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The Cluster Model: A Simulation of the Aerogel Structure as a
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Abstract. A new structural model based on the premises widely used for describing the structure of aerogels has
been introduced. These structures have been described as an assemblage of randomly-packed spheres in several
hierarchically-ordered levels. A new algorithm has been developed for constructing our models from these premises
using computer simulation. Subsequently, several applications have been simulated to characterize real systems,
obtaining textural parameters such as the specific surface area, specific porous volume or the apparent density of
the systems, based on the Monte Carlo technique and on geometrical considerations. The object of these is to test
the ability of the models to explain the structure of some real aerogels. This Cluster Model has also been applied
as an initial approach to the study of the mechanical properties of aerogels. Results support the general conclusion
that these models are useful for explaining the structure of aerogels.
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1. Introduction

Silica aerogels are chemically inert, highly porous,
nanostructured materials, synthesized by the well-
known sol-gel method [1], and dried by the super-
critical drying process, conceived by Kistler [2], to
avoid cracking. Using these methods silica aerogels
are obtained; these are more porous materials than the
conventionally-dried gels, also known as xerogels. The
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particular structure of these aerogels is responsible for
their most interesting properties, such as low thermal
conductivity or very high specific surface area, which
can reach values exceeding 1000 m2/g. Incidentally, an
aerogel is currently considered the solid material with
the lowest density ever synthesized [3], with a value of
1.9 mg/cm3. Sonogels are obtained by exposing a mix-
ture of alkoxide and water to intense ultrasound [4–6].
This method does not require adding a common solvent
to achieve the homogeneous mixing of the alkoxide-
water system. The density of these gels is higher and
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their structure is finer and more homogeneous than
those of standard gels. This is because of the absence of
a solvent to obtain the sol and, mainly, the initial cross-
linked state of reticulation induced by ultrasound. Time
required for gelation is measured in tens of second. An-
other special characteristic of these gels after drying
(sono-aerogels) is that they have a particulate structure,
in contrast to gels obtained by hydrolysis and poly-
condensation of metallorganic compounds under acid
catalyst without the application of ultrasound. Sonogels
have a very narrow pore size distribution, very high bulk
density and their surface/volume ratio is two or three
times higher than gels prepared in alcohol solutions.
These gels do not fulfill the self-similarity condition
for at least one order of magnitude [7].

The structure of the aerogels has been described
as an assemblage of randomly-packed spherical par-
ticles in several hierarchically-ordered levels [8, 9].
Knowledge of the structure of aerogel has been ac-
quired using computer simulation techniques that take
inputs from several topics, like the understanding of
the sol-gel process, the process of structure formation,
and the relationship between the structure and the me-
chanical properties. The process of structure formation
has been studied using the Molecular Dynamics Tech-
nique [10]. Since Garofalini first applied it to the sol-gel
process in 1994 [11] using the Feuston-Garofalini po-
tential [12], it has been concluded that the structure
formation starts with a slow process while the clus-
ters are growing, followed by the faster growth rate
as the structure is formed by cluster-cluster aggrega-
tion. Hasmy has studied in greater depth the behaviour
of the characteristic cluster size and the influence of
the simulation box size [13]. Other authors like Gelb
and Gubbins have mainly directed their research to-
wards developing characterization applications based
on the Monte Carlo technique for the porous struc-
tures generated by simulation [14]. They have worked
with the Lennard-Jones potential for each element, and
the Lorenz-Berthelot rules for mixing the inter-element
potential.

Another topic of interest concerns reproducing the
formation and growth processes of the aerogels by
computer, using reaction- or diffusion-limited cluster
aggregation (RLCA or DLCA) algorithms, or some
modification of these [15], or the ballistic cluster-
cluster aggregation [16]. Simulation techniques have
even been used to test the validity of the BET [17]
or the BJH [14] methods for analysing the adsorp-
tion/desorption isotherms.

