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TRAVELING-WAVE SOLUTIONS OF THE

CALOGERO–DEGASPERIS–FOKAS EQUATION IN 2+1

DIMENSIONS

M. L. Gandarias∗ and S. Saez∗

Soliton solutions are among the more interesting solutions of the (2+1)-dimensional integrable Calogero–

Degasperis–Fokas (CDF) equation. We previously derived a complete group classification for the CDF

equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions

with a variable velocity depending on an arbitrary function. The corresponding solutions of the (2+1)-

dimensional equation involve up to three arbitrary smooth functions. The solutions consequently exhibit

a rich variety of qualitative behaviors. Choosing the arbitrary functions appropriately, we exhibit solitary

waves and bound states.
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1. Introduction

We discuss the (2+1)-dimensional integrable generalization of the Calogero–Degasperis–Fokas (CDF)
equation
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where ∂−1
x u =

∫
u dx. This equation was derived by Toda and Yu [1].

A wide class of differential equations with interesting properties is integrable by the inverse spectral
transform. One of these equations is the CDF equation in 1+1 dimensions. The CDF equation is a
(1+1)-dimensional nonlinear equation having the form
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where a and b are arbitrary constants. Equation (2) was introduced by Calogero and Degasperis [2],
investigating equations solvable by a matrix variant of the inverse transformation, and independently by
Fokas [3], investigating KdV-type equations with certain Lie–Bäcklund symmetries. Exact multisoliton
solutions of (2) were obtained from its bilinear form (when a > 0) [4]. The CDF equation was also studied
by others [5], [6]. In [7], an extended Dym equation was generated by the purely binormal motion of an
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inextensible curve of constant curvature. This extended Dym equation is readily established by a reciprocal
link to the the CDF equation. Moreover, it is well known that the CDF equation reduces to the Calogero–
Korteweg–de Vries (CKdV) equation [8] when a = 0 and b = ±1, the Chen equation [9] when a = −b = 1
after the transformation u = exp(kw) and w → ±iw, and the Schwartzian KdV (SKdV) equation when
a = b = 0 and u = φx, which is a potential transformation of u.

The study of higher-dimensional integrable systems is one of the main themes in integrability theory.
Toda and Yu [10] developed several models integrable in the context of (2+1)-dimensional equations, i.e.,
equations with two spatial variables and one temporal variable. These equations were recently derived using
a method proposed by Calogero, i.e., by modifying one of the operators of the Lax pair for 1+1 dimensions.
Equation (1) was thus obtained from the CDF equation. Although this equation arises in a nonlocal form,
it can be written as
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Although there exist different tools for investigating the properties of the integrable (2+1)-dimensional
equations, we choose the Lie symmetry analysis. The invariance properties of some of the physically impor-
tant nonlinear evolution equations, such as the Kadomtsev-Petviashvili equation and the Davey–Stewartson
equation, have been studied using Lie symmetry analysis [11], [12]. In most cases, the corresponding Lie
algebra has a Kac–Moody–Virasoro-type subalgebra, but some integrable (2+1)-dimensional equations do
not admit a Virasoro-type subalgebra. Examples of such equations are a breaking soliton equation intro-
duced by Bogoyavlenskii, a (2+1)-dimensional generalization of the nonlinear Schrödinger equation [13],
and the SKdV equation [14].

The classical method for finding symmetry reductions of partial differential equations (PDEs) is the
Lie group method of infinitesimal transformations. Using this method, we develop the previously unknown
invariance and similarity properties that reduce Eq. (3) to (1+1)-dimensional PDEs.

In this paper, we derive traveling-wave reductions with a variable velocity depending on the form of an
arbitrary function. We first obtain a point-transformation group that leaves Eq. (3) invariant. We consider
the reductions derived from the translation groups and from the infinite-dimensional groups. An interesting
feature of our study is that this integrable equation in 2+1 dimensions admits infinite-dimensional Lie point
symmetry groups, but it does not admit Virasoro-type subalgebras.

The invariance study of these reduced (1+1)-dimensional equations and further reductions lead to
second-order integrable ODEs. The solutions of all these ODEs are expressible in terms of known functions;
some solutions can be expressed in terms of the second and third Painlevé transcendents. We also derive
exact solutions for the (2+1)-dimensional integrable generalization of the CDF equation. Some of these
solutions are soliton solutions, localized on a curve and decaying exponentially away from that curve.

