,x,x)— f(t,%,%) = fo(®n, X, x) + Se@) =2 (@, X, x).
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Where we denotd, (1) = f, (¢, %, X) and f; (¢, X, X). If f does not depend explicitly an
the previous definition essentially reduces to be the definition of invexity given by Hanson,
see [9]. We recall the definition of invexity for functionals given in [13,14].

Definition 3.2. The functionalF' (x) = fab f(t,x,x)dtis called invex ak € K with respect
to n, if for all x € X there exists a vector functiof(z, x, x) with n(z, x, x) = 0 such that

b
_ _ d
F(x)— F(®) > /{fxa)n(nx,x) + ) En(t,iX)} dr.

Looking for optimality sufficient conditions for (CVP), Mond and Husain [13] resorted
to generalize convexity:

Definition 3.3. F is pseudoinvex at € X, with respect to; if for all x € X there exists a
vector function (¢, x, x), with n(¢, x, x) = 0 such that

b
Fx)—F(X) <0 = /{fx(t)n(t,)f,x)—i-ﬁ(t)%n(t,)f,x)}dt<0.

Under these generalized invexity conditions, Mond and Husain [13] got sufficient
Kuhn—Tucker conditions. Let us consider the problem (CVP) Ang, F(x) = fab ft,x,

X)dt andG(x) = fabg(t,x,fc)dt.

Definition 3.4. The pair(F, G) is said to be L-FJ-pseudoinvexak X, if for all x € X,
7 € R andy € X, which verify (2) and (3), there exists a differentiable vector function
n,x,x,7,y), with n(a, x,x,7,y) =0=n(, x, x, 7, y), such that ifF (x) — F(x) <0,
then

b

/{(ffm)+y<r)T'x(r>)n(r,x,f,f,&)

+(FHO+30"8: () %n(t,x,)?, T, y)} dt <0

or equivalently,

b
/{(fﬁ(r)+y<r)T‘x(r))n(r,x,f,f,y)
- —_ T_ d - - -
+ (T @) +5@) g;c(t))an(t,x,x,f,y) dt >0

implies F(x) — F(x) > 0.
If the problem is normal, i.e7 # 0, and takingr = 1, we say that the paifF, G) is
L-KT-pseudoinvex af € X.
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If the previous definitions are reduced on the set of feasible solutions of (&V,Rye
establish the following concepts:

Definition 3.5. The Constrained Variational Problem (CVP) is said to be L-FJ-pseudoinvex
if it is verified by Definition 3.4 for allx, x € K. If the problem is normal, we say that
(CVP) is L-KT-pseudoinvex.

Some of the relationships between these definitions are as follows, the proof is easy.
Proposition 3.1. If (F, G) is L-KT-pseudoinvex at € X, thenF is pseudoinvex at.

In relation to the concept of pseudoinvexity on the suggestion of [13], we propose the
following result:

Proposition 3.2. Letx € K. If for all y € X such that(x, y) verifies(2) and (3), with
7 =1, the Lagrangian functiog (x, y) = fah{f(t,x, )+ 30 g, x, x)}dt, withx € K,
is pseudoinvex at, then(CVP) is L-KT-pseudoinvex.

Proof. Lety be such thatx, y) verifies (2) and (3), witlr = 1, and let us supposec K
such thatF'(x) — F(x) <0, i.e.,

b b
/f(t,x,fc)dt<ff(r,x,fc)dt.

Sincex is feasible and (3)y(r)7 g(z, x, x) < 0, Vr € I; and moreover from (2), it follows
b b

f(f(r,x,fc) +30)7 g, x, %)) dt < f(f(z,x,fc) +30) " g(t, %, %)) dt.

a a

Sinceg¢ (-, ¥) is pseudoinvex at, there exists a differentiable functiapiz, x, x) such that

b
_ _ d
/{(fxa) +30 8O, x, 5 + (fi () + 30 g: (1)) yrUGES aa} dr <0,

and therefore, (CVP) is L-KT-pseudoinvexatvith respect to; (¢, x, X, ) = n(t, x,x). O

4. Necessary and sufficient optimality conditions

In this section, first we prove the sufficiency of the Kuhn—Tucker optimality conditions,
under L-KT-pseudoinvexity assumptions on (CVP). Analogous results are true for the L-
FJ-pseudoinvexity.

