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We study the concept of multivariate dispersion order, defined as the existence of
an expansion function that maps a random vector to another one, for multivariate
distributions with the same dependence structure+As a particular case,we can order
the multivariate t-distribution family in dispersion sense+ Finally,we use these results
in the problem of detection and characterization of influential observations in regres-
sion analysis+ This problem can often be used to compare two multivariate
t-distributions+

1. INTRODUCTION

Stochastic orderings arise in statistical decision theory in the comparison of exper-
iments and estimation problems ~see @17# !+ In particular, dispersion has been used
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to characterize the variability for distributions and it has been extensively studied
~see @5,10,13,15,16# , among others!+

For univariate and multivariate distributions, the concept of dispersion is fun-
damental; a statistical research is unthinkable for a phenomenon without variabil-
ity+ Unfortunately, there is not a unique definition of dispersion and this problem is
much more complicated for distributions on R

n + For univariate distributions, Lewis
and Thompson @13# introduced a concept of variability through the definition of the
dispersion order ~LT sense!+ Let F and G be two distribution functions; we say that
F is less dispersive than G, denoted F �Disp G, if any pair of quantiles of G are at
least as widely separated as the corresponding quantiles of F+ Let u be a real value
in ~0,1!; we use the definition of univariate quantile as follows:

QX ~u! � FX
�~u!� inf $x : FX ~x!� u%+

Many useful characterizations of the dispersion order can be found in the literature+
An excellent handbook is that by Shaked and Shanthikumar @17# + One of the most
interesting characterizations of this univariate order is given in @16# + Let F and G
be two strictly increasing and absolutely continuous distribution functions; then
X �Disp Y or F �Disp G, if and only if there exists a function F : SF r SG ~where
SF and SG are the support of F and G, respectively! such that Y �st F~X ! and
F'~x! � 1 for all x in SF + Note that under the last condition, the function F is an
expansion function; that is, the function F verifies F~x!� F~x '!� x � x ' , for all
x � x ' + Hence, the dispersion ordering in the LT sense is based on the existence of
an expansion function that depends on the corresponding distribution functions+
Furthermore, in this case, F~x!� QY~FX~x!! for all x in SF +

An extension of the univariate dispersion order to the multivariate case was
given by Giovagnoli and Wynn @9# + A function F :Rn r R

n is called an expan-
sion if

7F~x!�F~x' !72 � 7x � x' 72 for all x and x' in R
n+

Let X and Y be two n-dimensional random vectors+ Suppose that

Y �st F~X! for some expansion function F+

Then we say that X is less than Y in the strong multivariate dispersion order ~denoted
by X �SD Y!+

Roughly speaking, the strong multivariate dispersive order is based on the exis-
tence of an expansion function that maps stochastically a random vector to another
one+ Obviously, the ordering in the �SD sense is intuitively reasonable and it sat-
isfies many desirable properties+ For instance, the strong dispersion ordering implies
that 7X � X' 72 �st 7Y � Y' 72, where 7{72 corresponds to the Euclidean norm and
X' and Y' are two independent values for X and Y, respectively+ It also implies that
Tr~SX !� Tr~SY!,where SX and SY are the covariance matrices for X and Y, respec-
tively, see Giovagnoli and Wynn @9# +As a consequence of these properties, the �SD

multivariate order has a clear interpretation in dispersion terms+
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In the multivariate case, there exist several transformations that map one multi-
dimensional random variable to another one+ For this reason, it seems intuitive to
define a multivariate dispersion order based on a particular transformation+ Note
that in the univariate case, the function F depends on the corresponding distribu-
tion functions, so it has a unique expression+ These considerations led Fernández–
Ponce and Suárez–Llorens @7# to define a concept of multivariate dispersion order
based on the existence of a particular expansion function and, in addition, has a
particular interpretation as multivariate quantiles more widely separated+

From this point forward, we assume that X1, + + + , Xn have an absolutely contin-
uous joint distribution and the corresponding conditioned variables are also abso-
lutely continuous with density functions strictly positive+ Let u � ~u1, + + + ,un! be a
vector in @0,1# n + The multivariate u-quantile for X, denoted as [x~u!, is defined as
follows:

[x1~u1! � QX1
~u1!,

[x2~u1,u2 ! � QX2 6X1� [x1~u1!
~u2 !,

I

[xn~u1, + + + ,un ! � QXn 6� j�1
n�1 Xj� [xj ~uj !