2. Lie symmetries

To apply the classical method to (2+1)-dimensional PDE (3), we consider the one-parameter Lie group
of infinitesimal transformations in (x, t, z, u). The associated Lie algebra of infinitesimal symmetries is the
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set of vector fields of the form

v = ξ
∂

∂x
+ ζ

∂

∂z
+ τ

∂

∂t
+ η

∂

∂u
. (4)

We then require that this transformation leave the set of solutions of (3) invariant. This yields an overdeter-
mined linear system of equations for the infinitesimals ξ(x, z, t, u), ζ(x, z, t, u), τ(x, z, t, u), and η(x, z, t, u).
Having determined the infinitesimals, we find the symmetry variables by solving the invariant surface con-
dition

Φ1 ≡ ξ
∂u

∂x
+ ζ

∂u

∂z
+ τ

∂u

∂t
− η = 0. (5)

When we apply the classical method to PDE (3), the corresponding Lie symmetry algebra depends on
the constants a and b, and we can distinguish the following cases:

1. If a �= 0 and b �= 0, then we obtain the generators

v1 =
∂

∂t
, v2 =

∂

∂z
, v3 = t

∂

∂t
+ z

∂

∂z
, vf = f(t)

∂

∂x
, (6)

where f(t) is an arbitrary function of t.

2. If a �= 0 and b = 0, we obtain generators (6) and

v1
4 = x

∂

∂x
− 2z

∂
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− u

∂

∂u
.

3. If a = 0 and b �= 0, we obtain generators (6) and

v2
4 = x

∂

∂x
− 2z

∂

∂z
+ u

∂

∂u
.

4. If a = 0 and b = 0, we obtain generators (6) and

v3
4 = x

∂

∂x
− 2z

∂

∂z
, vk = k(z)u

∂

∂u
,

where k(z) is an arbitrary function of z.

We remark that Eq. (3) does not admit a Virasoro-type subalgebra. In a previous paper, we listed the
similarity variables and similarity solutions as well as the systems of PDEs obtained when (2+1)-dimensional
equation (3) is reduced using the generators obtained by adding the infinite-dimensional generators to the
generators of the optimal system.

Our aim in this paper is to use the theory of symmetry reductions to find traveling-wave solutions
for the (2+1)-dimensional CDF equation. To obtain these solutions, we consider the following reductions
arising from translations and the infinite-dimensional vector field, i.e., from v1, v2, vf , and vk.

Reduction 1. Using the generator v1 + λv2 + vf , we obtain the similarity variables and similarity
solution

z1 = x−
∫
f(t) dt, z2 = z − λt, u = h(z1, z2) (7)

and the PDE

8 h3hz1z1hz2λ− 8 h3hz1hz1z2λ− 2 h2hz1hz1z1z1hz2 + 2 h2h2
z1z1

hz2 +

+ 6 hh2
z1
hz1z1hz2 − 2 a2 h5hz1z1hz2 − 4 a b h3hz1z1hz2 − 2 b2 hhz1z1hz2 −

− 6h4
z1
hz2 + 6 a2h4h2

z1
hz2 − 6 b2h2

z1
hz2 + 2 h3hz1hz1z1z1z2 −

− 2 h3hz1z1hz1z1z2 − 4 h2h2
z1
hz1z1z2 − 2 h2hz1hz1z1hz1z2 + 6 hh3

z1
hz1z2 +

+ 2 a2 h5hz1hz1z2 + 4 a b h3hz1hz1z2 + 2 b2hz1hz1z2 = 0. (8)
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When a = 0 and b = 0, we obtain the generator v1 + λv2 + vf + vk and the similarity solution

z1 = x−
∫
f(t) dt, z2 = z − λt, u = h(z1, z2) exp

{
1
λ

∫
k(z) dz

}
. (9)

Reduction 2. Using the generator v2 + vf , we obtain the similarity variables and similarity solution

z1 = x− zf(t), z2 = t, u = h(z1, z2) (10)

and the PDE

−8 h3 hz1z1hz2 − 2 f(z2)h3 hz1 hz1z1z1z1 + 2 f(z2)h3 hz1z1 hz1z1z1 +

+ 6 f(z2)h2 h2
z1
hz1z1z1 − 12 f(z2)hh3

z1
hz1z1 + 8 h3 hz1 hz1z2 +

+ 6 f(z2)h5
z1

− 6 a2 f(z2)h4 h3
z1

+ 6 b2 f(z2)h3
z1

= 0. (11)

When a = 0 and b = 0, we obtain the generator v2 + vf + vk, the similarity solution

z1 = x− zf(t), z2 = t, u = h(z1, z2) exp
{∫

k(z) dz
}

(12)

and PDE (11) with a = 0 and b = 0.

