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Abstract

A procedure has been considered for analyzing the evolution with time of the
volume fraction transformed and for calculating the kinetic parameters at non-
isothermal reactions in materials involving formation and growth of nuclei. By
assuming that the nucleation process takes place early in the transformation and
the nucleation frequency is zero thereafter, “site saturation”, a general expression
of the fraction transformed as a function of time has been obtained in isothermal
crystallization processes. The application of the transformation rate to the non-
isothermal processes has been carried out under the restriction that the quoted
rate depends only on the fraction transformed and the temperature. Under this
condition, the kinetic parameters have been deduced by using the techniques of
data analysis of single-scan and multiple-scan. The theoretical method analyzed
has been applied to the glass-crystal transformation kinetics of the semiconducting
Sb0.20As0.32Se0.48 alloy. The kinetic parameters obtained according to both
techniques differ by only about 2.4%, which confirms the reliability and accuracy
of the single-scan technique when calculating the above-mentioned parameters in
non-isothermal transformation processes.

1. Introduction

The investigation of non-crystalline materials is a very active
field since it promises to yield new and very good properties,
offering a new field for applications. It has long been recognized
that many technologically important properties of materials, such
as their mechanical strength and toughness, creep and corrosion
resistance, and magnetic and superconducting properties are
essentially controlled by the presence of precipitated particles of
a second phase [1, 2]. An important part of recent developments
corresponds to nanostructured materials obtained by controlled
crystallization, either by annealing the amorphous single phase
or by decreasing the cooling rate from the liquid of different
systems. Typically, in these processes precipitate crystalline
particles arise embedded in an amorphous matrix. Differential
calorimetry has become quite effective in studying the nature of
the quoted structures and their stability. Accordingly, a strong
theoretical and practical interest in the application of isothermal
and non-isothermal experimental analysis techniques to the study
of phase transformations has been developed in the last decades.
The non-isothermal thermoanalytical techniques have become
particularly prevalent for the investigation of the processes of
nucleation and growth that occur during transformation of the
metastable phases in a glassy alloy as it is heated. These
techniques provide rapid information on such parameters as glass
transition temperature, transformation enthalpy and activation
energy over a wide range of temperatures [3]. In addition, the
high thermal conductivity as well as the temperature at which
transformation occurs in most amorphous alloys make these
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transformations particularly suited to analysis in a Differential
Scanning Calorimeter (DSC).

The study of crystallization kinetics in amorphous materials by
DSC techniques has been widely discussed in the literature [4, 5].
There is a large variety of mathematical treatments mostly based
on the Johnson-Mehl-Avrami (JMA) transformation rate equation
[6–9]. In this work the conditions of applicability of the JMA
transformation rate equation to non-isothermal crystallization
are established. The kinetic parameters of the above-mentioned
crystallization are deduced by using the techniques of data
analysis of single-scan and multiple-scan. Finally, the present
paper applies the quoted techniques to the analysis of the
crystallization kinetics of the glassy alloy Sb0.20 As0.32 Se0.48 and
the values of the kinetic parameters thus obtained differ by about
2.4%. This fact shows the reliability and accuracy of the single-
scan technique for the calculation of the quoted parameters from
a continuous heating treatment.

2. Theory

The theoretical basis for interpreting DTA or DSC results is
provided by the formal theory of transformation kinetics [6–11].
In its basic form this theory describes the evolution with time, t,
of the volume fraction crystallized, x, in terms of nucleation
frequency per unit volume, Iv, and crystal growth rate, u, as

x = 1 − exp

{
−g

∫ t

0
Iv(�)

[∫ t

�
u(t′)dt′

]m

d�

}
(1)

when the crystal growth rate is isotropic, an assumption which
is in agreement with the experimental evidence, since in many
transformations the reaction product grows approximately as
spherical nodules [12]. Moreover, m is an exponent related
to the dimensionality of the crystal growth and the mode of
transformation, g being a geometric factor, which depends on
the dimensionality and shape of the crystal growth, and therefore,
its dimension equation can be expressed as