Theorem 4.1. If (CVP) is L-KT-pseudoinvex, then all Kuhn—Tucker critical points are op-
timal solutions.
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Proof. Let x be a Kuhn-Tucker critical poink € K, i.e., there existy € X such that
(x,y) verifies (1)—(3), witht = 1. Letx € K. Since (CVP) is L-KT-pseudoinvex, there
existsn(t, x, x,y) = n(t, x, x, 1, y) differentiable, withn(a, x,x,y) =0=n(b, x, x, y)
which verifies Definition 3.4. It follows

b
_ _ d
/{(mr)+y<t)T‘x(r))n(r,x,i,&>+ (@ +30"g:(1) En(r,x,f,w}dr

b
=/{(ﬂ(r)+y(t>7gx<r))n<r,x,f,y>

d

- d—(fx(t) +30 g ()0t x, %, y)} dt

+ (fe() + O s, x, %, y))|§j (by integration by parts)

)

d -
—E(ffc(t)+§(I)T§x(t))}n(t,x,i,i)dt=0 (by (1))

t
f@+30)7 8 (1)

Since (CVP) is L-KT-pseudoinvey, it follows
F(x)—F(x)>0 VxeKk.

Thereforex is an optimal solution of (CVP). O

We have proved that L-KT-pseudoinvexity is a sufficient condition, and now, we are
going to prove that it is a necessary condition.

Theorem 4.2. If all Kuhn—Tucker critical points are optimal solutions f¢€VP), then
(CVP) is L-KT-pseudoinvex.

Proof. Letx,x € K, (x, y) verifies (2) and (3), withr = 1, such thatF(x) — F(x) < 0.

We have to findn(t, x, X, ¥) = n(t,x,x,1,7) differentiable, withn(a, x,%,7) =0 =
n(b, x,x,y), such that

b
P(’?('ax’f,y))Z/{(ﬁc(t)+)_’(5)T_x(f))77(l7)€,iﬁ)7)
_ o d o
+ (fe() + 30" g: (1)) En(t,x,x,y)}dt<0.

And thus, suppose (n(-, x, x, y)) < 0 has no solutiom (¢, x, x, y), and thenP(n(-, x,
X,¥)) > 0 has no solution too, since we could considex(z, x, x, y). Therefore,
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b

P(n<~,x,f,y))=/{(ﬂ(r)+y(t>Tgx<t))n<t,x,f,y)

- d
FRO+50780) T j/)}dt _0

vn(t, x, x,y) differentiable, withn(a, x,x,y) = 0 = n(b, x, x,y). From generalized
de Dubois—Raymond Lemma (see [1, p. 307]), we have

fi@+307"g:(0)

is piecewise smooth and

_ d . -
O +30) g (1) = E{fx O +30 g0},

and therefore(x, y) verifies (1)—(3), withe =1, i.e.,x is a Kuhn—Tucker critical point, and
thenx is an optimal solution for (CVP), which stands in contradictioi{a) — F(x) < 0.
So, there existg(z, x, x, y) differentiable, withn(a, x, x, y) = 0= (b, x, X, y), such that
P(n(,x,x,y)) <0, and then, (CVP) is L-KT-pseudoinvex

Therefore, we have proved that L-KT-pseudoinvexity of (CVP) is both sufficient and
necessary condition in order that a Kuhn—Tucker critical point is an optimal solution of
(CVP). Inthe same way, we can prove that L-FJ-pseudoinvexity of (CVP) is both necessary
and sufficient condition for that its critical points to be optimal solutions.

Theorem 4.3. If all Fritz—John critical points are optimal solutions f¢€VP), then(CVP)
is L-FJ-pseudoinvex.

Theorem 4.4. If (CVP) is L-FJ-pseudoinvex the all Fritz—John critical points are optimal
solutions.

In the following, we consider an example to illustrate L-KT-pseudoinvexity.

Example. In this way, we present an example of L-KT-pseudoinvex variational problem.
Besides, we prove that invexity of some of the functions involved in this variational prob-
lem is not verified, what is required in Mond, Chandra and Husain [12].

