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Abstract

Let f1, . . . , f p be polynomials inC[x1, . . . , xn] and letD = Dn be then-th Weyl algebra. We

provide upper bounds for the complexity of computing the annihilating ideal off s = f s1
1 · · · f

sp
p in

D[s] = D[s1, . . . , sp]. These bounds provide an initial explanation of the differences between the
running times of the two methods known to obtain the so-called Bernstein–Sato ideals.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fix two integersn ≥ 1, p ≥ 1 and two sets of variables(x1, . . . , xn) and(s1, . . . , sp).
Let us considerf1, . . . , f p ∈ C[x] = C[x1, . . . , xn] and letD = Dn be then-th Weyl
algebra. A polynomialb(s) ∈ C[s] = C[s1, . . . , sp] is said to be aBernstein–Sato
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polynomial associated with f1, . . . , f p if the following functional equation holds for a
certainP(s) ∈ D[s]:

b(s) f s = P(s) f s+1,

where f s = f s1
1 · · · f

sp
p and 1 = (1, . . . , 1). These polynomials form an ideal called

the Bernstein–Sato ideal, denoted asB f or simplyB if no confusion arises. Analogous
functional equations with respect to vectors different from1 yield other versions of
Bernstein–Sato ideals (see for exampleBahloul, 2001).

In Lichtin (1988) it is proved thatB is not zero. This fact is a generalization of the
classical proof of Bernstein (Bernstein, 1972) in thealgebraic setting for the casep = 1,
in which B is generated by the so-calledBernstein–Sato polynomialdenoted asbf (s).
The analytical case was covered inBjörk (1973) for p = 1 andSabbah(1987a) and
Sabbah(1987b) for p > 1 (an interesting new proof using the Gröbner fan has been
given in Bahloul (2005)). The roots ofb f (s) encode important algebro-geometrical data
(seeMalgrange(1974), Hamm(1975) or Budur-Saito(2003), to mention but a few) and a
complete understanding of all roots for a generalf is open. The casep > 1 seems to be
much more complex and there are conjectures on the primary decomposition ofB, on the
conditions overf for B to be principal, etc. (see for exampleMaynadier, 1996).

Until Oaku(1997) there were no algorithms for finding the Bernstein–Sato polynomial.
Since then, alternative methods have been proposed for obtainingB in the general case (see
Oaku and Takayama(1999), Bahloul (2001) andBriançon and Maisonobe(2002)). These
methods have a feature in common: their first step is the computation of theannihilating
ideal of f s in D[s], AnnD[s] f s. In Castro-Ucha(2004) some experimental evidence was
given in favor of the Briançon–Maisonobe (BM) method for computingAnnD[s] f s, with
respect to the Oaku–Takayama (OT) method, but no clues about which facts support this
superiority were provided.

Our work is a first step towards comparing the two methods theoretically. We give
upper bounds for the complexity of computingAnnD[s] f s, the previous requirement for
both algorithms. To obtain these bounds we use the techniques and results ofGrigoriev
(1990) on the complexity of solving systems of linear equations over rings of differential
operators. These extend the classical polynomial case treated inSeidenberg(1974). In
particular, we show that Grigoriev’s construction cannot be directly generalized to the
algebra proposed by Briançon and Maisonobe. We prove that the complexity of computing
AnnD[s] f s using the BM method is that of the calculation of a Gröbner basis in then-
th Weyl algebra with some extrap commutative variables, so 2n + p variables at most.
On the other hand, in the case of the OT method the calculation of such a basis is
made in a(n + p)-th Weyl algebrawith some extra 2p variables, so 2n + 4p variables
altogether.

It is an open problem whether the bound proposed in this work is reached à la
Mayr-Meyer(1982), that is to say, whether an example with this worst complexity can
beexplicitly obtained. Such an example would mean a complete answer to the question of
what the complexity of computingAnnD[s] f s is, proposed by Professor N. Takayama.
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2. Preliminaries

In this section we just recall briefly some details of the Briançon–Maisonobe and Oaku–
Takayama methods.