[g] = [L]3−m, [L] is the length

By assuming that the nucleation process takes place early in the
transformation and the nucleation frequency is zero thereafter,
the case referred to as “site saturation” by Cahn [13, 14], eq. (1)
becomes

x = 1 − exp

[
−gN

(∫ t

0
u(t′) dt′

)m]
= 1 − exp(−gNI1

n) (2)

where N is the number of pre-existing nuclei per unit volume,
n = m, and the growth integral is evaluated between 0 and t, since
there is no nucleation period, � = 0.
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Although, in general, the temperature dependence of the crystal
growth rate is not Arrhenian when a broad range of temperature
is considered [15], however, over a sufficiently limited range
of temperature (such as the range of crystallization peaks in
DSC experiments), u may be described in a zero-order approxi-
mation by

u ≈ u0 exp(−E/RT ) (3)

where E is the effective activation energy for crystal growth and
R is the ideal gas constant.

Taking the derivative of eq. (2) with respect to time in an
isothermal process, substituting eq. (3) in the resulting expression,
and eliminating the exponential function, exp(−gNI1

n), between
this expression and the quoted eq. (2), the crystallization rate is
obtained as
dx

dt
= n(gN)1/nu0[exp(−E/RT )](1 − x)

[ − ln(1 − x)(n−1)/n
]

= nK(1 − x)[− ln(1 − x)](n−1)/n (4)

K being the reaction rate constant, which dimension equation is
[K] = [T−1].

Equation (4) is sometimes referred to as the JMA transforma-
tion rate equation.

2.1. Applicability of the Johnson-Mehl-Avrami transformation
rate equation under non-isothermal conditions

It was suggested by Henderson [16] in a notable paper that
eq. (4) as developed by JMA is based on the following important
assumptions:

1. isothermal regime;
2. spatially random nucleation;
3. growth rate of the new phase dependent only on temperature

and not on time.

It has been asserted by Christian [12] that eq. (4) may be used
as an approximation for the early stages of diffusion controlled
growth transformation processes for which assumption 3 may not
rigorously hold.

In the past decades eq. (4) has been applied without qualifica-
tion to the analysis of non-isothermal phase transformations
[17–19]. However, according to the literature [20], the above-
mentioned equation can be rigorously applied under non-
isothermal regime if it can be shown that the transformation
rate depends only on the state variables x and T . Under this
restriction an example of a system which allows the non-
isothermal application of eq. (4) is one in which the nucleation
takes place early in the transformation and the nucleation rate
is zero thereafter. In addition, in cases as above-mentioned, the
reaction rate constant, K, could demonstrate a simple Arrhenius
behaviour, K = K0 exp(−E/RTa), or a Vogel-Fulcher, K =
K0exp[−E/R(Ta − T0)], with respect to temperature during the
crystallization process. In these expressions of the rate constant,
K0 is the frequency factor, E is the overall effective activation
energy, T0 is a constant temperature, and Ta is the absolute
temperature.

The analysis of crystallization kinetics is developed in terms
of a generalized temperature parameter, T . The generalized
formalism can be applied directly to either Arrhenius behaviour
or Vogel-Fulcher behaviour by substituting Ta or Ta − T0

for T , respectively. Considering the generalized temperature
dependence for K, the kinetic parameters associated with the
transformation process are E, n and K0. The techniques of data

analysis to obtain the quoted parameters can be divided into
single-scan analysis and multiple-scan analysis techniques.

2.1.1. Single-scan technique. In the derivation of relationships for
calculating kinetic parameters of the glass-crystal transformation
by using a non-isothermal regime, a reaction rate independent
of the thermal history is necessary. Thus, the reaction rate is
expressed as the product of two separable functions of absolute
temperature and the volume fraction transformed. In these
conditions eq. (4) can be written

dx

dt
= nKf (x) = nK0f (x)[exp(−E/RT )]. (5)

Bearing in mind that the heating rate is � = dT/dt, eq. (5) must
be integrated by separation of variables and one obtains∫ x