~un !+

This last construction is widely used in simulation theory, and it is named the stan-
dard construction+ Obviously, the standard construction depends on the choice of
the ordering of the marginal distributions+ The notion of the standard construction
can be interpreted as a quantile function on R

n + Fernández-Ponce and Suárez-
Llorens @7# provide the notion of corrected orthant associated to the standard con-
struction that interprets the accumulated probability in all orthants+

The definition of the multivariate u-quantile for X led us to define the multi-
variate x-rate vector, denoted �x~x!, as

�x1~x1! � FX1
~x1!,

�x2~x1, x2 ! � FX2 6X1�x1
~x2 !

I
�xn~x1, + + + , xn ! � FXn 6� j�1

n�1 Xj�xj
~xn !+

Under the notion of the standard construction and the interpretation as multivariate
quantiles, Fernández-Ponce and Suárez-Llorens @7# defined the multivariate disper-
sive order as a generalization of the univariate dispersive order in the LT sense+

Definition 1: Let X and Y be two random vectors in R
n. We say that X is less than

Y in dispersion sense, denoted as X �Disp Y, if

7 [x~v!� [x~u!72 � 7 [y~v!� [y~u!72 ,

for all u and v in ~0,1!n.
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Note that this new ordering depends on the chosen permutation ~see @7# !+ Def-
inition 1 defines a multivariate dispersion ordering as quantiles that are more widely
separated+ Theorem 1 characterizes the multivariate dispersion order by means of a
particular expansion function+

Theorem 1: Let X and Y be two random vectors in R
n with their distribution func-

tions satisfying the regularity conditions. Then it holds that X �Disp Y if and only if
there exists a function F such that

F~X! �st Y with @F~x!# i � Fi ~x1, + + + , xi !,

In �L JF~x! tJF~x! for all x � R
n, (1)

where JF~x! is the Jacobian matrix of F.

]Fi ~x1, + + + , xi !

]xi

� 0 +

Moreover, in this case,

Fi ~x1, + + + , xi ! � ~ [yi �
�xi !~x1, + + + , xi !+

Note that the symbol �L represents the well-known Loewner ordering of matri-
ces, where A �L B if and only if the matrix B � A is nonnegative definite+ Condi-
tion ~1! implies that the function F is an expansion function; that is, it holds that

7F~y!�F~x!72 � 7y � x72

for all x, y in R
n ~see @9# !+

To summarize, the multivariate dispersion order can be simplified just by check-
ing whether the multivariate function F� ~F1, + + + ,Fn!, defined as

Fi ~x1, + + + , xi ! � ~ [yi �
�xi !~x1, + + + , xi !

� QYi 6� j�1
i�1 Yj�Fj ~x1, + + + , xj !

~FXi 6� j�1
i�1 Xj�xj

~xi !! (2)

for i � 1, + + + , n, is an expansion function+
It is apparent that this ordering is a generalization of the dispersive ordering in

the LT sense+ The multivariate dispersive ordering is characterized through a par-
ticular expansion function, so it obviously implies the strong multivariate disper-
sive ordering+ Then we will always consider the multivariate concept of dispersion
in the Giovagnoli and Wynn sense+ However, when we study the particular case
defined by function ~2!, we will call the strong multivariate dispersion order as the
multivariate dispersion order, denoted �Disp+

The organization in this article is as follows+ In Section 2, we will show the
multivariate dispersion order between two multivariate random variables, with the
same copula, is characterized by the univariate dispersion order for the correspond-
ing marginal distributions+ In Section 3, we will use the results from Section 2 to
order the multivariate t-Student family in a dispersion sense,�Disp or �SD, accord-
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ing to properties of the precision matrix and the degrees of freedom+ Finally, in
Section 4, we will apply this ordering in the problem of the detection and charac-
terization of influential observations in regression analysis+ This problem can be
often used to compare two multivariate t-distributions+