2.1. Briançon–Maisonobe method

In this case the computations are made in the non-commutative algebra1

R = D[s, t] = D[s1, . . . , sp, t1, . . . , tp],
an extension of then-th Weyl algebraD in which the new variabless, t satisfy the relations
[si , t j ] = δi j ti . It is a Poincaré–Birkhoff–Witt (PBW) algebra:

Definition 1. A PBW algebraRover a ringk is an associative algebra generated by finitely
many elementsx1, . . . , xn verifying therelations

Q = {x j xi = qj i xi x j + pj i , 1 ≤ i < j ≤ n},
where eachpj i is a finitek-linear combination ofstandardtermsxα = xα1

1 · · · xαn
n , each

qj i ∈ k verifying the two following conditions:

(1) There is anadmissible2 ordering≺ on Nn such that exp(pj i ) ≺ exp(x j xi ) for every
1 ≤ i < j ≤ n.

(2) The standard termsxα, with α ∈ Nn, form ak-basis ofR as a vector space.

It is possible to compute Gröbner bases in PBW algebras. The bookBueso et al.(2003)
is agood introduction to the subject of effective calculus in this fairly general family.

The following algorithm computesB, starting from

I := AnnR( f s) =
〈
sj + f j t j , ∂i +

∑
j

∂ f j

∂xi
t j , 1 ≤ i ≤ n, 1 ≤ j ≤ p

〉
.

Algorithm 1. (1) ObtainJ = AnnDn[s] f s = 〈G1 ∩ Dn[s]〉 whereG1 is a Gröbner basis
of I with respect to any term ordering where the variablest j are greater than the others
(that is, anelimination ordering for the tj .)

(2) B = (〈G2〉 + 〈 f1, . . . , f p〉) ∩ C[s]〉, whereG2 is a Gröbner basis ofJ with respect to
any term ordering withxi , ∂ j greater thansl , for all i , j , l .

2.2. Oaku–Takayama method

All the computations are made in Weyl algebras. More precisely, we start from

I ′ =
〈
t j − f j ,

p∑
j =1

∂ f j

∂xi
∂t j + ∂i , i = 1, . . . , n, j = 1, . . . , p

〉
.

1 It is, in fact, the ring introduced in classical works by Malgrange and Kashiwara forp = 1.
2 Here admissible means a total ordering among the elements ofNn with 0 as the smallest element.
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Algorithm 2. (1) ObtainJ ′ = I ′⋂C[t1∂t1, . . . , tn∂tn ]〈x, ∂x〉.
(2) J = AnnDn[s]( f s) = J ′′, whereJ ′′ denotes the ideal generated by the generators of

J ′ after replacing eachti ∂ti by −si − 1.

(3) B = (〈G2〉 + 〈 f1, . . . , f p〉) ∩ C[s]〉, whereG2 is a Gröbner basis ofJ with respect to
any term ordering withxi , ∂ j greater thansl , for all i , j , l . . .

Remark 2. The second step above is, as inAlgorithm 1, the elimination of all the variables
but (s1, . . . , sp). Often the bottleneck for obtaining the Bernstein–Sato ideal is this step.
As far as weknow, the example forp = 2 with f1 = x2 + y3, f2 = x3 + y2 is intractable
for available computer algebra systems.

The computation of

I ′ ∩ C[t1∂t1, . . . , tn∂tn]〈x, ∂x〉

uses 2n + 4p variables, as new variablesu j , v j for 1 ≤ j ≤ p are introduced. More
precisely, the main calculation is an elimination of these new variables for the ideal〈

t j − u j f j ,

p∑
j =1

∂ f j

∂xi
u j ∂t j + ∂i , 1 − u j v j , 1 ≤ i ≤ n, 1 ≤ j ≤ p,

〉
.

3. Complexity

In Grigoriev(1990) abound for the degree of the solutions of a general system of linear
equations over the Weyl algebra is given, with a procedure somewhat similar to that of
Seidenberg(1974). In this section we shall see how much ofthe work of Grigoriev is
applicable to our PBW algebraR of Section 2.1.