0

dx′

(1 − x′) [− ln(1 − x′)](n−1)/n
= nK0

�

∫ T

T0

e−E/RT ′
dT ′ (6)

and replacing –ln(1 − x′) with z′ and E/RT ′ with y′, the integra-
tion of eq. (6) yields

[−ln (1 − x)]1/n = K0E

�R

∫ ∞

y

e−y′
y′−2 dy′ = K0E

�R
I (7)

if it is assumed that T0 � T (T0 is the initial temperature of the
process), so that y0 can be taken as infinity. This assumption is
justifiable for any heating treatment which begins at a temperature
where nucleation and crystal growth are negligible, i.e., below
glass transition temperature for most glass-forming systems [15].

The integral I is not integrable in closed form and the literature
[21, 22] gives several series expansions for the quoted integral.
Vázquez et al. [23] have developed a method to evaluate it by an
alternating series, resulting in

I =
[
−e−y′

y′−2
∞∑

k = 0

(−1)k(k + 1)!

y′k

]∞

y

where it is possible to use only the two first terms, without making
any appreciable error and to obtain

I =
(

RT

E

)2 (
1 − 2RT

E

)
exp(−E/RT ) (8)

Substituting this expression of I into eq. (7), and taking the
logarithm of the resulting expression gives

ln [−ln (1 − x)] − 2n ln T = − nE

RT
+ n ln

K0R

�E
(9)

if it is assumed that the term 2RT/E in eq. (8) is negligible
in comparison to unity, since in most crystallization reactions
E/RT � 1(usually E/RT ≥ 25) [24]. When n is known, a plot of
ln[−ln(1 − x)] − 2n lnT versus 1/T yields a straight line whose
slope provides a value of the product nE. However, according
to the literature [25] over a temperature range of 100 K the
contribution of the term 2n lnT can be ignored without causing
a substantial error in the calculated slope.

On the other hand, taking the logarithm of eq. (5) results

ln

(
dx

dt

)
= ln[f (x)] + ln(nK0) − E

RT
. (10)

Hence when ln(dx/dt) is plotted versus 1/T a straight line is
obtained, whose slope allows for the calculation of the activation
energy, E, of the glass-crystal transformation, if it is assumed
that for 0.25 < x < 0.75 the function ln[f (x)] may be considered
constant. Figure 1 shows a plot of ln[f (x)] versus x for n = 2, 3
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Fig. 1. Plot of ln[f (x)] = ln{(1 − x)[−ln(1 − x)](n−1)/n} versus x for n = 2,
3, and 4.

and 4. It should be noted that for small values of x and for values
close to 1, the function ln[f (x)] changes rapidly with x,whereas
for the above quoted interval, ln[f (x)] holds practically constant.
The determination of nE and E makes it possible to directly obtain
the parameter n.

For those systems in which K shows Vogel-Fulcher behaviour
with respect to temperature a determination of T0 must also be
made, according to Henderson [16]. In this case the effective
activation energy, Eeff (Ta), can be obtained by the relationship

d[ln(dx/dt)]

dT −1
a

= Eeff (Ta)

R
. (11)

The derivative of eq. (10) with respect to T −1
a leads to the

expression

d[ln(dx/dt)]

dT −1
a

= −E

R

(
Ta

Ta − T0

)2

− nK0
Ta

2

�

d[f (x)]

dx

× exp[−E/R(Ta − T0)].

Considering the negligible exponential term, and equating the
resulting expression with eq. (11), yields

Eeff (Ta)[(Ta − T0)/Ta]2 ≈ −E = const

and measuring Eeff (Ta) at two widely spaced temperatures Ta1

and Ta2 the value of T0 can be determined as

T0 = (ATa1 − Ta2) (A − 1)−1 (12)

with A = Ta2T
−1
a1 {Eeff (Ta1)[Eeff (Ta2)]−1}1/2.

This value of T0 substituted in T should produce a linear behaviour
of eqs. (9) and (10) for the determination of nE and E, respectively.

