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RENORMALIZED SOLUTIONS TO A NONLINEAR
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Abstract. The aim of this paper is to show the existence of renormalized solutions to a parabolic-
elliptic system with unbounded diffusion coeflicients. This system may be regarded as a modified
version of the well-known thermistor problern; in this case, the unknowns are the temperature in a
conductor and the electrical potential.
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1. Introduction. This paper is concerned with the resolution of the nonlinear
parabolic-elliptic systcm

du

i Vo (a(u)Vu)=c(u)|Ve? inQ=0x(0,T),
V(e V)=V Fu) ingQ,
(1) u=0 on 90 x (0,7,
w=0 on A9 x (0,7),
u(-,0) =wuy in 2,

where ) C R is a bounded domain, T > 0, a(z,t,s), o(z,t,s), and F(z,t,5), F =
(F\,...,Fy), are Caratheodory functions defined in @ xR. This problem has a similar
structure to the so-called thermistor problem arising in electromagnetism ([4, 12]); in
that particular context, { stands for the domain occupied by the thermistor, u is the
temperature, ug the initial temperature, ¢ is a shifted electric potential, F(z,t,s) =
o(s)Vio(z,t), wo is a given function, and o is a continuous and bounded function.
Indeed, the actual electric potential is ¥ = ¢+ g, and thus ¢y is the electric potential
Dirichlet boundary data on 892 x (0,7). In our analysis, and from a mathematical
standpoint, we will consider more general functions F(z,¢, s).

A great deal of attention has been paid to the thermistor problem during the last
two decades by several authors ([2, 4, 13, 26], etc.). In these works, many situations
and different hypotheses have been considered, but both ¢ and ¢ arc assumed to be
bounded in all these referred works.

The goal of this paper is to analyze problem (1) in the case of nonbounded diffusion
coefficients a and ¢. Moreover, no asymptotic behavior on a, ¢, and F is assumed.

Under thesc general assumptions, onc readily realizes that weak solutions (in the
scnse of distributions) are not well suited in this context. Note that cven if u or ¢
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belong to some Banach space of the form LI(W19(Q))), the terms a(u)Vu, o(u)Vi,
or F(u) may not belong to any L™(Q) space, r > 1. For this rcason, we consider the
notion of renormalized solutions adapted to our setting. The concept of renormalized
solution was fist introduced by DiPerna and Lions ([15, 16]) in the framework of
the Fokker Plank Boltzmann equations; later on, it was applied to more general
situations (for instance, in the resolution of nonlinear elliptic equations ([9, 22, 23}),
or in the resolution of nonlinear parabolic cquations ([6, 7, 8])).

The fact that a and o are unbounded is not the only difficulty we may encounter
in the resolution of problem (1). Indeed, the parabolic equation needs a special
treatment duc to the nonlinear right-hand side belonging to L{(Q).

In order to solve problem (1) under the assumptions stated below, we use trun-
cation and approximate solutions. This work is organized as follows.

In section 2, we sct up the notation used in the paper; this leads to the introduction
of some functional spaces. We also recall certain compactness results and give an
existence theorem for problem (1) in the casc of bounded data.

Section 3 enumerates the hypotheses and introduces the concept of renormalized
solution adapted to our context. Finally, we give the existence result.

Scction 4 develops the proof of the existence result; it is split into three steps,
namely: sctting of approximate problems, derivation of estimates, and passing to the
limit and conclusion.

2. Notation and functional spaces. Let @ C RY, N > 1, be an open bounded
domain, and 99 its boundary. Then we define D(£2) as the space of all C*° functions

in  with compact support.
For p € [1,+00], let WHP(£2) be the first order Sobolev space given as

WiP(Q) = {veLP(Q)/Voe LP(WV},

) » oradie — { 8v dv
where the gradient Vv = <{.,$1 e Ban

I3
) is taken in the sense of distributions (here,
the prime symbol stands for vector transposition). It is well-known that W1P(Q) is
a Banach space with norm
v » 1/p
winy = (0800 + 1Yoy )+ P € [1,400)

lollw sy = lvllLee ) + [IVOll L (yn;

flv]

morcover, if p = 2, then we write H1{Q2) = W12(0), which is a Hilbert space.