2. MULTIVARIATE DISPERSION ORDER UNDER THE NOTION OF
DISTRIBUTION FUNCTIONS WITH THE SAME COPULA

Now, we characterize the multivariate dispersion order,�Disp, for random variables
with the same dependence structure in the sense that they have the same copula+A
copula C is a cumulative distribution function with uniform margins on @0,1# + Fur-
thermore, it is shown that if H is an n-dimensional distribution function with mar-
gins F1, + + + ,Fn, then there exists an n-copula C such that for all x in R

n, it holds that

H~x1, + + + , xn ! � C~F1~x1!, + + + ,Fn~xn !!+

Moreover, if F1, + + + ,Fn are continuous, then C is unique ~for more details about cop-
ulas, see Nelsen @14#! + It follows that if X � ~X1, + + + , Xn! and Y � ~Y1, + + + ,Yn! are
two n-dimensional random variables, then they have the same copula if and only if

~X1, + + + , Xn ! �st ~QX1
@FY1
~Y1!# , + + + ,QXn

@FYn
~Yn !# !+

Within this setting, we can formulate the following theorem+

Theorem 2: Let X � ~X1, + + + , Xn! and Y � ~Y1, + + + ,Yn! be two n-dimensional ran-
dom vectors such that they have the same copula, denoted as C. Then X �Disp Y if
and only if Xi �Disp Yi for all i � 1, + + + , n.

Proof: In light of Theorem 1, it is only necessary to prove that the component Fi

of the function F has the following expression:

Fi ~x1, + + + , xi ! � QYi
~FXi
~xi !!, (3)

for i �1, + + + , n+ In other words, the component Fi of the function F, which maps the
random vector X to Y, only depends on the ith marginal variable+ Note that if ~3!
holds, the Jacobian matrix of F is a diagonal matrix in which the diagonal elements
are the functions that map the univariate marginal distribution of X to the corre-
sponding one of Y+ Hence, the condition ~1! in Theorem 1 is apparent+

The proof of ~3! is by mathematical induction+ For n � 1, it is trivial+ Let us
assume that it is true for i � 1, + + + , j � 1; then we need to show it for i � j+ By
induction hypothesis, it holds that

Fj ~x1, + + + , xj ! � QYj 6� i�1
j�1 Yi�QYi

~FXi
~xi !!
~FXj 6� i�1

j�1 Xi�xi
~xj !!+

Furthermore, in light of the equality 2+9+1 in Nelsen @14# , it is easy to show that

P�Xj � QXj
~v!��

i�1

j�1

Xi � QXi
~ui !��

]C~u1, + + + ,uj�1, v!

]u1, + + + ,]uj�1

, (4)
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where C is the copula of the distribution function F+ By assumption, F and G have
the same copula; hence, using ~4!, it holds that

FXj
~QXj 6� i�1

j�1 Xi�QXi
~ui !
~ p!! � GYj

~QYj 6� i�1
j�1 Yi�QYi

~ui !
~ p!!, (5)

for all 0 � p � 1+ Now, if we take ui � FXi
~xi ! in ~5!, we obtain that

QYj 6� i�1
j�1 Yi�QYi

~FXi
~xi !!
~ p! � QYj

~FXj
~QXj 6� i�1

j�1 Xi�xi
~ p!!!+ (6)

Note that if we now consider

p � FXj 6� i�1
j�1 Xi�xi

~xj !

in ~6!, it is easy to verify that

Fj ~x1, + + + , xj ! � QYj 6� i�1
j�1 Yi�QYi

~FXi
~xi !!
~FXj 6� i�1

j�1 Xi�xi
~xj !!

� QYj
~FXj
~QXj 6� i�1

j�1 Xi�xi
~FXj 6� i�1

j�1 Xi�xi
~xj !!!!

� QYj
~FXj
~xj !!+

Therefore, the proof is concluded+ �

Corollary 1: Let ~X1 + + + , Xn! be a multivariate random vector. Let us consider hi

a univariate strictly increasing expansion function for i � 1, + + + , n. Then it holds
that

~X1 + + + , Xn ! �Disp ~h1~X1!, + + + , hn~Xn !! +

Proof: The corollary follows from the facts that any copula is invariant under mono-
tone increasing transformations ~see @14# ! and the univariate dispersion order is
invariant under strictly increasing expansion functions ~see @17# !+ �

Note that this corollary provides many possible comparisons+ In particular, if
we take a real number a � 1, then it is easy to show that X �Disp aX+

