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Abstract

Let fq,..., fp be polynomials irC[xy, ..., Xn] and letD = Dp be then-th Weyl algebra. We

provide upper bounds for the complexity of computing the annihilating ide&Fot ff“ e f;p in

D[s] = D[sy, ..., Spl. These bounds provide an initial explanation of the differences between the
running times of the two methods known to obtain the so-called Bernstein—Sato ideals.
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1. Introduction

Fix two integersn > 1, p > 1 and two setsfovariables(xi, ..., Xn) and(sy, .. ., Sp).
Let us considerfy, ..., fy € C[x] = C[X1,...,Xn] and letD = Dy be then-th Weyl
algebra. A polynomiab(s) € C[s] = CIsy,...,Sp] is said to be aBernstein—-Sato
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polynomial associated withy f..., fy if the following functional equation holds for a
certainP(s) € D[s]:

b(s) fS = P(s) f5t1,

where f$ = fl51 e f,‘;’p andl = (1,...,1). These polynomials form an ideal called
the Bernstein—Sato ideal, denoteds or simply 5 if no confusion arises. Analogous
functional equations with respect to vectors different franyield other versions of
Bernsten—Sato ideals (see for exam@ahloul, 2007).

In Lichtin (198§ it is proved thatB3 is not zero. This fact is a generalization of the
classical proof of BernsteirBernstein 1972 in the algebraic setting for the cage= 1,
in which B is generated by the so-call®krnstein—Sato polynomialenoted adi+ ().

The analytical case was covered Bjork (1973 for p = 1 and Sabbah (19873 and
Sabbah (1987 for p > 1 (an interesting new proof using the Grébner fan has been
given in Bahloul (2005). The roots ofb (s) encode important algebro-geometrical data
(seeMalgrange(1974, Hamm(1979 or Budur-Saito(2003, to merion but a w) and a
complete understanding of all roots for a genefras open. The case > 1 seems to be
much more complex and there are conjectures on the primary decomposityroofthe
conditions overf for B to be principal, etc. (see for exampaynadier 1996.

Until Oaku(1997 there were no algorithms for finding the Bernstein—Sato polynomial.
Since then, alternative methods have been proposed for obtdinimtpe general case (see
Oaku and Takayam@ 999, Bahloul (2001 andBriangon and Maisonob@002). These
methods have a feature in common: their first step is the computation ahttikilating
ideal of fSin D[s], Annpg) fS. In CastreUcha(2004 some &perimental evidence was
given in favor of the Briangon—Maisonobe (BM) method for compu#mgps; f 5, with
respect to the Oaku—Takayama (OT) method, but no clues about which facts support this
superiority were provided.

Our work is a first step towards comparing the two methods theoretically. We give
upper bounds for the complexity of computidgnp s S, the previous requirement for
both algorithms. To obtain these bounds we use the techniques and res@ligafiev
(1990 on the complgity of solving systems of linear equations over rings of differential
operators. These extend the classical polynomial case treat®didaberg(1974. In
particular, we show that Grigoriev's consttion cannot be directly generalized to the
algebra proposed by Briangon and Maisonobe. We prove that the complexity of computing
Annps) f° using the BM method is that of the calculation of a Grébner basis imthe
th Weyl algebra with some extra commutative variables, sm2t+ p variables at most.

On the other hand, in the case of the OT method the calculation of such a basis is
made in a(n + p)-th Weyl algebrawith some extra p variables, so 2 + 4p variables
altogether.

It is an open problem whether the bound proposed in this work is reached a la
Mayr-Meyer (1982, thatis to say, whether an example with this worst complexity can
be explicitly obtained. Such an example would mean a complete answer to the question of
what the corplexity of computingAnnpys; f ¥ is, proposed by Professor N. Takayama.
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2. Preliminaries

In this section we just recall briefly sometails of the Briangcon—Maisonobe and Oaku—
Takayama methods.