Since we deal with homogenous Dirichlet boundary conditions, it is intcresting to
introduce the space W,'? () defined as the closure of D(Q) with respect to ||| wi.s(a),
that is,

WP () = D(Q) . pE [l +oo).

Tt is known that if 9 is smooth enough (for instance, Lipschitz continuous), W, P (£2)
is characterized by the following property:

WaP()) = {v € W'P(Q) /v, =0}, pe€[l,+0m0).

Also we put H}(Q) = Wy3(Q). WP (Q) and H{ () are, respectively, Banach and
Hilbert spaces. By Poincaré’s inequality, the seminorm [v|wre(qy = [VollLsy~ is a
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norm in VVol’p(Q) equivalent to || - [[wis(qy on Wol’p(ﬂ). The space W=1#' (£2) stands
for the dual space of Wy (), p € (1, +00).

We now introduce some notation according to the parabolic equation of (1). For
a Banach space X and 1 < p < 400, let LP(X) denote the space LP([0,T); X), that
is, the set of (equivalence class of) measurable functions f : [0,7] — X such that
t€[0,T] — (I f(D)lx isin LP(0,T). If f € LP(X), we define

T 1/p
I fllLrixy = </0 ”f(t)”&) , 1<p<4oo, ffllLex)= t;iﬁg?l;’“f(t)”x;

and thus (LP(X), | - | o(x)) is 2 Banach space. By Fubini’s theorem we can identify
the space LP(LP(Q)) with LP(Q), Q being the cylinder Q x (0,T).
Let X and Y be two Banach spaces, X — Y with continuous ine¢lusion, and set

W= {u e LP(X)/ 3—1’ € LQ(Y)}, p.q € [1,+oc],

provided with the standard norm |w|lw = |w| r(x) + H%%“m(y)' Then (W, ] - |lw)

is & Banach spacc and the inclusion W — C°([0,T];Y) holds and is continuous.
Howcver, it will be very intcresting and usecful to know if a particular compactness
cmbedding involving these spaces holds. The answer is given by the following two
lemmas ([24]).

LEMMA 1. Let X, B, andY be three Banach spaces such that X — B <» Y, every
embedding being continuous and the inclusion X — B compact. Let 1 < p < 400 and
1< g < +oo. Then, the inclusion W — LP(B) holds and is compact.

LEMMA 2. Let X, B and Y be as in Lemma 1, and E C L*®(X) be a bounded
set such that

(i) ¥ € LY(Y) for allv € E, and
(ii) there exist h € LY(0,T), s > 1 and a bounded set Z C L*(0,T) such that

U dw
I <h+zy forallve E, z, € Z and a.e. in (0,T).
ly

Then, E is relatively compact in C© ([0,T]; B).

The approximate problems in section 4.1 arc defined via truncation functions.
For this purpose, we introduce, for each j > 0 in R, the truncation function at height
j to be

2) Ty (s) = sign(s) min(j, s]), sign(s):{ 2/[s| ﬁj;g

We will also make use of the following lemma, due to Boccardo and Gallouét ([10])
and ([19]).
LEMMA 3. Let (vn) be a sequence of measurable functions in Q such that
1. (vn) is bounded in L (L}(Q2)).
2. Forallj >0, n >0, Tj(va) € LA(HHQ)).
3. There exists a constant C > 0 such that

/ [Vun|? < C forallm,n > 0.
{m<|v,|<m+1}
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Then (vy) is bounded in the space LI(W14(Q)) for all ¢ < %_’—? if N > 2, and for all
g< 2 N=1

If g: @ x R is a Carathcodory function and u is measurable in @, we write g(u)
for the measurable function in @ defined as (z,t) € Q — g(z,t,u(z,t)).

In what follows, C' > 0 stands for gencric constant valucs which only depend on
initial data.

The introduction of the approximate solutions relies on the following result.

THEOREM 4. Assume that the Caratheodory functions a, ¢ and F are such that
a,0 € L®(Q x R), F € L>®(Q x R)N and there exist two constant values ag > 0 and

oo satisfying
a(z,t,s) > ag, o(x,t,8) > 0g, for all s €R, a.c. (z,t) € Q.