Working on the relationship between structure and
mechanical properties, Scherer et al. [18] have used
structures generated with DLCA-modified algorithms,
characterizing them by their fractal dimension, to
achieve the power law exponent, and they have pre-
sented models to explain the structure-properties re-
lationship [19, 20]. Like Woignier et al., they have
worked with DLCA-generated structures [21], intro-
ducing a new technique for characterizing this porous
systems [22]. They conclude that the pore size distri-
bution and the hydroxyl content are relevant for de-
scribing and understanding the mechanical properties
of these materials [23]. In a previous study, Woignier
and Phalippou proposed an approach starting from a
cubic structural model [24] and using the Rumpf ex-
pression for the tensile strength of a rigid assembly of
cohesive spheres [25]. Emmerlig and Fricke also stud-
ied the question of properties, in particular elasticity
and thermal conductivity, through the scaling proper-
ties obtained by their simulated aerogel structures [15].

In this study we are proposing a new algorithm based
on the premise of randomly-packed spheres in several
hierarchically-ordered levels for building the Cluster
Model, together with an approach to determining the
mechanical properties of these materials based on these
models. The aim of this technique is to build structural
models of real systems. Its best performance feature
is its versatility: by tuning the geometric parameters
of the model we can obtain very different assemblies
of randomly-packed spheres for representing very dif-
ferent systems. The main structural parameters in this
model are the elementary particle radius, the number of
hierarchical levels and the contact distance and shells
of each level. The density is merely a reference for esti-
mating the number of levels in the hierarchy, since the
density is strongly dependent of this parameter. How-
ever, systems made by this procedure are not intended
to describe the growth process of real systems: they
belong to what have been called static models [26]
in the sense that these models describe the final state of
the real systems, and provide a new tool for studying
the structure.

2. Cluster Structural Model

From the premise that the aerogel structure can be de-
scribed as an assemblage of randomly-packed spheres
in several hierarchically-ordered levels, we devel-
oped an algorithm for building structural models. We
have made use of an AMD Athlon 1700 (1.46 GHz)
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processor that required only a few seconds to construct
such systems. In the course of this work, the particle
diameter has been used as a reduced unit to describe
the models.

We discounted the use of cubic simulation boxes
for constructing these models, in spite of this being
the most recommended technique, and instead con-
structed a spherical system. This is because, when
we make the assumption of self-similarity in several
hierarchically-ordered levels, the algorithm is easy to
implement within a spherical symmetry, by simply sub-
stituting each sphere of the system for a spherical as-
sembly of spheres. However, cubic simulation boxes
have been used for those characterizing applications
that are boundary-dependent and finite size-dependent,
in order to permit periodic boundary conditions be ap-
plied. To obtain a cubic box for characterizing the sys-
tem, we just cropped our spherical system to the largest
size of internal cubic box it would accommodate.

2.1. Algorithm

The Cluster Model algorithm works as follows: first
we place one elementary sphere of diameter 1 in the
centre of our system. Then we place randomly other
elementary spheres in contact with the first one’s sur-
face to construct the first random shell. Any sphere
has to satisfy only one condition to be placed: it has
to be in contact with at least one other sphere. The
criterion of being in contact is understood as to be
at a distance within the minimum and maximum con-
tact distances previously defined, thus avoiding the ex-
istence of free-floating spheres. Within these limits,
the actual distance between any two spheres within
the contact range is chosen randomly. We let the sys-
tem grow as many shells or layers of randomly-placed
spheres as we consider necessary for constructing our
desired model. Once this process is finished, this ag-
gregate is taken as the basic aggregate. Its size is mea-
sured and another aggregate is built with secondary
spheres of diameter equal to the diameter of the ba-
sic aggregate. After building this new aggregate, each
secondary sphere is replaced by one basic aggregate ob-
taining a two-level hierarchically-ordered assemblage
of randomly-packed spheres. Then, the system size is
measured again and its size is taken as the diameter of
one tertiary sphere. An aggregate of tertiary spheres is
built then and, finally, each tertiary sphere is replaced
by one two-level system, thus obtaining a three-level
hierarchically-ordered system (Fig. 1). This process

Figure 1. Diagram of Cluster Model algorithm.

can be repeated as many times as required. Typical
values of our models are 60.000 particles organised in
2 shells of randomly-packed spheres and three hierar-
chical levels; their contact distances, d, are set within
the interval (0.9D < d < 1.0D), D being the particle
diameter (Fig. 2).