3. Symmetry reductions to ODEs

The reduced PDEs in 1+1 variables admit symmetries that lead to further reductions to ODEs, and
we again use the techniques of Lie group theory.

Equation (8) admits the symmetries

v11 =
∂

∂z1
, vα = α(z2)

∂

∂z2
, (13)

where α(z2) is an arbitrary function of z2. Using v11 + vα, we obtain the similarity variable and similarity
solutions

w = z1 −
∫

1
α(z2)

dz2, h = g(w) (14)

and the autonomous ODE

−g3g′g′′′′ + g3g′′g′′′ + 3g2(g′)2g′′′ − 6g(g′)3g′′ +

+ 3(g′)5 − 3a2g4(g′)3 + 3b2(g′)3 = 0. (15)

Dividing by g2(g′)2, integrating once over w, and then multiplying by g3(g′)2, we can reduce Eq. (15) to
the second-order autonomous ODE

g′′ =
3
2

(g′)2

g
− a2

2
g3 +

3b2

2
1
g

+ k1g + k2. (16)

Multiplying by g−3g′ and integrating once over w, we obtain

(g′)2 = −a2g4 + 2k1g
2 + k2g + b2 + 2k3g

3. (17)
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The integration can be completed in terms of elliptic functions.
For b = 0 and λ �= 0, Eq. (8) admits symmetries (13). For λ = 0, in addition to the previous ones, it

admits the generator

v12 = z1
∂

∂z1
− h

∂

∂h
. (18)

Using v11 + vα, we obtain the similarity variable and similarity solutions (14) and ODE (15) with b = 0.
Using v12 + vα, we obtain the similarity variable and similarity solutions

w = z1 exp
{
−

∫
1

α(z2)
dz2

}
, h = g(w) exp

{
−

∫
1

α(z2)
dz2

}
(19)

and the ODE

− g3g′g′′′′w + g3g′′g′′′w + 3g2(g′)2g′′′w − 6g(g′)3g′′w +

+ 3(g′)5w − 3a2g4(g′)3w − 3g3g′g′′′ + 2g3(g′′)2 +

+ 5g2(g′)2g′′ + a2g6g′′ − 3g(g′)4 − 5a2g5(g′)2 = 0. (20)

Dividing (20) by g2(g′)2, integrating once over w, then multiplying by g−3(g′), and integrating again over
w, we obtain the Painlevé III equation

g′′ =
(g′)2

g
− g′

w
− a2g3 +

k1

2w
− k2g

2

w
. (21)

Equation (11) admits the symmetries

vζ = ζ(z2)
∂

∂z1
, vβ =

1
f(z2)

∂

∂z2
, f(z2) �= 0, (22)

where ζ(z2) and f(z2) are arbitrary functions of z2. Using vζ + vβ , we obtain the similarity variable and
similarity solutions

w = z1 −
∫
ζ(z2)f(z2) dz2, h = g(w) (23)

and ODE (15), which can be integrated in terms of elliptic functions.
Equation (11) with b = 0 admits symmetries (23) and

vγ = z1
∂

∂z1
+

3
f(z2)

∫
f(z2) dz2

∂

∂z2
− h

∂

∂h
, f(z2) �= 0. (24)

Using vζ + vβ + vγ , we obtain the similarity variable and similarity solutions

w = z1

(
1 + 3

∫
f(z2) dz2

)1/3

−
∫

f(z2)α(z2) dz2(
1 + 3

∫
f(z2) dz2

)4/3
,

h = g(w)
(

1 + 3
∫
f(z2) dz2

)−1/3

(25)

and the ODE

− g3g′g′′′′ + g3g′′g′′′ + 3g2(g′)2g′′′ − 6g(g′)3g′′ +

+ 4g4g′′ + 3(g′)5 − 3a2g4(g′)3 − 8g3(g′)2 = 0. (26)
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Dividing (26) by g3(g′)2, integrating once over w, multiplying by g′, and integrating again over w, we obtain
the second-order ODE

g′′ =
3
2

(g′)2

g
− a2

2
g3 + k2g − 4wg + k1. (27)

The change of variables g = y−1 leads to

y′′ =
1
2

(y′)2

g
− a2

2y
+ k2y

2 + 4wy + k1y. (28)

The change of variables y = αV (Z) with Z = βw leads to the equation

V ′′ =
1
2

(V ′)2

V
+ 4cV 2 − ZV − 1

2
1
V
, (29)

whose solutions can be written in terms of the Painlevé II equation (see [15]).