Finally, after E, n and T0 have been determined, the frequency
factor, K0, can be obtained from the maximum transformation

rate, which is found by making d2x/dt2 = 0, and according to
eqs. (4) and (5) one obtains

�E

RTp
2

= nKp

{
[− ln(1 − xp)](n−1)/n − n − 1

n
[− ln(1 − xp)]−1/n

}
(13)

where the subscript p denotes the quantity values corresponding
to the maximum transformation rate. By using eqs. (7) and (8) and
assuming again that the term 2RT p/E � 1 into eq. (13) results
in that Kp = �E(RT p

2)−1 and −ln(1 − xp) = 1 or xp = 0.63,
independent of � or n. Accordingly, from eq. (5) results in the
following expression

K0 = (dx/dt)|p[0.37n exp(−E/RTp)]−1 (14)

for the frequency factor.

2.1.2. Multiple-scan technique. The single-scan analysis techni-
ques outlined above is predicated on a detailed knowledge of
the functional dependence of the transformation rate, dx/dt, on
the fraction transformed, x, and the generalized temperature, T .
The multiple-scan rate analysis techniques do not depend on
a specific knowledge of the dependence of dx/dt on x. The
procedure requires the characterization of the transformation by
using several scan rates. When this procedure is applied to the
case of a JMA transformation rate equation, the use of eq. (2) for
the treatment of non-isothermal experiments is interesting. The
maximum transformation rate is found making d2x/dt2 = 0, thus
obtaining the relationship

nCp (I1
n)|p = �E (I1)|p

(
RTp

2
)−1 + (n − 1) up (15)

where Cp = gNup, and its dimension equation can be expressed as

[Cp] = [L]1−n[T]−1.

According to eqs. (2), (6) and (7) one obtains

(I1)|p = u0EIp

�R
= u0E

�R

∫ ∞

yp

e−yy−2 dy

an expression that bearing in mind eq. (8) becomes in the
relationship

(I1)|p = u0R

�E
Tp

2

(
1 − 2RTp

E

)
exp(−E/RTp) (16)

that when it is inserted into eq. (15) results in (I1)|p =
(gN)−1/n(1 − 2RTp/nE)1/n. When both expressions for (I1)|p are
equated, one obtains a relationship whose logarithmic form can
be written as

ln(Tp
2/�) + ln(K0R/E) − E/RTp ≈ (2RTp/E)(1 − n−2) (17)

where the function ln(1 − v) with v = 2RT p/nE or v = 2RT p/E

is expanded as a series and has been taken as only the first term
of itself.

Note that, for most crystallization reactions, the right hand
side (RHS) of eq. (17) is generally negligible in comparison to
the individual terms on the left-hand side for common heating
rates (≤100 K min−1), thus for n > 1 and E/RT p > 25 the error
introduced in the value of E/R is less than 1%. Equation (17)
serves to determine the activation energy, E, and the frequency
factor, K0, from the slope and intercept, respectively, of the
ln(Tp

2/�) versus 1/Tp plot.
Finally, it should be noted that eq. (17) with RHS = 0

is obtained considering that 2RT p/E � 1, according to the
literature [24], and therefore, (I1)|p = (gN)−1/n. Thus, taking the
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derivative of eq. (2) with respect to time and considering eq. (16)
permits us to obtain

n = dx

dt

∣∣∣∣
p

RTp
2 (0.37�E)−1 (18)

which makes it possible to calculate the kinetic exponent n in a set
of exotherms taken at different heating rates and the corresponding
mean value represents the most probable value of the kinetic
exponent of the glass-crystal transformation.