Finally, let ug € L?($Y). Then, for every j > 0, there exists u € L2(HE({))) and
¢ € L™(H}(Q)) such that
du

" € L*(H™H(Q), u(-,0)=ug in Q,

and

[ (o) + [aoso = [ 3 o) oratoe o,

— v

Jo \dt

/ o(w) VeV = / F(u)V, for all € Hy(Q), ae. t € (0,T).
o Q

For the proof of this result one may follow the same arguments as in the proof of
the cxisence theorem for the thermistor problem ([4]).

3. The main result. We make the following assumptions:
(H1) a,0: QxR — Rand F:Q xR — R" arc Carathcodory functions and therc
exists a nondecreasing function v : RT — RT such that

max (a(z, t, s), o(x, t,8), | F(z,t,s)]) <+(s]), for all s € R, a.e. in Q.
{H.2) There exist two constant valucs ag > 0 and o¢ > 0 such that
a(z,t,s) > ag, o(z,t,s) > og, for all s € R, a.e. in Q.
(H.3) There exists a function I' € L}(Q) such that
|F(z,t,8)|* < T(z,t)o(z,t,s), for all s € R, a.c. in Q.

(H4) max esssuplw
k<lsl<2e g = koa(z,t,s)
sequence, that is, limg_, oo w(k) = 0.
(H.5) uo € LY(Q).
Hypothesis (H.1) is one of the main difficulties in the resolution of problem (1).
As it has been stated in section 1, we cannot cxpect to scarch for weak solutions.
However, assumptions (H.3) and (H.4) give a relation of the asymptotic behavior of
a(s), o(s) and F(s) for large values of s.
We introduce now the definition of renormalized solutions to problem (1).
DEFINITION 5. A couple of functions (u, @) is called a renormalized solution to

problem (1) if the following conditions are fulfilled:

= w(k) as k — +o0o, where w(k) stands for a null
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1) uwe LY(S), p € L*(H§(9)), and [, o(u)| V| < +oo;
2) Tar(u) € LE(HY(Q)) for all M > 0;
3) lim a{u)VuVu = 0;
N0 Mn<lul<n+1)
4)

For all S € C*°(R) with supp S’ compact,

95(u) _ V - la(w)VuS'(u)] + " (u)a(u)VuVu = a(u)| V25 (v) in D'(Q),

ot
S(u(+,0)) = S(uo) in
(R.5) For all y € L2(H}(Q)) such that jQ o (u)|VY|? < +o0, we have

/a(u)Vg&V'z/Jz —/ F(u)Vi.
Q I Q

Remark. Properties (R.1)- (R.4) on u are the usual conditions verified by renor-
malized solutions of parabolic equations ([7]). On the other hand, (R.5) says in
particular that the sct of test functions in the cquation for ¢ depends upon the solu-
tion u.

We can now state the main result of this work.

THEOREM 6. Under hypotheses (H.1) (H.5), system (1) admits a renormalized
solution (u, ) in the sense of Definition 5.

4. Proof of Theorem 6. The proof is divided into threc steps: first, we intro-
duce a scquence of approximate problems; then, we derive certain estimates for the
approximate solutions; and finally, we pass to the limit and conclude.

4.1. Setting of the approximate problems. For every j > 0, we consider
the truncation functions defined by

aj(z.t,8) = a(z,t,Ti(s)), oj(z,t,s)=0a(z,t,T;(s)), Fj(z,t,8)=F(zt7T;(s)),
where Tj is defined in (2). Thanks to a;,0; € L®(Q x R) and Fj € L®(Q x R)N.
The approximate problems are stated as follows: to find u; € L2(H(2)) and
¢; € L®(H(Q)) such that %-"- € L2(H~YQ)), u;(+,0) = T;(up) in Q and

T/ Qs . .
“ ./o <%,7)>+./Qaj(uj)V'ujV’L’:,/QTj (0 (u;)[Vip;1*) v, for all ve LA(HE()),

/ a;(u;)V,;Vip = —/ Fj(u;)Vy, for all v € H3(2), ac. t € (0,7).
Q 0

By virtue of Theorem 4, we know that for cach j > 0, therc exists (u;, ;) verifying
all thesc conditions.