The construction has two different steps. In the first, the given system is reduced to
another system in a diagonal form. In the second, it is shown how to normalize the new
system in order to eliminate,successively, the variables.

Weneed a technical lemma to reduce the system to a diagonal form. This lemma comes
from Grigoriev’s paper (seeGrigoriev, 1990, Lemma 1), but we willwrite it in a more
general way. Here deg means thetotal degreeof a term, that is, the sum of the exponents
of all of its variables.

Lemma 3. Let A be a(m − 1) × m matrix with entries in a Poincaré–Birkhoff–Witt
algebra S with a basis of p elements. Ifdeg(ai j ) ≤ d, there exists a nonzero vector
f = ( f1, . . . , fm) ∈ Sm such that A f = 0 anddeg( f ) ≤ 2p(m − 1)d = N.

Proof. Consider the linear spaceT ⊂ Sm of vectorsc = (c1, . . . , cm) ∈ Sm suchthat

deg(c) ≤ N. We have dim(T) =
(

N+p
p

)
m. For any vector c ∈ T it is clear that

deg(Ac) ≤ N + d. If we consider now the vector spaceγ of vectorse = (e1, . . . , em−1) ∈
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Sm−1 such that deg(e) ≤ N + d, we have dim(γ ) =
(

N+d+p
p

)
(m − 1). We prove that

dim(γ ) < dim(T):(
N + d + p

p

)/(
N + p

p

)
= N + d + p

N + p

N + d + p − 1

N + p − 1
· · · N + d + 1

N + 1

≤
(

N + d + 1

N + 1

)p

.

It is enough to see that( N+d+1
N+1 )p < 1 + 1

m−1. This inequality follows from

(
1 + 1

m − 1

) 1
p

> 1 + 1

p(m − 1)
+ 1

2

1

p

(
1

p
− 1

)(
1

m − 1

)2

> 1 + 1

2p(m − 1)
> 1 + d

N + 1
.

If we work in a noetherian domain (not necessarily commutative), we can always define
the rank of a finite module as inStafford (1978). Given a square matrix in a Poincaré–
Birkhoff–Witt algebra we say that it isnon-singularif it has maximal rank. In this case we
can obtain a left quasi-inverse with the previous lemma:

Lemma 4. Given a m× m non-singular matrix B over a PBW algebra S as inLemma3,
it has a left quasi-inverse matrix G over S, such thatdeg(G) ≤ N.

Proof. There is no vectorb �= 0 in Rm suchthatbB = 0. If we consider the matrixB(i )

obtained fromB by deleting its i -th column, usingLemma 3we obtain a vectorgi �= 0
suchthat gi B(i ) = 0 anddeg(gi ) ≤ N, so thematrix G which hasgi as itsi -th row, for
i = 1, . . . , m, is a leftquasi-inverse ofB.

Lemma 5. Given a system of linear equationsover a PBW algebra defined by an m× s
matrix A of rank r with its elementsdeg(ai j ) ≤ d, we can always construct a matrix C
that defines an equivalent system, and such that

C A =
(

C1 0
C2 E

)
A =


a1 0

. . .

0 ar

�

0 0

 (1)

where E is the identity matrix.

Proof. C1 is the left quasi-inverse of the submatrix of A of maximal rankr (after
reordering the rows or columns ofA if necessary). C2 is constructed with the requirement
on the left lower corner to be zero. The right lower corner is zero by the definition of
rank.
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Thanks to this lemma, we can assume that our system is equivalent to a system in
diagonal form:

akVk +
∑

r+1≤l≤s

ak,l Vl = bk, 1 ≤ k ≤ r, deg(ak), deg(ak,l ), deg(bk) ≤ 2pmd.

Once the system is in diagonal form, we need to normalize it. To do this, we construct
some syzygies, applyingLemma 3to the submatrix of the firstr columns and the column
l > r . There always existh(l), h(l)

1 , . . . , h(l)
r suchthat

akh(l)
k + ak,l h

(l) = 0, 1 ≤ k ≤ r deg(h(l)), deg(h(l)
i ) ≤ 4p2m2d.