3. Experimental details

The semiconducting Sb0.20As0.32Se0.48 glassy alloy was made in
bulk form, from components with 99.999% purity, which were
pulverized to less than 64�m, mixed in adequate proportions, and
introduced into a quartz ampoule (6 mm diameter). The content
of the ampoule (7 g total) was sealed at a pressure of 10−2 Pa
with an oxyacetylene burner. The quoted ampoule was put into a
furnace at 1223 K for 24 h, turning at 1/3 rpm, in order to ensure
the homogeneity of the molten material. The capsule was then
immersed in a receptacle containing water in order to solidify the
material quickly, avoiding the crystallization of the compound.
The capsule containing the sample was then put into a mixture
of hydrofluoride acid and hydrogen peroxide in order to corrode
the quartz and make it easier to extract the alloy. The glassy
state of the material was confirmed by a diffractometric X-ray
scan, in a Siemens D500 diffractometer, showing an absence
of peaks, which are characteristic of crystalline phases. The
homogeneity and composition of the sample was verified through
Scanning Electron Microscopy (SEM) in a Jeol, scanning
microscope JSM-820. The calorimetric measurements were
carried out in a Perkin Elmer DSC7 differential scanning
calorimeter with an accuracy of ±0.1 K. A constant 60 ml min−1

flow of nitrogen was maintained in order to provide a constant
thermal blanket within the DSC cell, thus eliminating thermal
gradients and ensuring the validity of the applied calibration
standard from sample to sample. Moreover, the nitrogen purge
allows to expel the gases emitted by the reaction, which are highly
corrosive to the sensory equipment installed in the DSC furnace.
The calorimeter was calibrated for each heating rate, using the
well-known melting temperatures and melting enthalpies of high
purity zinc and indium supplied with the instrument. The analyzed
samples, were pulverized (particle size around 40�m), crimped
into aluminium pans, and their masses were kept about 20 mg. An
empty aluminium pan was used as reference. The crystallization
experiments were carried out through continuous heating at rates,
�, of 1, 2, 4, 8, 16, 32 and 64 K min−1. The glass transition
temperature was considered as a temperature corresponding to
the inflection point of the lambda-like trace on the DSC scan, as
shown in Fig. 2. Moreover, it should be noted that the transformed
fraction, x, at any temperature, T , is given as x = AT/A, where A

is the total area of the exotherm between the temperature Ti, where
the crystallization just begins and the temperature Tf , where the
crystallization is completed and AT is the area between the initial
temperature and a generic temperature, see Fig. 2.

4. Results and discussion

The typical DSC trace of Sb0.20As0.32Se0.48 chalcogenide glass
obtained at a heating rate of 8 K min−1and plotted in Fig. 2
make it possible to determine the glass transition temperature,
Tg = 456.9 K, the extrapolated onset crystallization temperature,

Fig. 2. Typical DSC trace of Sb0.20As0.32Se0.48 glassy alloy at a heating rate of
� = 8 Kmin−1. The hatched area shows AT, the area between Ti and T .

Tc = 495.8 K, and the peak temperature of crystallization Tp =
507.1 K, of the above mentioned chalcogenide glass. This
DSC trace shows the typical behaviour of a glass-crystal
transformation. The thermograms for the different heating rates,
�, quoted in Section 3, show values Tg, Tc and Tp which increase
with increasing �, a property which has been widely quoted in the
literature [24].

4.1. Crystallization

The kinetic analysis of the crystallization reactions is related with
the knowledge of the reaction rate constant as a function of the
temperature. In this work it is assumed that the above-mentioned
constant shows an Arrhenius-type temperature dependence. In
order for this assumption to hold, according to the literature [15],
one of the following two sets of conditions should apply:

(i) The crystal growth rate, u, has an Arrhenian temperature
dependence; and over the temperature range where the ther-
moanalytical measurements are carried out, the nucleation
frequency is negligible (i.e., the condition of the “site
saturation”).

(ii) Both the crystal growth and the nucleation frequency have
Arrhenian temperature dependences.

In the present work the first condition is assumed in order
to apply the JMA equation under a regime of continuous
heating. From this point of view, the crystallization kinetics
of the Sb0.20As0.32Se0.48 alloy has been analyzed by using the
calorimetric techniques of single-scan and multiple-scan.

With the aim of analyzing the above-mentioned kinetics, the
variation intervals of the quantities described by the thermograms
for the different heating rates, quoted in Section 3 are obtained and
given in Table I, where Ti and Tp are the temperatures at which

Table I. The characteristic temperatures
and enthalpies of the crystallization
processes of alloy Sb0.20As0.32Se0.48.