4.2. Estimates for (u;) and (p;). Choosing ¥ = ¢; in the equation for w;
and intcgrating over @ yields,
1/2

/C;a](uj)lvm?:—/éF;-(uj)wjs('/Q aj(uj)-lwuj)2)1/2(‘/;oj<uj>|vcpji2) ,

hence, using (H.3),

) [ astwlVesf® < [ o) iEm)P s [ T=c
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In this way, the sequence (o;(u;)|Vi;|?) is bounded in L'(Q). We may rewrite the
parabolic cquation of (4) as

s )
(6} { /(} <gat?'|v> + /t; G;{th)vujv'u = iju. forallv e Lz[Hd(Q)},
UJ[-.U) =T;[u0]'

where f; = T Errj(icj}l.v,s‘jlz}‘ Since the sequences (f;) and (T (ug)) are bounded
in LY(Q) and L}(1)), respectively, we may deduce some well-known estimates for the
sequence of solutions to (6) (u;) in suitable Banach spaces ([7, 10]), namcly

(7) {u;) is bounded in L=(L'(Q));

for all M > 0 and j > 1, there exists a constant €' > 0, not depending upon M and
7. such that

(8) | 9Tt < e,
Q
(9) [ IVu,l? < €,
J{M<lu a1}
and also

aw s Vuls [ ipie [l
[M < us < M+1} {luyl>nr} {lunl=A}

Owing to {7), (9), and Lemma 3, we have

N+
N ¥

(11) (1) is bounded in LYW (52)), for all g < ? fN=>2g<2ifN=1.

As far as the parabolic term %J- is concerned, we proceed as follows. Let § € C(R)
with supp §' [~ M, M]. Taking v = §'(u;)é, ¢ € P(f), in (6), it yields

(12) d—‘% -V {a;(uj)VujS’(uj)] + S”(l!j)&.j(uj)vujvuj = ij’{Hj} in 'D'(.Q)

Thanks to {8) and (H.1) we obtain

(%ﬂ) is bounded in L3(H () + LY(Q).

Since LAHT(Q)) + L1(Q) — LY (W~17(Q)), r < 25, with continuous inclusion,
we have

dS(us)y . A in Tl N
(13) ( " is bounded in LYW ~17{Q)) for all r < T
Furthermore, using (11), we readily have
. : i N+2 . G
(S{u;)) is bounded in LI(W;9(Q2)), for all g < NIl fNZ2,g<2if N=1.
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Now we apply the compactness result stated in Lemma 1. To do so, we take
X =W34Q), B=LIQ), Y=W1"(Q);
therefore,

N+2
N+1

(14) (S(uy)) is relatively compact in L9(Q) for all ¢ <

Property (14) is not enough to deduce the almost everywhere convergence of (u;)
modulo a subsequence. We must also use the estimates derived above. To this end,
let M > 0 and consider a function § € C*°(R) satisfying

(i) supp &’ is compact,
(if} S is nondecreasing, and

(iii) S(s) =sif |s| < M.

Therefore, we have the identity Tas(s) = Tar(S(s)) for all s € R, and, in particular,

(15) Tar(uy) = Tae (S(uy)-

According to (8), for every M > 0 there exist a subsequence, which will be denoted
in the same way, and a function 2y € L2(H3 (2)) such that

(16) Tar(u;) — zar weakly in L2(H(Q)).

On the other hand, from (14), there cxist a subsequence, still denoted in the same
way, and a function ¢g € L9(Q) such that

(17) S(u;) — sg strongly in L9(Q) and a.e. in Q.

Notice that (15) and (17) imply that Tas(u;) converges almost everywhere to T (ss);
this fact, together with (16), implics that zpr = Tar(cs).

Furthermore, from (11), therc cxist v € L"(Wﬂl'q(ﬂ)) and a subsequence of (uy)
such that ’

u; — u weakly in LI(Wg9(Q)), for all ¢ < jjzif

fN>2 g<2if N=1

All these convergences lead to (modulo a subscquence) the almost everywhere con-
vergence of (u;). Indeed, this property can be readily derived from the next result
([19]).