2.1. Briangon—Maisonobe method
In this case the computations are made in the non-commutative algebra
R=D[s,t] = D[s1,...,Sp, t1, ..., tpl,

an extension of tha-th Weyl algebreD in which the new variables t satisfy the relations
[S,tj1 = &ijti. Itis a Poincaré—Brkhoff-Witt (PBW) algebra

Definition 1. A PBW algebraR over a ringk is an associative algebra generated by finitely
many elementsgs, ..., Xp verifying therelaions

Q= {XjXi =qjixiXj + pji,1<i <] <n}

where eactpji is a finitek-linear comlination of siandardtermsx® = xfl ... X", each
gji € k verifying the two following conditions:

(1) There is aradmissiblé ordering< on N" such that exg pji) < expxjx;) for every
l<i<j=n
(2) The standard term&, with @ € N", form ak-basis ofR as a vector space.

Itis possible to compute Grobner bases in PBW algebras. ThelBoedo et al(2003
is agood introduction to the subject of effective calculus in this fairly general family.
The following algorithm computeB, stating from

af;
| ::AnnR(fS)=<sj + fjtj,&i-i-za—xj_tj,lfi =nl=<j= p>.
j 1

Algorithm 1. (1) Obtaind = Annp, s f5 = (G1 N Dn[s]) whereG; is a Grdbner basis
of | with respect to any term ordering where the variabjese greater than the others
(that is, arelimination ordering for thejt)

(2) B= ((G2) + (f1, ..., fp)) NC[s]), whereG; is a Grobner basis ol with respect to
any term ordering withx;, 9j greater tham, for alli, j, I.

2.2. Oaku-Takayama method
All the conputations are made in Weyl algebras. More precisely, we start from

P of.
ofj ) :
I’=<tj — fJ,Za—Xiatj+8i, i=1,...,n, j:l,...,p>.

=1

1yt is, in fact, the ring introdoed in classical works by Malgrange and Kashiwaragdes 1.
2 Here admissible eans a total ordering among the elementsl'dfvith 0 as the smallest element.
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Algorithm 2. (1) Obtaind’ = I’ (" C[t1dy,, . . . , thdt, 1{X, Ix).

(2) 3 = Annp,5(f5) = J”, whereJ” denotes the ideal generated by the generators of
J’ after replacing eachidy, by —s — 1.

(3) B= ((G2) + (f1, ..., fp)) NC[s]), whereG; is a Grbbner basis ol with respect to
any term ordering witlx;, d; greater tharg, foralli, j,I...

Remark 2. The second step above is, agilgorithm 1, the dimination of all the variables

but (s, ..., sp). Often the bottleneck for obtaining the Bernstein—Sato ideal is this step.
As far as weknow, the example fop = 2 with f; = x2 + y3, f, = x3 + y?is intractable

for available computer algebra systems.

The computation of
I/ N C[tlatla e tnatn]<xa 8X>

uses 2 + 4p variables, as new ariablesuj, vj for 1 < j < p are introduced. More
precisely, the main callation is an elimination of these new variables for the ideal

p of:
<tj — uj fj,za—xjiujat,- +0i,1—-ujvj, 1<i<nl<j< D:>~
j=1

3. Complexity

In Grigoriev(1990 abound for the degree of the solutions of a general system of linear
equations over the Weyl algebra is given, with a procedure somewhat similar to that of
Seidenberg(1974. In this setion we shall see how much dfe work of Gigoriev is
applicable to our PBW algebi of Section 2.1

The construction has two different steps. In the first, the given system is reduced to
another system in a diagonal form. In the second, it is shown how to normalize the new
system in order to eliminatsuccessively, the variables.

We need a technical lemma to reduce the system to a diagonal form. This lemma comes
from Grigoriev’s paper (se&rigoriev, 1990 Lemma 1), but we willwrite it in a more
general way. Here deg means théal degreeof a term, that is, the sum of the exponents
of all of its variables.

Lemma3. Let A be a(m — 1) x m matrix wth entries in a Poincaré—Birkhoff—Witt
algebra S with a basis of p elements.dégajj) < d, there exists a nonzero vector
f =(fy,..., fm) € S"suchhat Af = 0anddeg f) < 2p(m— 1)d = N.