1
(P1) Minimize / (1—x(n)2dr
0
subjectto x(0) =1, x(1) =2,

1—x%() <0, %(t) — 10<0,

where I =[0,1], f:[0,1] x R x R - R and g = (g1,£2):[0,1] x R x R — R?
ft,x, %) =1 —x1)? g1(t,x, %) =1 — x%(1t), g2(t, x, %) = i(t) — 10. Let K be the
set of feasible solutions of (P1), then
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(i) Letus see that all Kuhn—Tucker critical points are optimal solutions of (P1).
Letx € K. If x is a Kuhn—Tucker critical point, then there exists a piecewise smooth
functiony = (y1, y2) such that
—2x()y1(t) =28(0) +y2(1),  yi(0)(1—x*(1)) =0,
y2(t)(%(r) — 10) = 0.

Sincey1(r) > 0 andy2(z) > 0, these conditions are reduced to

(x(0), y1(1), y2(1)) = (¢t +d,0,0), r€[0,1] or
(x(@), y1(2), y2(1)) = (10r +¢,0,k), 1 €[0,1],

with ¢,d, e,k € R, k > 0. And sincey;, y2 are continuous and € K, by simple
calculations it is obtained that the Kuhn—Tucker critical pointis) = ¢ + 1, with
y1(t) = 0= y2(2), t € [0, 1]. Otherwise, and graphically, we have that the optimal
solution of (P1) isc(t) = ¢ + 1.

(ii) The problem (P1) is L-KT-pseudoinvex.
By applying Definition 3.5 to (P1), givefx, x, y1, y2) which verifies (2) and (3), there
existsn such that

/((1—)&0))2 _(1—im))di <0

1
= / (v (=25 (1) + (2(x(1) — 1) + y2(1))n) dt <O.

To prove L-KT-pseudoinvexity, suppose it is not verified, i.e., if

(1—£0)* = (1—%))?)dr <0

o\»—!

then

(1) (=25 @) + (2(x(@) — 1) + y2()) 7)) dt =0

O\H

for all n, what is equivalent to differential equations in (i), and it is only verified by
x()=t+1. And

1 1
F(x) — F(X) =/((1—x(;))2— (1— %)% dt =/(1—fc(t))2dt >0
0 0

for all x € K. Then, it is not verifiedF (x) — F(x) < 0, and therefore (P1) is L-KT-
pseudoinvex.
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Moreover,g1(t, x, ) = 1 — x2(¢) is not invex, because from Definition 3.1, given
X € K, g1 is invex if there existg such that

(1) —x%(t) = 2(x() — 1)y, 1[0, 1].
But this condition is not verified. For example, take

L ref01/2),
x(”_{Zz, re[1/2,1],

Consequentlyg is not invex.

and x(t)=r+1, re][0,1].

So, and firstly, (P1) verifies that all Kuhn—Tucker critical point are optimal solutions. Sec-
ondly, by Theorem 4.1, (P1) is a L-KT-pseudoinvex variational problem, which is showed
in (ii). And finally, invexity is not verified for (P1) and, however, some authors (see [12])
require it for optimality results.

5. Duality

We establish duality between (CVP) and the next dual problem (CVD1), which is
a modified Mond-Weir type dual problem formulated by Bector, Chandra and Husain,
see [18].

b
(CvD1l) Maximize /f(t,u,b't)dt
a

subjectto  u(a) =a, u(b) =B,
d
fu@®) +y0 7 gu(t) = E{fm) +y0 g}, tel,

y) gt u,it) =0,
y(t) =0, tel.

We recall thatf, () = f, (¢, u, u) and f; (¢t) = f; (¢, u, u). Analogously forg. Let H be the
feasible set of (CVD1).

Theorem 5.1 (Weak duality) Letx € K and (u, y) € H. If (F, G) is L-KT-pseudoinvex
atu, then[” f(t,x, )dt > [7 f(t,u,i)dt.

Proof. Supposefab ft, x,x)dt > fab f(t,u,u)dt is not verified, i.e. F(x) — F(u) <O.
Since(u, y) verifies the third and fourth restrictions in (CVD1), and since (F,G) is L-KT-
pseudoinvex, there exists a differentiable functi@n = (¢, x, u, y), with n(a, x, u, y) =
0=n(b, x,u, y) such that

b

d
/ { (fu® +y®T g @)n@) + (fa®) + y®)" ga(0)) En(t)} dt <0. 4)