Lemma 7. Let ¢ > 1, A C RY a nonnegligible measurable set, (w;) C LI(A),
w € LI(A) be such that

wj — w weakly in LI(A).
Assume that for every M > 0 there exists vyr € LY(A) such that
Ta(v;) — var ac. in A,

then Tas(w) = vpg, for all M > 0 (and in particular w; — w almost everywhere
in A).

Summing up, we have shown the existence of subsequences, still denoted in the
same way, (u;), (©;), and functions u € LYW (Q)) and @ € L2(HJ(S)) such that

N +2
(18) uj — u weakly in LY(W?(Q)), for all ¢ < *

NN 22 9<2iN=1,
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(19) Tar(uj) = Tar(u)  weakly in L2(H3 (),

(20) U; — U a.c. in Q,

(21) S(uj) — Su) strongly in L™(Q) for all r < 400,
dS(u;)  dS(u) . _,

(22) oy D)

(23) ;o @ weakly in L2(HJ (),

where (21) and (22) are valid for all S € C*(Q) with supp S’ compact, and (23) is
obtained from (5) and (H.2).
Now we turn our attention to (¢;) and w. First of all, we show that
(24) 0i(u3)*Vp; — a(w)/?Vy weakly in L2(Q)V.
Indeed, from (5), there exist a subscquence and @ € L2(Q)" such that
(25) 0;(u;)/?Vp; — @ weakly in L2(Q)V.

Using (20) and (H.2), it yields

(26) ai(u;) V% — o(u)7V? weakly * in L(Q) and ae. in Q.
Putting
(27) Vio; = 0j(u;) ™20 (u;) 2 Vi;,

and passing 1o the limil, gathering (25)-(27), we obtain ® = a(u)'/?Vy, and this
shows the statement (24). Notice that, in particular, o(u)|Ve|? € L1(Q).

Onc of the most delicate parts in the passing to the limit consists in showing the
convergence

(28) oj(uj)l/2Vnpj — o(u)/?Vy strongly in L2(Q)V.

From (24), it is cnough to show that

(29) [ ostwvest = [ awivelt
Q Q
To do this, we first introduce the function Sy, € WL (R), k > 0, defined as
1 if || <k,
(30) Si(s) =< (2k—|s|)/k ifk < |s| <2k,
0 if |s| > 2k.

Note that supp S = [—2k,2k] and Si(s) = % (X(=2k,—k) — X(k’gk)). Then, we take
in (4) the test function ¥ = Sk(u;)Tam () € L= (H(S2)). The integration over (0,T)
leads to

/aj('“j)Vijﬂw(@)Sk(uj)+/”j(uj)ijvujSI’\:(“'J‘)TM(W)
Q Q

== / Fy(uy)VTar () Sk (ug) = / Fj(u3)Vu; Sy (u;) T (9);
Jo JQ



RENORMALIZED SOLUTIONS TO A PARABOLIC-ELLIPTIC SYSTEM 1999
we call these terms (I)-(IV) and study them separately.
(I). Since 0;(u;)Sk(u;) = o (Tar(u;))Se(y;) € L°(Q) and is bounded in this space,
using (20) it yiclds

7 ()8 (u;) — o(u)Se(n) weakly—* in L>(Q) and a.e. in @.
From (23), making 7 — oo, we readily obtain
[ sV 9T (5et) = [ o0VeTinte)Sit0).
Q

Owing to Lebesguc’s theorem, we finally deduce

lim lim lnn/oj(uJ)V,,JVFM( )Sk(u;) = /a(u)]VapIz.
Q Q

{—oa k—o0 j—00

II). We first derive another estimate for (u;). Let Hy € W1™(R) be the function
4

5] <.
Hy(s) =< (ls| —k)/k ifk<]s| <2k,
[s|/s if |s] > 2k,
then put Hy(s) = = [y He(r)dr and E"c {k < |u;] < 2k}. Choosing v = Hp(u;) in

(4) yields

/Q Al + ¢ [, a)Vul = [ 50w)+ | Ao

therefore, for all j > 1 and & > 0, there exists a constant C > 0, not depending upon
3 and k, such that

1 ' : 1
P / a;(uy) |V [*xpr < C,
4 Q
that is,
(31) <71——Eaj(uj)l/2Vuij;> is bounded (in § and k) in L2(Q)V