Proof. Consider tle linear spacel ¢ S™ of vectorsc = (c1,...,Cn) € S™ suchthat
degc) < N. We have din(T) = (N;p> m. For ary vectorc € T it is clear that
deg Ac) < N +d. If we consider now the vector spageof vectorse = (e1, ..., €m-1) €
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S™-1 such ttat dege) < N + d, we have diniy) = (N+g+p> (m — 1). We prove that
dim(y) < dim(T):

(N+d+p>/<N+p>__N+d+pN+d+p—1”.N+d+1
p p ~ N+p N+p-1 N+1

N+d+1\P
< _— .
- N+1

Itis enough to see thafi8H)P < 1+ Lo This inequdity follows from

1
1 \» 1 11 /1 1 \?
(1+m—1> M omon T 2p (6_1> (m—l)

1+ —>1+——.
g +2p(m—1)> +N+1

If we work in a noetherian domain (not nessarily commutative), we can always define
the rank of a finite module as irStaford (1978. Given a square ntax in a Poincaré—
Birkhoff-Witt algebra we say that it ison-singularif it has maximal rank. In this case we
can obtain a left quasi-inverse with the previous lemma:

Lemma 4. Given a mx m non-singular matrix B over a PBW algebra S ad imamma3,
it has a left quasi-inverse matrix G over S, such teg(G) < N.

Proof. There is no vectob # 0 in R™ suchthatbB = 0. If we consider the matrig @
obtained fromB by delding itsi-th column, usind_emma 3we obtain a vectog; # 0
suchthatgiB® = 0 anddegg;) < N, so thematix G which hasg; as itsi-th row, for
i =1,...,m,is aleftquasi-inverse oB.

Lemma 5. Given a system of linear equationger a PBW algebra defined by an ms
matrix A of rank r with its elementdega;j) < d, we can alays construct a matrix C
that defines an equivalent system, and such that

al 0

C1 0 - *
CA= A= : 1
<C2 E) 0 & @)

\ o [o)

where E is the identity matrix.

Proof. C; is the left quasi-invese of the submatrix of A of maximal rankr (after
reordering the rows or columns &fif necessary. C, is constructed with the requirement
on the left lower corner to be zero. The right lower corner is zero by the definition of
rank.
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Thanks to this lemma, we can assume that our system is equivalent to a system in
diagonal form:

aVk+ Y agVi=bg, 1<k<r, degay,dega), deghk) <2pmd

r+l<l<s

Once the system is in diagonal form, we need to normalize it. To do this, we construct
some syzyg@s, applying_-emma 3to the submatxi of the firstr columns and the column
| > r. There alwgs existh®, h® ... h" suchthat

ah + a h® =0, l<k<r degh®), degh®) < 4p?m?d.
The result that gives the normalization in the Weyl algebra is the following one:

Lemma6 (Grigoriev(1990, Lemma 4. Given g,...,0t € D a fanily of elements,
there is a nonsingular linear transformation aZn-dimensional space with basis
X1, ..., Xn, 01, . .., on under which

1,1 1,2
X — Iy = Zm( )XJ+ZV|( 95;

2,1 2,2
&> Ty — ny ) +Zy,< o

such that the follwing relaions hold:
FXiFBi:FBiFXi_l; FXiFXJ‘:FXJ‘FXi;
FaipajZFBJ'FBi; FBiFXJZFXjFBia |7éJ,

and if we denote by the transfemed of g with the indicated linear transformation, we
havely = 9599 4 I

Remark 7. The main fact in the proof ofemma 6is that the matrices of the linear
transformations defined by the relations in the Weyl algebra are a transitive group. Let
us see why we cannot ensure the existence of such a normalization lemma for every PBW
algebra.

If we consider the PBW algebra defined by Briangcon and Maisonobg forl, that is

R=C[Sstvxlv"'7analv"'san]s

a gereral linear transformation such as the one appearihgimma 6has the form

1 2

s o Is= as+pit +Xy %+ X%
t,1 1,2

t — It = s+t +X]_ 1)"(' )Xj"‘Zj—l)’j(' 9
1 1 11 12

X — Iy = ot( )S+,3( )t +Zj 1yl( )XJ+ZJ 1V|( )3]