Example 1: Let X � Nn~µ1,S1! and Y � Nn~µ2,S2! be two multivariate normal
distributions+ If rij

X � rij
Y for all i and j and si

X � si
Y, then X �Disp Y+ It is well

known that under the last assumption, X and Y have the same copula+ Thus, the
proof is apparent using Theorem 2+

3. DISPERSION PROPERTIES OF THE MULTIVARIATE
STUDENT DISTRIBUTION

In this section, we apply some results obtained in the last section to the particular
t-distribution family+ For this purpose, we use the corresponding definition of the
t-distribution from Bernardo and Smith @2, pp+ 139–140# + A continuous random
vector X has a multivariate t-distribution or a multivariate Student distribution
of dimension k, with parameters µ � ~µ1, + + + , µk!, S, and n, where µ � R

k , S is
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a symmetric positive-definite k � k matrix and n � 0 if its probability density
function, denoted Stk~x 6µ,S, n!, is

Stk~x 6µ,S, n! � c�1 �
1

n
~x � µ! tS~x � µ!��~n�k02!

, x � R
k,

where

c �
G~~n � k!02!
G~n02!~np!k02

6S6102+

Although not exactly equal to the inverse of the covariance matrix, the parameter S
is often referred to as the precision matrix of the distribution or, equivalently, the
inverse matrix of the dispersion matrix+ In the general case, E @X#� µ and Var~X!�
S�1 @n0~n � 2!# +

Before introducing the results in this section, we need the definition of a uni-
variate partial order strongly connected with the univariate dispersive ordering+We
consider the tail ordering defined by Lawrence @12# + Let X and Y be two univariate
random variables symmetric about zero; then we say that X is less in the tail order
sense, denoted X �r Y, if the ratio QY~u!0QX~u! is nondecreasing ~nonincreasing!
for u � ~ 12

_ ,1! ~u � ~0, 12_ !!+ In the following theorem, we will use the definition of the
tail ordering to order the univariate t-Student family+

Theorem 3: Let St1~0,1,m! and St1~0,1,m! be two univariate t-distributions. Then
if n � m, it holds that St1~0,1,m! �Disp St1~0,1, n! .

Proof: To simplify, denote tn as the univariate t-distribution with n degrees
of freedom+ Capéraà @3# showed that if n � m, then tm �r tn+ In addition, Doksum
@5# showed that for univariate absolutely continuous distributions with F~0! �
G~0! � 0 such that f ~0! � g~0! � 0 and QY~u!0QX~u! nondecreasing for all
u � ~0,1!, it holds that F �Disp G+

Under the last discussion, we consider the random variable 6 tn6 with the den-
sity function given by

f6 tn 6~t ! � 2ftn~t ! if t � 0 and 0 otherwise+

A straightforward computation shows that the distribution function of 6 tn6 is
F6 tn 6~x! � 2Ftn~x! � 1 for x � 0+ Hence, Q6 tn 6~u! � Qtn~~u � 1!02! for all u in the
interval ~0,1!+ Therefore, it is apparent, using the work of Capéraà @3# , that if
n � m, then Q6 tn 6~u!0Q6 tm 6~u! is nondecreasing for all u � ~0,1!+ Since F6 tm 6~0! �
F6 tn 6~0! � 0 and, of course f6 tm 6~0! � f6 tn 6~0!, we obtain, using the result in @5# that
6 tm6 �Disp 6 tn6+ It is easy to check, using properties of symmetry, that 6 tm6 �Disp 6 tn6
implies that tm �Disp tn+ �

Note that although in the literature the degrees of freedom of a t-distribution
are always associated with the dispersion and the lack of knowledge of the exper-
iment, the previous result provides that the t-distribution family is ordered in a really
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strict dispersion order+ To study in depth the implications of the univariate disper-
sion order, see Shaked and Shanthikumar @17# +

We have ordered two univariate t-distributions pertaining to the degrees of free-
dom+ If we consider the more general class when the precision is different, the fol-
lowing corollary holds+

Corollary 2: Let St1~0,s1,m! and St1~0,s2, n! be two univariate t-distributions
that satisfy that for n � m and s2 � s1, St1~0,s1,m! �Disp St1~0,s2, n! .