a
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On the other hand,
b

d
/{(fu O +yO gu®)n@®) + (fa®) +y® " ga(®)) @) } dt

a

b
d
/ {(fu @) + v gu®)n(t) — (E(ﬁ; ) +yn) g (t))>n(t)} dt

+ (fi@® + y®© T ga®)n®|'="  (by integration by parts)
b

d
=/{fu(t)+y(t)Tgu(t) - (E(fa(t)er(t)Tgu(t)))}n(t)dr:O,

a

where we use the second restriction in (CVD1). This is a contradiction with (4). Therefore,
b b
ff(t,x,fc)dt>/f(t,u,u)dt. O
a a
As a consequence of previous theorengfif G) is L-KT-pseudoinvex, then

b b
v/f(t,x,)'c)dt2/f(t,u,12)dt, VxeK, Y(u,y) € H.
a a

Once weak duality has been established, strong and converse duality follows:

Theorem 5.2 (Strong duality) Letx be an optimal normal solution CVP). If (F,G) is L-
KT-pseudoinvex, then there exists X such that(x, ¥) is an optimal solution o{CVDL),
and their objective function values are equal at these points.

Proof. Sincex is an optimal normal solution of (CVP), from Valentine necessary condi-
tion, see [8] (see also [4]), there existe X such that(x, y) verifies

d
O+ 30 g (1) = E{fx @) +310" g},
) g(t,%,%) =0,
y() >0, tel.

Therefore,(x, y) € H. From Theorem 5.1(x, y) is an optimal solution of (CvD1), and
obviously, the objective function values of (CVD1) and (CVP) are equal.

We now consider the converse dual problem, that is, of finding conditions under which
the existence of optimal solution to problem (CVD1) implies the existence of an optimal
solution to problem (CVP).
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Theorem 5.3 (Converse duality)Let (i, y) be an optimal solution ofCVD1). If i € K
and(F, G) is L-KT-pseudoinvex, thenis an optimal solution of CVP) and their objective
function values are equal at these points.

Proof. Since(F, G) is L-KT-pseudoinvex, and from Theorem 5.1, it follows that

b b
/f(t,x,x)dt>/f(z,zz,ﬁ)dz,

Vx € K. And sincei € K, it follows thatiu is an optimal solution of (CVP), and their
objective function values are equal at this point

We continue our duality study with the dual problem (CVDZ2), as follows:

b
(CVvD2) Maximize /f(t,u,b't)dt
a

subjectto u(a) =a, u(b) =B,
d
Thu) +y®) gu(t) = E{rﬁz(r) +y0) g}, tel,
y) gt u,it) =0,
(t.y(®) >0, rel

Again, let H be the feasible set of (CVD2). Proceeding in the same way as in the proofs
of Theorems 5.1-5.3, but under L-FJ-pseudoinvexity, we state the following duality results
between (CVP) and (CVD2).

Theorem 5.4 (Weak duality) Letx € K, (u, 7, y) € H. If (F, G) is L-FJ-pseudoinvex at,
then[” £(t,x, ) dt > [7 f(t,u,i)dr.

As a consequence of this theorem(#, G) is L-FJ-pseudoinvex, then
b b
ff(t,x,fc)dt > / ft,u,u)dt, VxeK,Vu,t,y) € H.
a a

Theorem 5.5 (Strong duality) Letx be an optimal solution ofCVP). If (F, G) is L-FJ-
pseudoinvex, then there exist€ R, y € X such that(x, 7, y) is an optimal solution of
(CVvD2), and their objective function values are equal at this point.

Theorem 5.6 (Converse duality)Let (i, 7, y) be an optimal solution ofCVD2). If « € K
and(F, G) is L-FJ-pseudoinvex, thaenis an optimal solution of CVP) and their objective
function values are equal.
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6. Conclusion

In this paper, we have studied the properties of the functions of a constrained variational
problem, such that from a critical point it follows an optimal solution. These properties are
L-KT-pseudoinvexity and L-FJ-pseudoinvexity, and we have proved that these are neces-
sary and sufficient conditions for a critical point to be an optimal solution of the variational
problem: a characterization. The nature of these results has been illustrated with an exam-
ple of L-KT-pseudoinvex variational problem, in which invexity conditions are not verified.
Also, we have proved that the problems (CVP) and (CVD1) are a dual pair subject to L-KT-
pseudoinvexity conditions; and (CVP) and (CVDZ2), under L-FJ-pseudoinvexity conditions.
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