2 2 2,1 2,2
6 — Iy = oPs+ 2t + X1 n4P% + X1 G %%
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and it has to verify the following relations:
D Isly = s+ 1t Q) Isly, = IxIs; Q) Isly = Iy[5;
(4)FtFXi = FXiFt; (5)FtFai = FaiFt; (G)FXiFBi = FBiFXi -1
(7)FXiFXj = FXjFXi§ (B)FaiFaj F31F3i§ (g)FXiFBJ‘ = FBJ'FXi'

From relation {), we obtaina; = yj(t’l) = yj(t’z) = 0 forall j, soIt = Bot. The

transformation must be nonsingular, so we must hgwe# 0, and again using (1) we
deduce thatr; = 1. Using (4), we obtain thaii(l) = 0 for alli. This, bgether vith (5),
implies thatai(z) =Oforalli.

From relation (2) {'s commutes with/y,) we have,Bi(l) = 0, and relation (3) gives
ﬁi(z) = 0. Due to relations (6) to (9) (betwedh; andl’;) we hawe that he submatrix

(1,1) 1,2)
Y Y

21 (22
Y Y
verifies therelations ofLemma 6 and in adition, from the relations with, it verifies

s, (1,2 _ (5,2 (1,1 s,1). (2,2 _ (5,2 (2,1)
ZVi Yii —ZVi Yii Zyi Yii _Zyi Yii -

Soit is clear that we cannot normalize with respect to the variabld® ifhus we can
not repeat the second step of the process tdsvargeneral PBW algedinthe way that it
appears irGrigoriev(1990.

It is an open problem to obtain a general bound for the solutions of a general linear
system over any PBW algebra or, at least, to give such a boungfave give ip on this
general problem at this point: with the aim of obtaining a bound for the complexity of the
annihilating ideal off S, we will treat only theparticular case of one equation of the type
prodwced by the definition of the idedlin Section 2.1or I” in Section 2.2In both cases
we want to measure the complexity of computing Grébner bases (in different rings) and
we will do this by considering theqeiivalent problem of computing th&yzygieof the
generators of our respective ideals.

Remark 8. Inthe OT algorithm the calculations are computed in a Weyl algebra-6#
variables, or more precisely in a commutative polynomial ring with- 3p, (X, u, v, t)
commutative variables extended with- p, (dx, d;) “differential” variables. Let us denote
this algebra byA. The compleity of computing the annihilating ideal df is bounded by
the complexity of computing a Grébner basisi

Recall that the complexity in the Weyl adgra is given by the following theorem:

Theorem 9 (Theorem 6Grigoriev(1990). Given a solvable systein the Weyhlgebra
Dn,

D ugVi=wk,  l<k=m

1<l<s

with dequg 1), deqwg) < d. There gists a solution witldeg'Vj) < (md)ZO(m.
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As we sdd before, in the Briangon—Maisonobe rilgywe cannot construct a similar
algorithm to bound the degree of a solution for a system in general. But in our very special
case, our problem is equivalent to computing the solutions of the equation

of;
(st + fit)) Vi + -+ (sp + fptp)Vp + al+za—xltj Vo1 + -
j

af;
9 —tj | Vp+n = 0.
(e 2 e
To simplify notation we writethe preceding equation s, Qi = 0.

Theorem 10. Given f = (fy,..., fp), the computation of the annihilating ideal of f
in the Briangon—Maisonobe algebra R= D[si, ..., Sp,t1,...,tp] can be reduced to
the conputation of the syzygies of the generatérs+ Zj %tj in the Weyl algebra

Proof. Trying to repeat Grigoriev’s ideas, the first step is the reduction of the system to
one in diagonal form. Due to the fact that we have only one equation, this step is done.

Then, we need to computé'), h® for2 <1 < n+ p suchthat

(s1+ fitph? + (s2+ fat))h@ —0
s+ fitoh” + (sp+ fptph(® -0

1 af;
s+ fth{P™ + @1+ X 52tHhPHD = 0

' af|
(s + fithPP™ + @+ X HLtHhPH = 0,
It is easy to see that

[s + fiti,sj + fjtj]=0

af afi af
[3 + fiti, 9 +Za—;t|] =5 (Z a—t|> + fitidj — 9 fiti — (Z a—)('ﬁ) S
X] j

of; of; ofi
=1 s — +ti fj0; —tj fj9; —tj —1 0
|S ZIS +| j i 1i0j |aJ Zaxj IS =

and we obtaim® = s; + fyt; foralll > 2.
These are the elements we need to normalize, and they are almost in normal form with
respect tothe variables;. This form is required to make the division of the solutions
Vi, | > 2, by h® with respect to a lexicographical ordering with leading tesim\We
obtain a remainde¥, such tfat deg M) < deg; (h®) = 1, sos; does not appear .
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SoVi = hOV, + W, and alding the reIatiorthgl) + Qih® = 0 multiplied by —V; to our
initial equation, we obtain

