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Abstract

This work presents a novel contribution to solve the problem of identification of ship models

parameters using the temporal variation data of the yaw angle achieved from a particular trial test as

the turning circle. A relatively complex nonlinear model of Wagner-Smith has been chosen as basis

because it represents the ship’s dynamics appropriately as proved through the experimental measures

obtained in a particular ship. The proposed algorithm of identification of the six ship model

parameters is based on the combination of two sub-algorithms: the backstepping procedure and the

tuning design method. The simulation results show the suitability of the proposed procedure.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Considerable efforts have been carried out in the modelling and the identification of

nonlinear systems. In the particular case of the ship manoeuvring, the presence of

different kinds of uncertainty in the not precisely known ship models as well as
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the random processes’ statistics, such as winds, waves, currents, and other exogenous

effects, on different sailing conditions such as speed, loading conditions, trim, etc. and

sailing routes in open sea (deep water), coastal (shallow waters) with a possible change

in the under-keel clearance, conducts to necessary application of techniques that take

into account the nonlinear equations that describe the ship’s motion and the presence of

unknown but constant parameters which appear linearly in these system equations. In

this sense, the backstepping procedure based on an indirect MRAC procedure and the

tuning functions design (Krestić et al., 1992) is a relatively novel method for solving

the identification problem of ship’s parameters. The procedure has been applied with

considerable success in: axial compressors have been developed under backstepping

designs for throttle and bleed valve (Banaszuk and Krener, 1997), and the air injection

(Behnken and Murray, 1997; Protz and Paduano, 1997); in ship control: backstepping

with optimality (Fossen, 1994), route planning (Casado and Velasco, 2003); electric

machines (induction motor), (Marino et al., 1999). In this paper, it is shown that for

identification purposes it is only necessary to know the temporal variation of the ship

yaw angle during a particular trial test. This measurement is available from relatively

inexpensive measurement devices based on GPS/INS, that is, the satellite based on the

Global Positioning System (GPS), aided with an Inertial Navigation System (INS).

There are no definitive international standards for conducting manoeuvring trials with

ships. Many shipyards have developed their own procedures driven by their experience

with consideration to the efforts made by the International Towing Tank Conference

(ITTC, Proceedings 1963–1975) and other organisations or institutes (Journée and

Pinkster, 2001).

The Society of Naval Architects and Marine Engineers (SNAME) has produced three

guidelines: ‘Code on maneuvering and Special Trials and Tests’ (1950), ‘Code for Sea

Trials’ (1973) and ‘Guide for Sea Trials’ (1989). The Norwegian Standard Organization

has produced ‘Testing of New Ship, Norsk Standard’ (1985). The Japan Ship Research

Association (JSRA) has produced a ‘Sea Trial Code for Giant Ships’ (1972) for

manoeuvering trial procedure and analysis of measurements.

The International Maritime Organization (IMO) has emitted the Resolutions A.601

(1987) and A.751 (1993). The last Resolution adopted by this Organization whose title

is ‘Standards for ship manoeuvrability’ with code MSC.137 adopted on 4 December

2002, resolves that its previsions annexed supersede the previous annexed to Resolution

A.751.

Between the 18 types of manoeuvering tests only the Turning Test, mainly used to

calculate the ship’s steady turning radius and to check how well the steering machine

performs under course—changing maneuvers, Z-Manoeuvring Test, used to compare

the manoeuvering properties and control characteristic of a ship with those of other

ships and the Stopping Test (crash-stop and low-speed) used to determine the ship’s

head reach and manoeuverability during emergence situations, are recommended by all

Organizations.

The remainder of this paper is organised as follows. Section 2 deals with the modelling

problem, Section 3 describes the identification procedure and, finally, Section 4 discusses

results, highlighting some concluding remarks.



Fig. 1. Co-ordinate systems for the description of ship motion.
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2. Ship model
2.1. Coordinate systems

In the process of analysing the motion of a ship in 2 degrees of freedom (DOF) it is

convenient to define two co-ordinate systems as indicated in Fig. 1. The moving co-

ordinate frame X0 Y0 is conveniently fixed to the ship and is denoted as the body-fixed

frame. The origin of this body-fixed frame is usually chosen to coincide with the centre of

gravity (CG) when CG is in the principal plane of symmetry. The earth-fixed co-ordinate

frame is denoted as X Y. The angle J is the difference between heading and track course,

VL is the forward velocity measured by the log, VT is the velocity in starboard direction and

d the rudder angle. The co-ordinates (x,y) denotes the ship’s position along the track.
2.2. Ship model structure

The high complexity of the hydrodynamic processes caused by the ship motion in deep

and confined water and the wide variety of ships shapes and sizes lead to various non-

stochastic ship models. These models could be divided in two groups: precise models,

typical for given particular ships shapes and sizes such as the model of Van Leeuwen

(1978) and Sobolev (1976), the cubic model of Abkowitz (1964), the quadratic model of

Norrbin (1981) and models with greater generality but lower accuracy, Nomoto (1960)

and Pershitz (1973) models.