4. Some traveling-wave solutions

We now present some explicit solutions of the second-order ODEs as well as the corresponding traveling-
wave solutions of the (2+1)-dimensional CDF equation. Equation (17) can be integrated in terms of elliptic
functions.

Setting b = 0 and k2 = −4 in (17), we obtain an exact solution in terms of the Weierstrass function
℘. Clearly, any of the rational, hyperbolic, or trigonometric degenerations of the function ℘ also gives a
solution.

In particular, setting k1 = −2c22, k2 = 0, and k3 = (2c1c2−a)(2c1c2+a)/c1, we obtain the solitary-wave
result

g =
1

c1 −
(
c1 + a2/(4c1c22)

)
cosh2(c2w)

.

Considering the corresponding symmetry reductions (7) and (14), we find that a “curve” soliton solution
for the (2+1)-dimensional CDF equation can be written as

u =
1

c1 −
(
c1 + a2/(4c1c22)

)
cosh2(c2x− ϕ(t) − δ(z − λt))

(30)

with

ϕ(t) = c2

∫
f(t) dt, δ(z2) = c2

∫
dz2
α(z2)

, z2 = z − λt. (31)

In Fig. 1, we can see solution (30) with c1 = −1, c2 = 1, a = 4, δ(z − λt) = sin(z − t), and ϕ(t) = −t for
t = 1.

Considering the corresponding symmetry reductions (10) and (23), we find that a soliton solution for
the (2+1)-dimensional CDF equation can be written as

u =
1

c1 −
(
c1 + a2/(4c1c22)

)
cosh2(c2x− zf(t) − ψ(t))

(32)

with

ψ(t) = c2

∫
δ(t)f(t) dt. (33)
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Fig. 1. Curve soliton, t = 1.

Fig. 2. Evolution of the rotating soliton.

In Fig. 2, we can see (32) with c1 = 1, c2 = 1, a = 4, f(t) = t4, and ψ(t) = t for t = 0 (Fig. 2a) and t = 1
(Fig. 2b). We observe that this soliton solution is “rotating.”

Setting a = 0, b = 0, k1 = −2c1, k2 = 0, and k3 = 4c2 in (17), we obtain the solution

g = − c1

c2 cosh2 √c1w
.

Considering the corresponding symmetry reductions (7) and (14), we find that a solution of the (2+1)-
dimensional CDF equation can be written as

u = − c1ρ(z)
c2 cosh2

(√
c1(x− ϕ(t) − δ(z − λt))

) . (34)

Considering the corresponding symmetry reductions (10) and (23), we find that a solution of the (2+1)-
dimensional CDF equation can be written as

u =
c1ρ(z)

c2 cosh2
(√

c1(x− zf(t) − ψ(t))
) (35)
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Fig. 3. Dromion and coherent structure, t = 1.

Fig. 4. Evolution of solution (35).

with

ψ(t) = c2

∫
δ(t)f(t) dt. (36)

In Fig. 3, we can see solution (34) with ϕ(t) = 0 and δ(z − λt) = z − t with −c1ρ(z) = cosh−2(z) (Fig. 3a)
and with −c1ρ(z) = cosh−2(z) + cosh−2(z + 4) (Fig. 3b) for t = 1. We observe that these dromions and
coherent structures are localized in all directions.

In Fig. 4, we can see solution (35) with f(t) = t, ψ(t) = t, and −c1ρ(z) = cosh−2(z) for t = 1 (Fig. 4a)
and t = 2(Fig. 4b). We observe that the solution is localized in all directions and evolves by “rotating” and
changing its shape.