Q1\71 + Q2\72 + -4 Qn+p\7n+p = O

with Q;i, Vi withouts; fori > 2, soV4 = 0, whereVy = V; — h(lz)\:/z —_—— h(l'r”“p)\:/mrp
We have tlen the new equation

Q2Va2+ -+ QnipVnyp =0

in a Briangon—Maisonobe algeb@s,, ..., sp, t1, ..., tp, X, d].
Repeating th@rocess foiQy, .. ., Qp, we reduce our problem to solving

afj afj
(al+2j:a—xltj>vp+1+m+ (an+2j:a—xnt,~)vp+n =0
in the Weyl algebra[ty, .. ., tp].

Remark 11. As a ®nsequence dfheorem 10the bound for the complexity of computing

the annihilating ideal off in R is bounded by the complexity of computing a Grébner
basis in a Weyl algebra with{Bvariables fewethat the one required by the OT method.
Although the complexity of computing these objects in any case is known to be double
exponential (with respect to the number of variables and the total degree of the generators
of the ideal) byTheorem 9it is clear that the reduction off8variables in he BM method

is a significant dvantage, both theoretically and in practice, as is shown in examples (see
CastreUchg 2004.
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4. Appendix. Experimental data

In Tables £3 we give some exaples for which the superiority of the Briangon—
Maisonobe method is clear. They have been téstisihg SNGULAR::PLURAL 2.1 (see
Greuel et al.(2003) on a PC Pentium IV, 1 Gb RAM and 3.06 GHz running under
WindowsXP.

SINGULAR::PLURAL 2.1 is a system for non-commutative general purposes, so the
calculations in our algebras are not supposed to be optimal. We present the data only
for the sake of comparing the two methods in the same system. In the case of the
Briangon and Maisonob@002 mehod we have used a pure lexicographical ordering,
while for the Oaku and Takayam#1999 method we have used typical elimination
ordering. These are the orderingih the best results for each case.

3The CPUtimes must be considered as approximations: as is explained inIth@USAR::PLURAL 2.1
Manual, the commantliimer is not absolutely reliable due to the sharttings of the Windows operating system.
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Table 1
CPU times for the computation &fnn S
f Briancon—Maisonobe method = Oaku—Takayama method
x34+xy2+272  <001s 0.39s
x*+y3+722  <001s 0.39s
yx3+y3+22  0.06s 3.97s
x3 4+ y2 4 72 <0.01s 0.02s
x5 4+ y2 4 72 <0.01s 4.66 s
x"+y2+72  <001s 298.56 s
x*+y>+xy* 0565 E(>12h)
Table 2
CPU times for the computation énn flSl f252
f1 fa Briangon—Maisonobe method  Oaku-Takayama method
x3+y2  x2+y3 072s 6363.97 s
x>+y3  x34+y® 353s E(>6h)
x"+y>  x®+y’ 1184s E(>6h)
x3+y2  xz+y  <00ls 9.73s
x5+y2  xz+y  <00ls 1568.59 s
x4yS  xz+y  3s E(>6h)
Table 3 s
CPU times for the computation @fn ! - - - f,P
f1 fo fa Briangon—Maisonobe method = Oaku-Takayama method
X+y x—-y x4y <001 29.46 s
X+y x2+y x—t—y2 2.64s E
x+y x2+y x2+y3 116.24s E
X+y X2+y x3+y? 172841s E

References

Bahloul, R., 2001. Algorithm for computing Bernsteffato ideals associated with a polynomial mapping.
J. Symbolic Comput. 32, 643-662.