Parameter Experimental value

Tg (K) 443.4– 464.6
Ti (K) 471.4–507.8
Tp (K) 491.1–536.1
�T (K) 27.7–63.6
�H (mcal mg−1) 11.5–12.9
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Fig. 3. Crystallization rate versus temperature of the exothermal peaks, at different
heating rates.

crystallization begins and that corresponding to the maximum
crystallization rate, respectively, and �T is the width of the peak.
The crystallization enthalpy, �H , is also determined for each
heating rate.

The ratio between the ordinates and the total area of the
peak gives the corresponding crystallization rates, which makes it
possible to build the curves of the exothermal peaks represented
as in Fig. 3. It may be observed that the (dx/dt)|p values increase
in the same proportion that the heating rate, a property which has
been widely discussed in the literature [26].

The single-scan technique was applied to several sets of
experimental data (Table II) obtained for all heating rates, quoted
in Section 3, and the results for nE from eq. (9), E from eq.
(10), n derived therefrom and K0 are included in Table II. The
mean values for these parameters are: 〈E〉 = 45.8 kcal mol−1,
〈n〉 = 1.73 and 〈K0〉 = 3.66 × 1017 s−1. To illustrate the above-
mentioned technique, Fig. 4 shows the plots of ln[−ln(1 − x)]
versus 1/T for � = 8 K min−1, together with the corresponding
straight regression line, while the plots of ln(dx/dt) versus 1/T

with the straight regression line carried out, are shown in Fig. 5.
On the other hand, the multiple-scan technique, which allows

E to be quickly evaluated, has been used to analyze the

Fig. 4. Variation of ln[−ln(1 − x)] with 1/T for heating rate of 8 Kmin−1.

Fig. 5. Experimental plots of ln(dx/dt) versus 1/T and straight regression line of
the Sb0.20As0.32Se0.48 alloy.

crystallization kinetics of the semiconducting Sb0.20As0.32Se0.48

alloy. The plots of ln(Tp
2/�) versus 1/Tp at each heating rate, and

the straight regression line carried out are shown in Fig. 6. The
results for E and K0 from eq. (17) are also given in Table II.

By using the values of the maximum crystallization rates,
(dx/dt)|p, and the temperatures, Tp, which correspond to the
quoted maximum values, given in Table II, it is possible to
obtain, through eq. (18), the kinetic exponent of the process
corresponding to each of experimental heating rates. The values
of the n parameter are also given in above-mentioned Table II.
Bearing in mind that the calorimetric analysis is an indirect
method which makes it possible to obtain mean values for

Table II. Kinetic parameters found for the crystallization Sb0.20As0.32Se0.48 alloy by using the single-scan and multiple-scan techniques

single-scan multiple-scan

interval
� nE E 103(dx/dt)|p E

Kmin−1 T (K) x 103(dx/dt)(s−1) kcal mol−1 kcal mol−1 n K0(s−1) Tp(K) (s−1) n kcal mol−1 K0(s−1)

1 484.1–487.9 0.2337–0.3923 0.80–1.15 77.9 45.8 1.70 3.81×1017 491.2 1.18 2.05
2 491.3–495.0 0.2514–0.4067 1.34–1.89 77.5 45.3 1.71 1.93×1017 495.8 1.96 1.73
4 497.5–499.1 0.2654–0.3276 3.20–3.70 78.3 45.0 1.74 1.87×1017 499.8 3.72 1.67
8 505.5–508.7 0.2396–0.3636 4.71–6.30 80.5 46.8 1.72 8.09×1017 508.6 6.32 1.47 45.1 1.83×1017

16 513.0–516.2 0.2368–0.3541 10.21–13.51 79.6 46.3 1.72 4.89×1017 516.5 13.59 1.63
32 522.2–525.7 0.2475–0.3772 19.48–26.12 80.0 46.0 1.74 3.50×1017 526.0 26.22 1.63
64 530.9–535.9 0.1896–0.3443 34.09–50.76 79.3 45.3 1.75 1.53×1017 536.2 51.07 1.65
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Fig. 6. Plots of ln(Tp
2/�) versus 1/Tp of the analyzed material (� in Ks−1).

the parameters that control the kinetics of a reaction, the
corresponding mean value, 〈n〉 = 1.69, has been calculated.