Setting a = 0 in (17), we obtain

g =

√
k2
2 − 8k1b2

4k1
sin(

√
2k1(w + c) + k2), g =

√
k2
2 − 8k1b2

4k1
cos(

√
2k1(w + c) − k2),

g =

√−k2
2 + 8k1b2

4k1
sinh(

√
−2k1(w + c) + k2), g =

√
k2
2 − 8k1b2

4k1
cosh(

√
−2k1(w + c) + k2).
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Considering the corresponding symmetry reductions (7) and (14), we find that some exact solutions for the
(2+1)-dimensional CDF equation can be written as

u = −
√
k2
2 − 8k1b2

4k1
sin

(√
2k1(x− ϕ(t) − δ(z − λt) + k2)

)
, (37)

u = −
√
k2
2 − 8k1b2

4k1
cos

(√
2k1(x− ϕ(t) − δ(z − λt) − k2)

)
, (38)

u = −
√−k2

2 + 8k1b2

4k1
sinh

(√−2k1(x− ϕ(t) − δ(z − λt) − k2)
)
, (39)

u =

√
k2
2 − 8k1b2

4k1
cosh

(√−2k1(x− ϕ(t) − δ(z − λt) − k2)
)
. (40)

Setting a = 1 and b = 0 in (17), we obtain

g = − 2 tan
(
(
√

3/2)w
)

tan
(
(
√

3)/2w
)

+ 3
.

Setting a =
√

2i/
√

3, k1 = 0, k2 = 8/3, and b = 0 in (17), we obtain

g =
2 sech2 w − 2
2 sech2 w + 1

.

Setting b = 0, k1 = k2 = 0, and λ = k3/a
2 in (17), we obtain

g =
2λ

1 + a2λ2w2
.

Setting a = 0, b = 0, and k2 = k3 = 0 in (17), we obtain

g = ρ(z)e
√−2k1w.

Considering the corresponding symmetry reductions (7) and (14), we find that some exact solutions for the
(2+1)-dimensional CDF equation can be written as

u = − 2 tan
(
(
√

3/2)(x− ϕ(t) − δ(z − λt))
)

tan(
√

3/2)(x− ϕ(t) − δ(z − λt)) + 3
, (41)

u =
2 sech2(x− ϕ(t) − δ(z − λt)) − 2
2 sech2(x− ϕ(t) − δ(z − λt)) + 1

, (42)

u =
2λ

1 + a2λ2(x − ϕ(t) − δ(z − λt))2
, (43)

u = ρ(z) exp
{√

−2k1(x− ϕ(t) − δ(z − λt))
}

(44)

with

ϕ(t) = c2

∫
f(t) dt, δ(z2) = c2

∫
dz2
α(z2)

, z2 = z − λt. (45)
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Fig. 5. Curve solitons (43), t = 1.

In Fig. 5, we can see “curve” soliton solution (43) for a = 1, c = 1, and ϕ(t) = t with δ(z2) = (z− λt)2

(Fig. 5a) and with δ(z2) = Ai(z − λt) (Fig. 5b) for t = 1.
Setting b = 0 and k2 = 0 in (17), we obtain

g =
4k1√

k2
4 − 8k1a2 cosh

(√−2k1(w + c) − k4

) , g =
4k1√

k2
4 − 8k1a2 cos

(√
2k1(w + c) − k4

) .

Considering the corresponding symmetry reductions (7) and (14), we find that some exact solutions of the
(2+1)-dimensional CDF equation can be written as

u =
4k1√

k2
4 − 8k1a2 cosh

(√−2k1(x− ϕ(t) − δ(z − λt) + c) − k4

) , (46)

u =
4k1√

k2
4 − 8k1a2 cos

(√
2k1(x− ϕ(t) − δ(z − λt) + c) − k4

) . (47)

The most interesting solutions are the soliton solutions. The entrance of the arbitrary functions ρ(z),
ϕ(t), and δ(z − λt) allows a wide variety of qualitative and physical behaviors of these solutions.

5. Conclusions

We have discussed symmetry reductions and exact solutions of the (2+1)-dimensional integrable gener-
alization of the CDF equation. Using classical Lie symmetries, we have considered traveling-wave reductions
for this (2+1)-dimensional integrable equation. It is interesting feature that this (2+1)-dimensional inte-
grable equation does not admit Virasoro-type subalgebras. Using the classical Lie method, we obtained
PDEs in 1+1 dimensions and systems of ODEs and, by further reductions, second-order integrable ODEs
whose solutions are all expressible in terms of known functions, some of them expressible in terms of the
second and third Painlevé transcendents. For the (2+1)-dimensional CDF equation, we obtained families
of solutions with a rich variety of qualitative behaviors because of the freedom in choosing the arbitrary
functions ϕ(t), ρ(z), and δ(z − λt).

Acknowledgments. The authors are pleased to thank Professors R. Conte and E. Medina for their
useful suggestions.
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