Although self-similarity is potentially present in the
Cluster Model as a consequence of the algorithm used
to generate them, in the present case we have not
adopted a fractal description because the structure of
sonogels is not self-similar to one order of magnitude.
In the future we will emulate the fractal structure of
those aerogels that do present a well-defined fractal
dimension.

2.2. Characterization Techniques

Several applications for characterizing the models have
been developed to calculate textural parameters of the
simulated structures. The comparison of the calculated
values with their actual counterparts checks the validity
of the models. In this work we try to construct cluster
models with the same structural parameters as selected
real aerogels. We take a real system as a target and we
fine-tune the geometric parameters as the algorithm is
being constructed in order to obtain a model corre-
sponding to the target, that is, the model with exactly
the same texture as the real system.

In this paper we present results from this strategy
applied to real systems used in previous studies.

The parameters that we have tried to reproduce are:
Density: our system is considered to be formed by an

assemblage of pure silica spheres of density 2.2 g/cm3,
so given the number of spheres, the specific mass of the
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Figure 2. Two examples of Cluster Models with 3 shells of
randomly-packed spheres and 2 hierarchical levels (up), and with
2 shells of randomly-packed spheres and three hierarchical levels
(down).

system is known. In some identified cases, when we are
trying to emulate a system comprising elemental par-
ticles described as having a certain density [24,27] we
take the density of our elemental spheres to be this par-
ticular value (2.09, 1.85 g/cm3) instead of the recorded
density for the bulk silica. This difference may be due
to longer Si-O bond distances [28] or to the failure to
detect some kind of microporosity by the characteriza-
tion method used. On the other hand, we consider the
volume overlapped between spheres as counted twice
in the mass calculation (volume shared by three spheres

is negligible). Consequently we subtract the overlapped
mass corresponding to one of the two spheres.

Specific Surface Area: the theory describes the real
physisorption experiment starting with the formation
of a nitrogen monolayer on the surface of the system
to be characterized. This monolayer does not cover the
whole external surface of the material, but only the
parts of the surface accessible to the nitrogen. Taking
this into account, among the different definitions of sur-
face area [17], the one calculated in this study is called
the accessible surface area. We considered a spherical
model of the nitrogen molecule of 16.2 Å2 of cross
section that gives a radius of 0.227 nm, and we defined
the reduced radius of the elemental silica sphere by
reference to this. Then, we obtained by Monte Carlo
method the external surface accessible to the nitrogen
molecule in our system. This method is widely used
[14, 17, 29, 30] for characterizing structural models
for porous materials.

Specific Porous Volume and Porosity: we calculated
by Monte Carlo method the volume accessible to a ni-
trogen sphere inside our system. On this point we had
to consider the finite volume correction presented by
Sandra Gavalda [31]: The volume obtained by this tech-
nique is lower than the expected accessible volume due
to the omission of the volume between the centre of the
nitrogen spheres and the surface of our system. To fix
this, Sandra Gavalda proposed adding the volume cal-
culated conventionally by Monte Carlo to the volume
resulting from multiplying the specific surface by the
nitrogen sphere radius. Porosity is obtained automati-
cally along with this parameter, by reducing the values
and expressing them as the percentage not occupied by
the system.

Apparent Density: Since our system is defined in sev-
eral hierarchical levels, we know the number of spheres
involved in building any of the levels and the volume
occupied by those spheres that comprise it. Conse-
quently, we obtain the density at the different levels,
from the lowest—the elementary particle—to the high-
est, also called the apparent density.

3. Results and Discussion

We applied this simulation technique for the construc-
tion of several systems to explain the structure of var-
ious real systems. As an initial application, we took
from a previous study [27] the texture parameters of
two aerogels and constructed their corresponding hier-
archical models. As a second application, we tried to
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determine the relationship between the structure and
mechanical properties, similar to the study done by
Woignier [24].