Proof: The proof is apparent+ �

Note that the precision matrix is related to the variance through the expression
Var~St1~0,s1,m!!� s1

�1~m0m � 2!+
From this point forward, we will consider two multivariate t-distributions+We

generalize the results obtained in Theorem 3 and Corollary 2 to the multivariate
case+

Theorem 4: Let Yn ; Stk~0,S, n! and Ym ; Stk~0,S,m! be two multivariate
t-distributions with the same precision matrix and different degrees of freedom. Then
if n � m, it holds that Stk~0,S,m! �Disp Stk~0,S, n! .

Although, of course, Theorem 4 is more general than Theorem 3, we first need
the results of this one to prove the multivariate case+

Proof: Let Ym � ~Ym,1, + + + ,Ym, k! and Yn � ~Yn,1, + + + ,Yn, k! be the corresponding multi-
variate t-distributions+ First, we need to prove that two multivariate t-distributions
with the same precision matrix have the same copula+ For this purpose, we define
the random vector X such as

X � ~X1, + + + , Xk !� @QYm,1
~FYn,1

~Yn,1!!, + + + ,QYm, k
~FYn, k

~Yn, k !!# +

From Exercise 2+15 in Nelsen @14# , it holds that the multivariate distributions X and
Yn have the same copula+We only have to prove that X �st Ym+

First, from the well-known result that the function QYm, i
~FYn, i

!~{! for i �
1, + + + , k, maps the univariate random variable Yn, i to Ym, i , we know that all marginal
distributions of X are generalized t-distributions+ Hence, using Theorem 1 from
Arellano-Valle and Bolfarine @1# , we know that X is a multivariate t-distribution
with parameters X;Stk~0, ES,m!+ From the fact that X and Ym have the same degrees
of freedom, it is only necessary to show that Var~X!� Var~Ym!+ Of course, it holds
that Var~Xi ! � Var~Ym, i ! for all i � 1, + + + , n+ Hence, both matrices have the same
diagonal elements+

Since X and Yn have the same copula, it is easy to show, using Theorem 5+1+3
in Nelsen @14# , that

tXi , Xj
� tYn, i ,Yn, j

,

where tX,Y is the population version of Kendall’s tau for X and Y+ Therefore, using
Theorem 3+3 from Frahm, Junker, and Szimayer @8# , it holds that they also have the
same Pearson’s coefficient, r, so
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cov~Xi , Xj !

sXi
sXj

�
cov~Yn, i ,Yn, j !

sYn, i
sYn, j

+

Using the fact that Yn and Ym have the same precision matrix, if we denote Var~Yn!�
~sij, n! and Var~Ym!� ~sij,m!, it holds that

sij,m

sij, n
� �m~n � 2!

n~m � 2!�
102

,

for all i, j � 1, + + + , k+ Hence, it is apparent that cov~Xi , Xj ! � cov~Ym, i ,Ym, j ! and,
of course, ES� S, which implies that Ym �st X+

We have already shown that Ym and Yn have the same copula+ Hence, using
first Corollary 2 and then Theorem 2, we have that Ym �Disp Yn+ �

At this point,we focus our attention on ordering two multivariate t-distributions
with different precision matrices+

Theorem 5: Let Y1 ; Stk~0,S1, n! and Y2 ; Stk~0,S2, n! be two multivariate
t-distributions with different precision matrices and the same degrees of freedom.
Then the following conditions are equivalent:

1+ Y2 �st k~Y1! , where k is one-to-one, linear, and expansion.
2+ There is an orthogonal matrix G such that S2

�1 �L GS1
�1G t.

3+ l~S2
�1! � l~S1

�1! ~where l~{! is the vector of ordered eigenvalues and �
refers to the usual entrywise ordering!+

Proof: It is analogous to Theorem 4 in Giovagnoli and Wynn @9# + �

Note that if both distributions have the same degrees of freedom, it is easy to
find several linear transformations that map one t-distribution to the other one+Obvi-
ously, this not the case when they have different degrees of freedom; the possible
transformations are clearly not linear+