The model of Bech and Wagner Smith (1969) is chosen as the basic model to assure a

good trade-off between model complexity and model accuracy. It is obtained by means

of replacing the linear term of yaw rate ð _jÞ in the Nomoto second-order model with
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a nonlinear manoeuvring characteristic HBð _jÞ, whose coefficients are determined by

Bech’s spiral manoeuvre. This way allows passing from a general model to a more

particular one.

The resulting model is described by the following equations

T1$T2$fflj C ðT1 CT2Þ$ €j CK$HBð _jÞ Z K$ðd CT3$ _dÞ (1a)

HBð _jÞ Z b0 Cb1$ _j Cb2$ _j2
Cb3$ _j3

(1b)

where J is the ship course, rZ _j, the rate of turn and d is the rudder angle.

In this paper, the turning test circle is utilised instead of the Bech’s Reverse Spiral

Manoeuvre, being only necessary for identification purposes to record the variation of the

yaw angle vs time, where all terms of the nonlinear characteristics are considered.

Nevertheless, with the purpose of simplification of the nonlinear equations the following

simplifications are usually taken into account:
†

Tab
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Spe
hull symmetry; it implies that b2Z0,
†
 the dynamic stability is known. This implies that the sign of b1 is known. For a course-

stable ship b1O0, while for a course-unstable one b1!0,
†
 the bias term b0 is frequently taken as null, being conveniently treated as an additional

rudder off-set that can be made null by an adequate selection of the integral action in the

autopilot design.

The procedure has been applied to a roll-on/roll-off ship (Izar, 2001) whose

characteristics and picture are shown in Table 1 and Fig. 2, respectively.
2.3. Time-series response

The temporal variation (time-series response) of the yaw angle for the tested ship is

represented by expression (2). This time-series function was achieved by means of a Least-

Squares regression fitting procedure from experimental data points acquired from
le 1

in characteristics of the tested ship

ught forward (full load condition) (m) 6

ught aft (full load condition) (m) 6

dweight (metric tonnes) 7456

ximum displacement (metric tonnes) 19,949

gth overall (m) 188.3

adth (moulded) (m) 28.7

bous bow Yes

e of rudder Becker (2 units)

ximum angle of rudder (degrees) 65

e of hard-over to hard over (s) 56

pellers 2

ine (2 per shaft), maximum power (kW) 4!6000

ed loaded (maximum full ahead) (knots) 23.14



Fig. 2. Picture of the ship under analysis.
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experimental sea trial. Data used belong to the realisation of the first three phases of the

turning test. The test was carried out in the normal ballast condition, maximum ahead

speed (23.14 knots) with a rudder angle of 208

jrðtÞ ¼ K1:5191!10K3 K3:3818!10K4t þ 1:1351!10K3t2 K2:2872

!10K5t3 þ 0:2278!10K6t4 K0:1125!10K8t5 þ 0:2191!10K11t6 (2)

where jr is expressed in radians and the time in seconds.
2.4. Model parameters identification

To establish the goodness of the proposed procedure of identification it is necessary to

know the true values of the parameters (supposed constants) that appear in the dynamical

equations. For this purpose, the goal to be achieved is to reduce the difference between the

fitting Eq. (2) and the solutions of the nonlinear differential Eq. (1a) by means of an

appropriate selection of the equation’s parameters. The procedure is based on the

following algorithms:
†
 A Backward-Euler integration algorithm with a step size of 1 s.
†
 An optimisation algorithm of Powell (Darnell and Margolis, 1990) with an optimisation

criteria ITAE (assuming the ITAE performance criterion as the product of integral of

time-weighted absolute error).
†
 A trial and error procedure.

The resulting parameters are shown in Table 2, while in Table 3 there appears the

values of the cost indexes for the yaw angle, yaw rate and angular acceleration.

In Figs. 3–5, the experimental yaw angle, yaw rate and angular acceleration are

compared with the theoretical ones, showing an excellent agreement between them.