Going back to (IT)
(1) = /Q 03 (43) 3V 5003 () 20 103) ™ a4y 2y 8L () T (),
thus

1 Zi 1
a;(u)"/* Vg ﬁf’j(ua')l/zaj(“-j) 12 —ﬁﬂj(uj)l/zvujx;;;:

(D) < M /Q

a;(u;) 172 VUJXE’”

< M |jo;(us)V Vs

l
L2(Q) h \/k L3(Q)

'”71‘5"9'(“:‘) Paj(u;)/? XEH

L>(Q)
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Hence, from (H.4), (5), and (31), we deduce
[(IT)] < Cw(k),

which implics

lim limsup/ (1) V; VS (u) T (p) = 0.
Q

¢ j o0

(I1T). Lebesgue’s theorem easily shows that

lim [ F(u;)VTar()Sk(uy) =/ F(u)VTar(¢)Sk(u).
Q Q

Jj—oo

We now express this last integral as
/F('u)o(u)_l/2a('u)I/QVTM('@)Sk(u).
Q

Owing to (H.3) and (24) we can apply again Lebesgue’s theorem, first in k, then in
M, to deduce finally that

M—oc k—oo j—o0

(32) lim lim lim / Fy () Vot () S (1)) = / Flu)Ve.
Q Q
(IV). Following the same techniques as in (I7) and (II1), it is straightforward that

lim limsup/ Fj(uj)Vu; S, (w;)Ta (p) = 0.
Q

k—oo  joco

Gathering (27) (32),
(33) [ o@ive = - [ Fve
Q Q
On the other hand, taking ¥ = ¢; in (4) and integrating over (0,77, we obtain
/Uj(Uj)IVSOjl2= */ F;(u;) Vs
Q Q

since Fj(u;)Vp; = Fj(u;)o;(u;) ™20 (u;)}/*Vp;, and bearing in mind (H.3), (20),
and (24), we conclude that

(34) [ Bwnves - [ Fwvs
Q Q
putting together (33) (34) gives dircctly (29), that is, o;(u;)'/?V; — o(u)/?Vy
strongly in L?(Q)". This also implics that
(35) fi =T (0;(u)|Ve;?) — o(u)|Vil* strongly in L'(Q).

The last relevant convergence to be shown before passing to the limit in the
approximate problems (4) is,

(36) Tar(uz) — Tas(u) strongly in LE(HE (), for every M > 0.

In fact, this is a consequence of (6), (19), and (35), but it is not an immediate result;
for details of the proof of this property the reader is referred to [8].
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4.3. Passing to the limit and conclusion. Let « and ¢ be the limit func-
tions given in (18) and (23). Here we show that both functions verify (R.1) (R.5) of
Definition 5.

In fact, (R.1) and (R.2) have been already obtained.

By virtue of (19), (20), and (35), making j — oo in (10) yiclds

@IVl < [ oivelt+ [

./{Ms‘;u|<M+1} J{ul>M} Sugl>M

duc to hypothesis (H.5) and making M — oo in this last expression, we can easily
derive (R.3).

In order to obtain (R.4), we just take v = S(u;)¢ in (4) with § € C™(R),
supp 8’ compact and ¢ € D(§2). Thanks to the convergence propertics derived in the
preceding section, we can make j — oo and this yields the variational formulation
(R.4). Note that the strong convergence of the truncations function Tas(u;) — Tas(w)
in L2(H}()) is essential in this stage. It remains to state the initial condition
S(u(-,0)) = S(up); to do so, we apply Lemma 2 with the following choices:

X=L®F%), B=Y=W"1"(Q), any r < -L,

N -1
and put £ = {S(u;)};>1, supp S’ = [-M, M]. Obviously, E is bounded in L*°(X)
and, according to (13), f,—}’ € LY(Y) for allv € E. Also, by virtuc of (12), we can write

dS(v . . 7

) — 1, ) = 055 (T (g9 a0 ()P 4V L (T 05)) VT () a)].
Now, from (20) and (35), f;S(u;) converges strongly in L*(Q) and from (20) and
(36), S (u;)a; (Th ()| VT (u;)|? converges strongly in L (Q). Owing to Lebesgue’s

inverse theorem, there exists h € L1(Q) such that
|®;| <hforall j >1andae inQ,
where ®; = f;.5"(u;) — 5" (u;)a;(u;)|Vus|?. Consequently,

<

N-1

”@j”w--l,w(ﬂ) < C”q)JHLl(Q) < C”FLHLL(Q), for all r < j>1lac. te (O,T)

On the other hand, the last term V - [a;(Tar(x;))VTar ()5 (2;)] is bounded in
L2(H~'(€)), and therefore it is also bounded in L2(W~17(Q)), for all r < .