3.1. Simulation of structures

In [27] the items studied were two aerogels prepared
from TEOS. Different cluster models were generated
to describe the structures of those aerogels. Both sets of
data are shown in Table 1. The models corresponding
to the first aerogel presented an arrangement of three
hierarchical levels of packing spheres. The elementary
particles of this system were described in the original
work as spheres of radius of 1.1 nm with a density of
2.09 g/cm3. We took these values to define our system,
so the resulting models were based on the real data.

The goal of this part of the work was to construct
models corresponding accurately to the real system,
starting from the experimental structural parameters.
The presented models reproduce the textural values of
the real systems, as was expected. We can see how mod-
els built as an assemblage of randomly packed spheres
of hierarchically arranged levels can reproduce quite
well the texture of the real aerogels. Parameters of the
resulting models are also shown in Table 1.

Table 1. Structural parameters of the real aerogels and of their
corresponding Cluster Model.

Real system Models

System 1
Apparent density: 0.83 g/cm3 Apparent density (g/cm3)
Specific surface: 387–407 m2/g Specific surface (m2/g)
Specific porous volume: Porous volume (cm3/g)

0.73–0.74 cm3/g Model A
0.80
384
0.72

Model B
0.81
376
0.88

System 2
Elemental sphere radius: 1.2 nm Aggregate radius (nm)
First aggregate radius: 4.5 nm Specific surface (m2/g)
Specific surface: 640 m2/g Model C

4.5
612

Model D
4.4
669

3.2. Mechanical Properties

In [24], a simple structural model was applied to explain
the mechanical properties of these materials. A study of
the relationship between the normalized strength and
the porosity was presented.

The normalized strength of aerogels from TMOS
as silica precursor was obtained by three-point flexu-
ral tests and diametral compression tests (also known
as “Brazilian test”, ASTM #D3967 [32]). To explain
the behaviour of this parameter and its dependence on
the porosity, Woignier and Phalippou used a structural
model of cubic cells in which the edges are formed
by spherical silica beads. The cohesion of the sys-
tems is explained as a function of the overlapping
volume between neighbouring spheres, taking into ac-
count the expression of Rumpf for the tensile strength
of a rigid assembly of cohesive spheres of radius
R [25]:

σ = 9φK F

32π R2
(1)

whereφ is the volume fraction of the solid, related to the
porosity P as (1 − P), and K is the mean coordination
number. The factor F , given by Eq. (2), is the bonding
force between two overlapped spheres of dense silica
with an overlapping neck radius a:

F = σ0πa2 (2)

where σ0 is the mechanical strength of dense silica
glass. Thus, the tensile strength is normalized as
follows:

σ

σ0
= 9

32
(1 − P)K

(
a

R

)2

(3)

Figure 3 represents the results for the experimental
values of the reduced modulus, based on the structural
models applied in [24], together with those resulting
from applying our Cluster Model. As can be seen, in
spite of the simplicity of the model, Woignier et al.
successfully describe qualitatively the behaviour of the
normalized strength of the aerogels.

With the aim of improving on this result in quan-
titative terms, we modified the final expression of the
normalized strength of the aerogels (Eq. (3)). In this
equation, it is shown that this parameter is directly pro-
portional to the relative area of the maximum circle
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Figure 3. Comparative results of the normalized strength from ex-
perimental tests, Woignier’s theoretical model, Cluster Model with
the original Rumpf’s expression and the modified expression. Values
and their error bars in Cluster Model data are the result of the average
of at least 5 repeats of the same system.