The result that gives the normalization in the Weyl algebra is the following one:

Lemma 6 (Grigoriev(1990), Lemma 4). Given g1, . . . , gt ∈ D a family of elements,
there is a nonsingular linear transformation of2n-dimensional space with basis
x1, . . . , xn, ∂1, . . . , ∂n under which

xi → Γxi =
n∑

j =1

γ
(1,1)
i, j x j +

n∑
j =1

γ
(1,2)
i, j ∂ j ;

∂i → Γ∂i =
n∑

j =1

γ
(2,1)
i, j x j +

n∑
j =1

γ
(2,2)
i, j ∂ j

such that the following relations hold:

Γxi Γ∂i = Γ∂i Γxi − 1; Γxi Γx j = Γx j Γxi ;
Γ∂i Γ∂ j = Γ∂ j Γ∂i ; Γ∂i Γx j = Γx j Γ∂i , i �= j ,

and if we denote byΓgi the transformed of gi with the indicated linear transformation, we

haveΓgi = ∂
deg(gi )
n + Γ̃gi .

Remark 7. The main fact in the proof ofLemma 6is that the matrices of the linear
transformations defined by the relations in the Weyl algebra are a transitive group. Let
us see why we cannot ensure the existence of such a normalization lemma for every PBW
algebra.

If we consider the PBW algebra defined by Briançon and Maisonobe forp = 1, that is

R = C[s, t, x1, . . . , xn, ∂1, . . . , ∂n],
a general linear transformation such as the one appearing inLemma 6has the form

s → Γs = α1s + β1t +∑n
j =1 γ

(s,1)
j x j +∑n

j =1 γ
(s,2)
j ∂ j

t → Γt = α2s + β2t +∑n
j =1 γ

(t,1)
j x j +∑n

j =1 γ
(t,2)
j ∂ j

xi → Γxi = α
(1)
i s + β

(1)
i t +∑n

j =1 γ
(1,1)
i, j x j +∑n

j =1 γ
(1,2)
i, j ∂ j

∂i → Γ∂i = α
(2)
i s + β

(2)
i t +∑n

j =1 γ
(2,1)
i, j x j +∑n

j =1 γ
(2,2)
i, j ∂ j .
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and it has to verify the following relations:

(1) ΓsΓt = ΓtΓs + Γt ; (2) ΓsΓxi = Γxi Γs; (3) ΓsΓ∂i = Γ∂i Γs;
(4) ΓtΓxi = Γxi Γt ; (5) ΓtΓ∂i = Γ∂i Γt ; (6) Γxi Γ∂i = Γ∂i Γxi − 1;

(7) Γxi Γx j = Γx j Γxi ; (8) Γ∂i Γ∂ j = Γ∂ j Γ∂i ; (9) Γxi Γ∂ j = Γ∂ j Γxi .

From relation (1), we obtainα2 = γ
(t,1)
j = γ

(t,2)
j = 0 for all j , so Γt = β2t . The

transformation must be nonsingular, so we must haveβ2 �= 0, and again using (1) we
deduce thatα1 = 1. Using (4), we obtain thatα(1)

i = 0 for all i . This, together with (5),

implies thatα(2)
i = 0 for all i .

From relation (2) (Γs commutes withΓxi ) we haveβ
(1)
i = 0, and relation (3) gives

β
(2)
i = 0. Due to relations (6) to (9) (betweenΓxi andΓ∂ j ) we have that the submatrixγ

(1,1)
i, j γ

(1,2)
i, j

γ
(2,1)
i, j γ

(2,2)
i, j


verifies therelations ofLemma 6, and in addition, from the relations withΓs, it verifies∑

γ
(s,1)
i γ

(1,2)
i,i =

∑
γ

(s,2)
i γ

(1,1)
i,i

∑
γ

(s,1)
i γ

(2,2)
i,i =

∑
γ

(s,2)
i γ

(2,1)
i,i .

Soit is clear that we cannot normalize with respect to the variables inR. Thus we can
not repeat the second step of the process towards a general PBW algebra in the way that it
appears inGrigoriev(1990).