With the aim of correctly analyzing the reliability of the
single-scan technique, when calculating kinetic parameters in
non-isothermal crystallization processes, the values of the above
parameters E, n and lnK0, calculated by means of the above-
mentioned technique, are compared with its values obtained
through the multiple-scan technique, Table II, finding that the
error between them for the less accurate parameter is less than
2.4%. This result is in agreement with the literature [19], where it
is shown that for (n − 1)/n = 0.6 in the range of 0.2 < x < 0.4
results in an error of 7% in the calculated slope E/R, an error
acceptable in most crystallization reactions.

Considering that the crystallization process of the studied
material is basically a growth of the pre-existing nuclei in the as-
quenched glass, from the value of the kinetic exponent, n = 1.73,
and according to theAvrami theory of crystal growth, it is possible
to state the fact that in the crystallization reaction mechanism
there is a diffusion-controlled growth, coherent with the basic
formalism used. According to the literature [27] the transformed
phase may exhibit in an initial growth of particles nucleated at
a constant rate, since the mean value of the kinetic exponent is
included in the interval 1.5–2.5.

For the unambiguous interpretation of n = 1.73 as a
consequence of a diffusion-controlled crystallization, it is recom-
mended to try to identify the possible phases that crystallize in the
material after the thermal treatment by means of adequate X-ray
diffraction measurements. The diffractograms for as-quenched
glass and for the material after the overall crystallization are
shown in Fig. 7. Trace (A) shows broad humps characteristic of the
amorphous state of the starting material. The diffractogram of the
transformed material suggests the presence of microcrystallites of
Sb2Se3, AsSe and As2Se3 indicated in the trace (B) with •, ◦ and
#, respectively, together with elemental crystalline Se, remaining
a residual amorphous matrix. The quoted phases Sb2Se3 andAsSe
crystallize in the orthorhombic and monoclinic systems [28] with
unit cells defined by a1 = 11.633 Å, b1 = 11.78 Å, c1 = 3.895 Å
and a2 = 9.527 Å, b2 = 13.86 Å, c2 = 6.69 Å, � = � = 90◦, � =
106.18◦, respectively.

5. Conclusions

The described theoretical procedure enables us to study the
evolution with time of the volume fraction transformed in

Fig. 7. (A) Difractogram of the amorphous Sb0.20As0.32Se0.48 alloy. (B)
Diffraction peaks of the alloy crystallized in DSC.

materials involving nucleation and crystal growth processes.
This method assumes that the nucleation process takes place
early in the transformation and the nucleation frequency is zero
thereafter, “site saturation”. By using this assumption a general
expression for the transformed fraction as a function of time in
bulk crystallization processes has been obtained. In the case of
isothermal transformation, the above-mentioned expression has
been transformed in an equation, which can be taken as a specific
case of the JMA transformation equation. The application of
this equation to non-isothermal transformations implies restrictive
conditions as it is the case of a transformation rate, which depends
only on the fraction transformed and the temperature. Under this
restriction the kinetic parameters have been deduced both for the
single-scan technique and for the multiple-scan technique, which
are applicable to constant scan rate DTA and DSC experiments
on materials which obey the JMA transformation rate equation.

The above-mentioned techniques have been applied to the
crystallization kinetics of the semiconducting Sb0.20As0.32Se0.48

alloy. The difference between the obtained values for the kinetic
parameters by means of both techniques is less than 2.4%. This
good agreement shows the reliability of the single-scan technique
for the calculation of kinetic parameters, mainly in the interval
(0.2–0.4) of the volume fraction crystallized is a fact in agreement
with the literature.

Acknowledgments

The authors are grateful to the Junta de Andalucia and the CICYT (Comisión
Interministerial de Ciencia y Tecnologı́a), project no. MAT 2001-3333 for their
financial support.

C© Physica Scripta 2005 Physica Scripta 72
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