Table 2

Values obtained in the identification process

Parameter Value Units

T1 112.023 s

T2 13.5705 s

T3 1.7 s

K 6.4917!10K2 sK1

b0 1.8196!10K2 rad/s

b1 K56.1261 adim

b2 3421.7915 s/rad

b3 573.4967 s2/rad2
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The purpose of this paper is to design a systematic procedure for finding an identification

algorithm that does not depend, even partially, on a heuristic method such as the one used

to know the true values of the ship’s model parameters and thus it is possible to know the

excellence of the proposed procedure. The procedure of the identification based on the

tuning functions design resembles the classical procedure used in the model reference

adaptive control (MRAC) (both are based in the Liapunov stability theory) but, however, it

shows a considerable advantage over the traditional scheme. Both for a same control effort

and initial conditions, the transient performance of tuning functions is far superior,

whereas the tracking error with the tuning functions scheme is only a fraction of the

indirect method. This is a consequence of incorporating the parameter update law into the

controller (Kanellakopoulos et al., 1991). Other two most important factors which

contribute to the superior performance of the tuning functions scheme are nonlinear

damping and reference model initialisation.

The procedure described in this paper can be used as a new and alternative estimation

method on the traditional ones, Continuous Least-Squares, Recursive Least-Squares,

Recursive Maximum Likelihood, State Augmented Kalman Filter (Fossen, 1994).
2.5. Statement of the problem under a state space description

In order to carry out the system description by the nonlinear state equations it is

preferable to define the following state variables. x1ZJ (yaw angle), x0Z _jZr (yaw

rate), x3Z €jZ _r (angular acceleration), being the output yZx1. The kinematic equations

of ship dynamics are

_x1 Z x2 (3a)

_x2 Z x3 (3b)
Table 3

Values of the cost indexes obtained

Variable ITAE Units

j 72.3803 rad s2

_j 0.8711 rad s

€j 0.1199 rad



Fig. 3. Time response of the yaw angle. SignCline: experimental values. Continuous line: polynomial fit.

Fig. 4. Time response of the yaw rate. SignCline: experimental values. Continuous line: polynomial fit.
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Fig. 5. Time response of the angular acceleration. SignCline: experimental values. Continuous line: polynomial fit.
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_x3 Z d$U Ca$x3 Cc3$x3
2 Cc2$x2

2 Cc1$x2 Cc0 Z d$U C4T$q (3c)

y Z x1 (3d)

being the coefficient’s values:

a ZK
T1 CT2

T1$T2

(4a)

c3 ZK
K$b3

T1$T2

(4b)

c2 ZK
K$b2

T1$T2

(4c)

c1 ZK
K$b1

T1$T2

(4d)

c0 ZK
K$b0

T1$T2

(4e)

d Z
K

T1$T2

(4f)



Fig. 6. Block diagram of a third-order parametric strict—feedback analysed system.
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The rudder angle d is governed by a control signal U with a first-order dynamics

U Z d CT3$ _d (4g)

and

4T Z ½1 x2 x2
2 x3

2 x3� (4h)

qT Z ½c0 c1 c2 c3 a� (4i)

where q2R4 is a vector of unknown parameters.

The rudder angle is computed by numerical integration of:

_d ZK
1

T3

$ðd KUÞ (5)

The control objectives are:
(1)
 to force the output yZx1Zj of the system (3a)–(3c) whose block diagram is

presented in Fig. 6 to asymptotically track the reference output yr(t)Zjr(t).
(2)
 to carry out the identification task of the unknown parameters, a,ci (iZ0,.,3) and d.
(3)
 to keep the rudder angle in the selected value chosen for the sea trial test.
3. Adaptive backstepping procedure and identification

3.1. Adaptive backstepping procedure

The new recursive design known as the adaptive backstepping (Krestić et al., 1992) is

based on three techniques which differ in the construction of adaptation law:
(i)
 Adaptive backstepping with overparametrisation, when at each design step a new

vector of adjustable parameters and the corresponding adaptation law are introduced

(Kanellakopoulos et al., 1991).
(ii)
 Adaptive backstepping with modular identifiers, when a slight modification of the

adaptive control allows independently the construction of estimation-based

identifiers of unknown parameters (Krestić et al., 1992).
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(iii)
 Adaptive backstepping with tuning functions, when at each design step a virtual

adaptation law known as tuning function is introduced, while the actual adaptation

algorithm is defined at the final step in terms of all the previous tuning functions