Figure 4. Two-dimensional diagram of the spherical cap, with
height h, and the base radius or overlapping neck radius a, and sphere
radius R.

of the overlapped zone, i.e., σ/σ0 ∝ (a/R)2. But in-
stead of this, we assume that the normalized strength
should be shared in a volume-dependent way. From the
expression of a spherical cap (Fig. 4),

V (h) = π Rh2 − πh3

3
(4)

the reduced volume shared by two overlapped spheres
ϕ, at a distance d,can be calculated by

ϕ =
R
4 (2R − d)2 − 1

24 (2R − d)3

4
3 R3

(5)

Table 2. Structural parameters of the Woignier’s aerogels (left) and
of their corresponding Cluster Model. Errors in results of models
reflect the standard error from at least 10 iterations.

Experimental Models

Specific Specific
Porosity surface Density Porosity surface Density
(%) (m2/g) (g/cm3) (%) (m2/g) (g/cm3)

78 450 0.41 77 ± 1 459 ± 5 0.41 ± 0.02
80 400 0.36 81 ± 3 404 ± 2 0.36 ± 0.02
82 250 0.33 83 ± 2 253 ± 9 0.34 ± 0.02
88 350 0.23 88 ± 2 340 ± 3 0.20 ± 0.01
90 300 0.19 90 ± 5 307 ± 4 0.19 ± 0.02

which gives, in reduced units, the final expression for
the introduced parameter ϕ

ϕ = 3

4
(1 − d)2 − 1

4
(1 − d)3 (6)

In our approach, the factor (a/R)2 has been substi-
tuted by this new factor accounting for the relative
overlapped volume in the whole system ϕ.

σ

σ0
= 9

32
(1 − P)Kϕ (7)

and this expression has been used to explain the me-
chanical behaviour when working with the Cluster
Model. Structural cluster models have been developed
corresponding to the samples studied, and the modified
expression similar to that used in [24] (Fig. 3) has been
applied. It should be noted that this assumption was
only considered in order to find an expression that im-
proves on Woignier’s results that assumed the cohesive
force between two overlapping spheres to be neck-area
dependent (Eq. (2)), and we therefore replace this as-
sumption in the final expression of the reduced force
by that of shared-volume dependence.

The values obtained for the systems according to
Woignier are shown in Table 2. The result for the last
system (94% porosity) cannot be reproduced due to
the size of the system needed. To obtain models with
porosities greater than 90%, systems of several hun-
dred thousand particles must be considered. Several
months of computing time in our facilities would be
required merely for the preliminary studies, and this
could not be afforded at present to resolve this particular
problem.

As can be seen in Fig. 3, when using the expression
of Rumpf, the results from the Cluster Model and that
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of Woignier are quite similar, with both models describ-
ing qualitatively and in approximate terms the influence
of the porosity on this normalized strength. However,
the values deviate from the experimental data, and are
considerably higher. To improve on this, the proposed
modified expression has been tested using the Cluster
Model. Results confirm the improvement of the model:
not only is the behaviour of the strength described qual-
itatively but also quantitatively. The Cluster Model plus
the modified expression gives very good values, close
to the experimental data.

4. Conclusion

An algorithm for a new structural model for aerogels
has been developed by describing the aerogels as an as-
sembly of randomly-packed silica spheres arranged in
several hierarchically-ordered levels. These new mod-
els have been named Cluster Model.

The Cluster Models generated reproduce satisfacto-
rily both the structural and textural parameters of real
systems. The performance of this approach can be im-
proved by finely tuning the geometrical parameters of
the algorithm as it is being constructed, and devoting
more computing time to this work.

Regarding the application of these models for de-
termining the relationship between structure and me-
chanical properties, the overlapped volume between
neighbouring spheres is responsible for the bonding
force and consequently for the cohesion of the sys-
tem. An expression modified from that proposed in [24]
was applied to the Cluster Model. Results describe per-
fectly the dependence of the strength on porosity, from
a qualitative point of view. Quantitatively these mod-
els describe the actual behaviour better than previously
published results. These results support the view that
the Cluster Model can be considered a useful tool for
explaining the structure of aerogels.

More characterization techniques of these models
are needed for a more complete comparison with real
systems, particularly in respect of pore size distribution
curves and the pair correlation function, in order to
simulate small-angle scattering experiments. Research
work on these topics is in progress.
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