Hence, we may take b = Cl|A||iq) € L'(0,T) and s = 2 to deduce that

<h+ ||V - (a5 (T (us)) VT (us)S (w5)]|ly , forall 5 >1,a.et€(0,T).
"

2

By Lemma 2, this means that (S(u;)) is relatively compact in C? ([0, T]; W~=17())
for any r < A—,'\i—l and thus, there exists a subsequence, still denoted in the same way,
such that (S(u;)) converges in C® ([0, T]; W=17(Q)). From (21), this limit must be
S{u). In particular,

S(u;(-,0)) = S(u(0)) in WI(Q),
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and since S{u;(0)) = S(Tj(uo)) — S(uo) in L}(N)-strongly, we deduce the initial
condition
;

S{u(,0)) = S(up) in WIm()), r < o1

Finally, in order to derive (R.5), we just take ¢ = Si(u;)Ta(¢) in (3), where Sy is
defined in (30) and ¢ € L?(H(Q)) is such that lo o(u)|V¢[? < +oco. In this situation,
we can proceed as in () (IV) above: taking the itcrate limits, first in §, then in £,
then in M, and the last expression becomes (R.5).

This ends the proof of Theorem 6. a

5. Concluding remarks. The diffusion coeflicients a and ¢ are scalar functions
in the setting given by hypotheses (H.1)-(H.4). We may consider a more general
sctting in which a and ¢ are diffusion matrices of order N x N. The hypothcses on
this data rcad as follows:

(H1) a,0: Q xR — R¥*N and F: Q x R — R" are Caratheodory functions and
there exists a nondccreasing function 4 : Rt — R¥ such that

max (fla(z,, )|, |o(z, 8, 9)[,|F(z,t,5)]) < v(Is]), for all s € R, ace. in Q,

where || - || stands for the spectral norm.
(H.2) There arc two constant values ag > 0 and og > 0 so that

a{z,t,8)E€ > apl€!?, o(w,t,8)EE > oplé]?, for all s € R, £ € RV, ae. in Q.
(H.3) I' € LY(Q) is a function satisfying

lo(z,1,8) ™52 F(x,t,5)]* < D(z,t), for all s € R, a.c. in Q.

1 ’
(H.4) kéﬂ?ﬁzk cssgup ﬁllo(m, t,5)5%a(x,t,8) 732 = w(k) as k — +oc.

(H.5) up € L ().
The notation in (H.3) and (H.4) is now cxplained: for a matrix B € RY*¥ | we denote
by BS the symmetric part of B, that is, BS = (B + B')/2. From (H.2), o(z,t,s)°
and a(z,t,s)% are positive definite; then a(z,t,s)5/2 stands for the unique positive
definite square root of o(x,t,s), whereas a(z,t,s)”5/? represents the inverse matrix
of the unique positive definite square root of a(z, t, s)3.

In this situation, the existence result given in Theorem 6 still holds true.

The analysis described in this paper shows that the concept of renormalized so-
lutions may be applied to systems of parabolic-elliptic equations with unbounded dif-
fusion coeflicients. The existence result relies on certain assuiptions on data, apart
from the standard ones, describing the relation of the asymptotic behavior between
them.

The uniqueness of renormalized solution to problem (1) is a very complex task to
be deduced; this is due to the fact that all known uniqueness results for the thermistor
problem arc derived from L estimates verified by w and ¢; this regularity may
be obtained under certain restrictive assumptions, including for instance ¥ € L,
a,0 € L. In that sctting, there is no need to search for renormalized solutions: one
recncounters the setting of weak solutions.
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