It is necessary to take in account that Theorem 5 does not provide a character-
ization of the multivariate dispersion order+As we mentioned earlier, the �Disp order-
ing is associated to a particular transformation given by the function in ~2!+ Just
looking at Example 4+1 in @7# for the multivariate Normal distributions, it is easy to
show the linear expression of F when we are interested in comparing two multi-
variate t-distributions+ This expression depends on the Cholesky decomposition of
the matrices S2

�1 and S1
�1+

However, in the conditions of Theorem 5, it holds that Stk~0,S1, n! �SD

Stk~0,S2, n!+We emphasize that �SD is a weaker multivariate dispersion order than
the �Disp ordering+ Hence, at least there exists an expansion function that maps one
t-distribution to the other one+As we will show in Section 4, we only need to know
about the �SD order in order to define a new measure of Bayesian influence+

Corollary 3 is needed to compare t-distributions when both degrees of freedom
and precision matrices are different+
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Corollary 3: Let Y1 ; Stk~0,S1,m! and Y2 ; Stk~0,S2, n! be two multivariate
t-distributions with different precision matrices and degrees of freedom. Then if it
holds that l~S2

�1! � l~S1
�1! and n � m, then Stk~0,S1,m! �SD Stk~0,S2, n! .

Proof: The result follows straightforward from the fact that

Stk~0,S1,m! �Disp
asdsg

using Theorem 4

Stk~0,S1, n!

�SD
asdsg

Using Theorem 5

Stk~0,S2 , n!+

From the well-known result that a composition of two expansion functions is also
an expansion function, it easily holds that Stk~0,S1,m! �SD Stk~0,S2, n!+ �

Note that Corollary 3 provides a sufficient condition for the �SD order+ It is
easy to show that under this condition, it also holds that

l~Var~Stk~0,S2 , n!!! � l~Var~Stk~0,S1,m!!!+

However, this last implication cannot be considered a sufficient condition+ The rea-
son is that the variance matrix is defined through both the precision matrix and
degrees of freedom+

4. APPLICATION TO THE INFLUENTIAL OBSERVATIONS
IN REGRESSION ANALYSIS

4.1. The Model

Johnson and Geisser @11# proposed a method of assessing the influence of specified
subsets of the data when the goal is to predict future observations using predictive
densities+ For this purpose, they considered the following model: Y � Xb � «,
where « is an N �1 random vector distributed as MNn~0,uI! ~N-dimensional multi-
variate normal ~MN!! with mean vector 0 and covariance matrix uI, u scalar, b is
the p � 1 vector of regression coefficients, X is an N � p matrix of fixed “indepen-
dent” variables, and Y is the N �1 vector of responses on the “dependent” variable+
Although they noted that a more general model is possible, they assumed the prior
density for b and u to be g~b,u! @ u�1 ,which presumes that little prior information
is available relative to that information inherent in the data+Assume the case when
a particular subset of size k has been deleted; we denote this by ~i !, and the subset
itself is indicated by i + Then the general linear model can then be expressed as

y ' � ~y i
' ,y ~i !' !� b '~Xi

' ,X~i !' !� ~«i
' ,«~i !' !+

Thus, the predictive densities based on full and subset deleted datasets, when u
is unknown, are two multivariate t-distributions with parameters

StN ~ [y, ~s 2~I � H!!�1,N � p! and StN ~ [y ~i !, ~s~i !2 ~I � H~i ! !!�1,N � k � p!,
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where

S � X'X, H � XS�1 X', H~i ! � XS~i !�1 X', [y � X Zb,

r � y � [y, [y ~i ! � X Zb~i ! , a2 � r 'r, s 2 � a20N � p,

and let S~i !, a~i !2 , and s~i !
2 be similarly defined+

4.2. The Problem

In this case, the problem of detecting influential observations is based on compar-
ing two multivariate t-distributions+ If we only study the comparison in terms of
variability, it seems logical that if we delete a subset of data, then the obtained
predictive density will be expected to be more dispersive than the one based on full
data+ In other words, it would be expected that f ~{! �SD f~i !~{!+ This may be inter-
preted as the added variability, due to deletion of data subset i + However, it is not
true that every subset of data with a fixed size k has the same influence+ First, using
Corollary 3, we checked that f ~{! �SD f~i !~{! for all �N

k � subsets, k � 1,2,3+ We do
not consider it necessary to present these comparisons in this article+ After these
comparisons, and clearly inspired in Corollary 3, we can define a dispersion Bayes-
ian influence in terms of variability ~DBIV! measure to the i subset as