It is an open problem to obtain a general bound for the solutions of a general linear
system over any PBW algebra or, at least, to give such a bound forR. We give up on this
general problem at this point: with the aim of obtaining a bound for the complexity of the
annihilating ideal off s, we will treat only theparticular case of one equation of the type
produced by the definition of the idealI in Section 2.1or I ′ in Section 2.2. In both cases
we want to measure the complexity of computing Gröbner bases (in different rings) and
we will do this by considering the equivalent problem of computing thesyzygiesof the
generators of our respective ideals.

Remark 8. In the OT algorithm the calculations are computed in a Weyl algebra of 2n+4p
variables, or more precisely in a commutative polynomial ring withn + 3p, (x, u, v, t)
commutative variables extended withn+ p, (∂x, ∂t ) “differential” variables. Let us denote
this algebra byA. The complexity of computing the annihilating ideal off s is bounded by
the complexity of computing a Gröbner basis inA.

Recall that the complexity in the Weyl algebra is given by the following theorem:

Theorem 9 (Theorem 6,Grigoriev(1990)). Given a solvable system in the Weylalgebra
Dn, ∑

1≤l≤s

uk,l Vl = wk, 1 ≤ k ≤ m

with deg(uk,l ), deg(wk) ≤ d. There exists a solution withdeg(Vl ) < (md)2O(n)
.



J. Gago-Vargas et al. / Journal of Symbolic Computation 40 (2005) 1076–1086 1083

As we said before, in the Briançon–Maisonobe ringR we cannot construct a similar
algorithm to bound the degree of a solution for a system in general. But in our very special
case, our problem is equivalent to computing the solutions of the equation

(s1 + f1t1)V1 + · · · + (sp + f ptp)Vp +
(

∂1 +
∑

j

∂ f j

∂x1
t j

)
Vp+1 + · · ·

+
(

∂n +
∑

j

∂ f j

∂xn
t j

)
Vp+n = 0.

To simplify notation we writethe preceding equation as
∑

l Ql Vl = 0.

Theorem 10. Given f = ( f1, . . . , f p), the computation of the annihilating ideal of fs

in the Briançon–Maisonobe algebra R= D[s1, . . . , sp, t1, . . . , tp] can be reduced to

the computation of the syzygies of the generators∂i + ∑
j

∂ f j
∂xi

t j in the Weyl algebra
D[t1, . . . , tp].

Proof. Trying to repeat Grigoriev’s ideas, the first step is the reduction of the system to
one in diagonal form. Due to the fact that we have only one equation, this step is done.
Then, we need to computeh(l)

1 , h(l) for 2 ≤ l ≤ n + p suchthat

(s1 + f1t1)h
(2)
1 + (s2 + f2t2)h(2) = 0

...

(s1 + f1t1)h
(p)

1 + (sp + f ptp)h(p) = 0

(s1 + f1t1)h
(p+1)

1 + (∂1 +∑
j

∂ f j
∂x1

t j )h(p+1) = 0
...

(s1 + f1t1)h
(p+n)

1 + (∂n +∑
j

∂ f j
∂xn

t j )h(p+n) = 0.

It is easy to see that

[si + fi ti , sj + f j t j ] = 0[
si + fi ti , ∂ j +

∑
l

∂ fl
∂x j

tl

]
= si

(∑
l

∂ fl
∂x j

tl

)
+ fi ti ∂ j − ∂ j fi ti −

(∑
l

∂ fl
∂x j

tl

)
si

= ti si
∂ fi
∂x j

+ ti
∂ fi
∂x j

+
∑
l �=i

tl si
∂ fl
∂x j

+ ti fi ∂ j − ti fi ∂ j − ti
∂ fi
∂x j

−
∑

l

∂ fl
∂x j

tl si = 0

and we obtainh(l) = s1 + f1t1 for all l ≥ 2.
These are the elements we need to normalize, and they are almost in normal form with

respect tothe variables1. This form is required to make the division of the solutions
Vl , l ≥ 2, by h(l) with respect to a lexicographical ordering with leading terms1. We
obtain a remainder̄Vl such that degs1

(V̄l ) < degs1
(h(l)) = 1, sos1 does not appear in̄Vl .
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SoVl = h(l) ¯̄Vl + V̄l , and adding the relationQ1h(l)
1 + Ql h(l) = 0 multiplied by − ¯̄Vl to our

initial equation, we obtain

Q1V̄1 + Q2V̄2 + · · · + Qn+pV̄n+p = 0

with Qi , V̄i withouts1 for i ≥ 2, soV̄1 = 0, whereV̄1 = V1 − h(2)
1

¯̄V2 − · · ·− h(n+p)

1
¯̄Vn+p.