Bahloul, R., 2005. Démonstration constructive de I'exige de polyndmes de Beresi-Sato pour plusieurs
fonctions analytigues. Compositio Math. 141 (1), 175-191.

Bernstein, I.N., 1972. The analytic continuation of gehieed functions with respect to a parameter. Funct. Anal.
6, 273-285.

Bjork, J.E., 1973. Dimensions over algebrdglidferential operators (preprint).

Briancon, J., Maisonobe, Ph., 2002. Remarques gié&dl de Bernstein associé a des polyndmes. PUMA, 650
(preprint).

Budur, N., Saito, M., 2003. Multiplier ideal¥|-filtration and spectrungrXiv:math.AG/0305118

Bueso, J.L., Goméz-Torrecillas, J., Verschoren, 2004. Algorithmic methods in non-commutative algebra.
Applications to quantum groups. In: Mathematicabdélling. Theory and Applications, vol. 17. Kluwer
Academic Publishers.


http://arxiv.org//arxiv:arXiv:math.AG/0305118

1086 J. Gago-Vargas et al. / Journal of Symbolic Computation 40 (2005) 1076—-1086

Castro-Jiménez, F.J., Ucha-Enriquez, J.M., 2004. @natimputation of Bernstein—Sato ideals. J. Symbolic
Comput. 37 (5), 629-639.

Greuel, G.-M., Levandovskyy, V., Schénemann, H., 2008uG®LAR::PLURAL 2.1. A Conputer Algebra
System for Noncommutative Polynomial AlgebraCentre for Computer Algebra, University of
Kaiserslautern, 200&ittp://www.singular.uni-kl.de/plural

Grigoriev, D., 1991. Complexity of solving systems ofdar equations over the rings of differential operators.
In: Effective Methods in Algebraic Geometry. Castigicello, 1990. In: Progr. Math., vol. 94. Birkhauser,
Boston, MA, pp. 195-202.

Hamm, H.A., 1977. Remarks on asymptotic integrals,pblnomial of I.N. Bernstein and the Picard-Lefschetz
monodromy. In: Several Complex Variables (Procnfps. Pure Math. Vol. XXX, Part 1, Williams Coll.,
Williamstown, MA, 1975). Amer. Math. Soc., Providence, RI, pp. 31-35.

Lichtin, B., 1988. Generalized Dirichlet segiend b-functions. Compositio Math. 65, 81-120.

Malgrange, B., 1975. Le polyndme de Bernstein d’'une sigél isolée. In: Fourier Integral Operators and
Patial Differential Equations. Catlg. Internat., Univ. Nice, Nice, 1974. In: Lecture Notes in Math., vol. 459.
Springer-Verlag, New York, pp. 98-119.

Maynadier, H., 1996. Equations fontiories pour une intersection complajaasi-homogéne a singularité isolée
et un germe semi-quasi-homogene. These, Nice-sophia Antipolis.

Mayr, E.W., Meyer, A.R., 1982. The complexity of the word problems for commutative semigroups and
polynomial ideals. Adv. Math. 46 (3), 305-329.

Oaku, T., 1997. An algorithm of computing b-functions. Duke Math. J. 87, 115-132.

Oaku, T., Takayama, N., 1999. An algorithm for de Rham cohomology groups of the complement of an affine
variety via D-module computationl. Pure Appl. Algebra 139, 201-233.

Sabbah, C., 1987a. Proximité évanescente |. La struptlegre d’'un D-Module. Apendice en collaboration avec
F.J.Castro Jiménez. Compositio Math. 62, 283-328.

Sabbah, C., 1987b. Proximité évanescente |l. Equationstibnelles pour plusiesrfonctions analytiques.
Compositio Math. 64, 213-241.

Seidenberg, A., 1974. Constructions igetra. Trans. Amer. Math. Soc. 197, 273-313.

Stafford, J.T., 1978. Module structure of Wejgebras. J. London Math. Soc. (2) 18 (3), 429-442.


http://www.singular.uni-kl.de/plural

	Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials
	Introduction
	Preliminaries
	Briançon--Maisonobe method
	Oaku--Takayama method

	Complexity
	Acknowledgment
	Appendix. Experimental data
	References