Qi
2 � 7l~s~i !2 ~I � H~i ! !!� l~s 2~I � H!!722

and we will order the subsets from least to most influential according to the mag-
nitude of Qi

2+ Note that under the assumptions in Corollary 3, if we have the
inequality l~s~i !2 ~I � H~i ! !! � l~s 2~I � H!!, then it holds that f ~{! �SD f~i !~{!+

4.3. The Dataset and Conclusions

We consider data from the 1975 Florida Area Cumulus Experiment ~FACE! previ-
ously discussed in great detail by Cook and Weisberg @4# + This experiment was
conducted to determine the merits of using silver iodide to produce rainfall increases
and to isolate factors contributing to treatment until additivity+ There were 24 obser-
vations on 11 variables, including the response rainfall, an indicator variable deter-
mining whether clouds were seeded or not seeded, and 8 other variables, including
interaction terms that were determined to be related to rainfall+

Initially, we will analyze the full dataset and then delete case 2 ~observation 2!
and reanalyze in its absence+ For an initial analysis, a computer program was writ-
ten to compute relevant statistics for all �N

k � subsets, k �1,2,3 and N � 23,24 using
the Maple 6 package+

A summary of these results for the full dataset, as well as for the full dataset
with case 2 deleted, is given in Table 1+ It is clear from Table 1 that observations 2,
18, 1, 15, 6, and 3 are most influential in the dispersion sense when k � 1+ More-
over, case 2 is clearly an outlier and it significantly affects predictive inferences
based in this dataset from the dispersion point of view+Also, it is interesting to note
that when case 2 is deleted, the most influential observations in dispersion sense are
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18, 1, 15, 5, 6, and 23+ Although the order has been changed, we can observe that
the differences among the influence measures are not significative+When k � 2 or
3, it is clear from Table 1 that case 2 will be included in most influential subsets+
However, we choose to delete case 2 and perform a more careful analysis+ Inspec-
tion of Table 1 reveals that observations 18 and 1 are not only the most individual
influence observations but also the most influential pair+Also, we can observe that
case 18 appears jointly with case 1 in the third most influential triple+Also, we note
that the pair ~1,18! appears in two influential triples+ Consequently, the influence
for case ~1,18! must be taken into account in a dispersion sense+

Surprisingly, the most influential triple is not composed of the three most influ-
ential cases, but the third most influential triple coincides with cases that are most
influential individually and in pairs+

With this analysis, we present a way to study the influence of specified subsets
of the data in a dispersion sense complementary to the analysis of Johnson and
Geisser @10# + This is not obviously an alternative method for studying the diver-
gence between f ~{! and f~i !~{!+ The reason is why the study of the dispersion is, of
course, location independent and the location component given by the means of the
t-distributions is specially important to study the lack of fit of the model, as John-

Table 1. Top Six Most Influential Subsets k � 1,2,3

Full Dataset
Observation 2

Deleted

Observation Qi
2 Observation Qi

2

k � 1 2 52,226+08 18 156+47
18 289+36 1 71+50

1 137+74 15 62+43
15 70+92 5 54+14

6 67+93 6 37+22
3 56+50 23 37+17

k � 2 ~2,9! 139,060+84 ~1,18! 964+98
~2,23! 106,460+70 ~1,15! 755+63
~2,5! 92,471+40 ~9,18! 630+90
~2,19! 88,912+05 ~13,18! 480+58
~2,16! 78,617 ~7,18! 421+42
~2,17! 77,522 ~8,18! 368+62

k � 3 ~2,9,23! 300,931+65 ~3,5,11! 3,899+09
~2,9,16! 284,113+70 ~9,13,18! 3,573+22
~2,9,18! 253,606+55 ~1,15,18! 2,565+88
~2,5,9! 245,137+72 ~7,9,18! 2,330+72
~2,9,19! 242,907+97 ~1,16,18! 2,090+76
~2,3,9! 228,659+05 ~1,9,15! 2,016+76
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son and Geisser @11# showed+ However, this study provides an interesting point of
view and we would like to emphasize that it was not necessary for the approxima-
tion of substituting the multivariate t-distribution for a scaled multivariate Normal
density+
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