We have then the new equation

Q2V̄2 + · · · + Qn+pV̄n+p = 0

in a Briançon–Maisonobe algebraC[s2, . . . , sp, t1, . . . , tp, x, ∂].
Repeating theprocess forQ2, . . . , Qp, we reduce our problem to solving(

∂1 +
∑

j

∂ f j

∂x1
t j

)
Vp+1 + · · · +

(
∂n +

∑
j

∂ f j

∂xn
t j

)
Vp+n = 0

in the Weyl algebraD[t1, . . . , tp].
Remark 11. As a consequence ofTheorem 10, the bound for the complexity of computing
the annihilating ideal off s in R is bounded by the complexity of computing a Gröbner
basis in a Weyl algebra with 3p variables fewerthat the one required by the OT method.
Although the complexity of computing these objects in any case is known to be double
exponential (with respect to the number of variables and the total degree of the generators
of the ideal) byTheorem 9, it is clear that the reduction of 3p variables in the BM method
is a significant advantage, both theoretically and in practice, as is shown in examples (see
Castro-Ucha, 2004).
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4. Appendix. Experimental data

In Tables 1–3 we give some examples for which the superiority of the Briançon–
Maisonobe method is clear. They have been tested3 using SINGULAR::PLURAL 2.1 (see
Greuel et al.(2003)) on a PC Pentium IV, 1 Gb RAM and 3.06 GHz running under
WindowsXP.

SINGULAR::PLURAL 2.1 is a system for non-commutative general purposes, so the
calculations in our algebras are not supposed to be optimal. We present the data only
for the sake of comparing the two methods in the same system. In the case of the
Briançon and Maisonobe(2002) method we have used a pure lexicographical ordering,
while for the Oaku and Takayama(1999) method we have used typical elimination
ordering. These are the orderingswith the best results for each case.

3 The CPUtimes must be considered as approximations: as is explained in the SINGULAR::PLURAL 2.1
Manual, the commandtimer is not absolutely reliable due to the shortcomings of the Windows operating system.
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Table 1
CPU times for the computation ofAnn fs

f Briançon–Maisonobe method Oaku–Takayama method

x3 + xy2 + z2 <0.01 s 0.39 s
x4 + y3 + z2 <0.01 s 0.39 s
yx3 + y3 + z2 0.06 s 3.97 s

x3 + y2 + z2 <0.01 s 0.02 s
x5 + y2 + z2 <0.01 s 4.66 s
x7 + y2 + z2 <0.01 s 298.56 s

x4 + y5 + xy4 0.56 s E (>12 h)

Table 2
CPU times for the computation ofAnn f

s1
1 f

s2
2

f1 f2 Briançon–Maisonobe method Oaku–Takayama method

x3 + y2 x2 + y3 0.7 2s 6363.97 s
x5 + y3 x3 + y5 3.53 s E (>6 h)
x7 + y5 x5 + y7 11.84 s E (>6 h)

x3 + y2 xz+ y <0.01 s 9.73 s
x5 + y2 xz+ y <0.01 s 1568.59 s
x11 + y5 xz+ y 3 s E (>6 h)

Table 3
CPU times for the computation ofAnn f

s1
1 · · · f

sp
p

f1 f2 f3 Briançon–Maisonobe method Oaku–Takayama method

x + y x − y x2 + y <0.01 29.46 s
x + y x2 + y x + y2 2.64 s E
x + y x2 + y x2 + y3 116.24 s E
x + y x2 + y x3 + y2 1728.41 s E
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