(Krestić et al., 1995).
Fig. 6 shows the block diagram of the third-order parametric strict feedback system

under analysis. Initially on the recursive procedure, the state x2 is treated as a virtual

control for Eq. (3a). At each subsequent step, it will be increased the designed subsystem

by one equation. At the i-step, the ith-order subsystem is stabilised with respect to a

Liapunov function Vi by the design of a stabilising function ai and a tuning function ti. The

updating law of the adaptive control system that allows us to know the true values of the

dynamic model and the control signal is designed at the final step. To implement the

identification procedure by combining backstepping with tuning functions design,

following steps are to be performed:

STEP1

Introducing the variable z1 representing the tracking error, and z2 which means the error

variable that expresses the fact by which x2 is not the true control, both are defined by:

z1 Z x1 Kyr (6a)

z2 Z x2 K _yr Ka1 (6b)

Eq. (3a) yields

_z1 Z z2 Ca1 (7)

the stabilising function a1, is designed to stabilise Eq. (7) with respect to the Liapunov

function:

V1 Z
1

2
$z2

1 (8)

The simple linear feedback law has been chosen

a1 ZKK1$z1; K1O0 (9)

then

_V1 ZKK1$z2
1 Cz1$z2 (10)

the second term z1$z2 in (10) will be cancelled at the next step.

STEP 2

It is necessary to consider that state x3 is the control variable in the second Eq. (3b). The

third backstepping variable z3 is defined by the equation

z3 Z x3 Ka2 K €yr (11)

where r̂ is the estimation of coefficient dZ1/r in (3c) equation. This change has been done

to avoid an indetermination when in the identification process this variable can take
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occasionally the null value. The expression (3b) is transformed by Eqs. (6b) and (11) in

_z2 Z z3 Ca2 K _a1 (12)

where a2 is the second stabilising function. It is important to observe that the time

derivative _a1 can be implemented analytically without a differentiator in the following

manner:

_a1 Z
va1

vx1

$x2 C
va1

vyr

$ _yr ZKK1$x2 CK1$ _yr (13)

The second Liapunov function is defined in the form

V2 Z V1 C
1

2
$z2

2 (14)

yielding its derivative as

_V2 ZKK1$z2
1 Cz1$z2 Cz2$ z3 Ca2 K

va1

vx1

$x2 K
va1

vyr

$ _yr

� �
(15)

If the second stabilising function a2 is chosen in the form

a2 ZKz1 KK2$z2 C
va1

vx1

$x2 C
va1

vyr

$ _yr ZKz1 KK2$z2 KK1$x2 CK1$ _yr (16)

then

_V2 ZKK1$z2
1 KK2$z2

2 Cz2$z3 (17)

To depart of (12) with (13) and (16) it is possible to represent the second state equation

in zi co-ordinates as:

_z2 ZKz1 KK2$z2 Cz3 (18)

In matrix form, Eq. (7) with the stabilising functions (9) and (18) can be expressed as:

_z1

_z2

" #
Z

KK1 1

K1 KK2

" #
$

z1

z2

� �
C

0

z3

� �
(19)

STEP 3

By means of transformation (11), the last equation of the state space representation (3c)

can be transformed in

_z3 Z d$U C4T$q K _a2 Kfflyr (20)

The second stabilising function (16) can be written into xi co-ordinates by the

transformations (6a) and (6b), with the aid of (9), yielding:

a2 ZKð1 CK1$K2Þ$x1 K ðK1 CK2Þ$x2 C ð1 CK1$K2Þ$yr C ðK1 CK2Þ$ _yr (21)
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Consequently, its derivative is computed, being implemented in (20) as

_a2 Z
va2

vx1

$x2 C
va2

vx2

$x3 C
va2

vyr

$ _yr C
va2

v _yr

$€yr

ZKð1 CK1$K2Þ$x2 K ðK1 CK2Þ$x3 C ð1 CK1$K2Þ$ _yr C ðK1 CK2Þ$€yr (22)

Let q̂ and d̂ be an estimations of the unknown vector parameter q and d in the system

(3c). The Liapunov’s function of the entire system is

V3 Z V2 C
1

2
$z2

3 C
1

2
$ ~q

T
$GK1$ ~q C

jdj

2$gr

$ ~r2 (23)

where G is a positive definite matrix referred to as the adaptation gain. Furthermore, its

derivative is:

_V3 ZK
X2

iZ1

Ki$z2
i Cz3 z2 Cd$U C4T$q̂ K

va2

vx1

$x2 K
va2

vx2

$x3

�

K
va2

vyr

$ _yr K
va2

v _yr

$€yr Kfflyr K
va2

vq̂
$ _̂q

�
C ~q

T
$½z3$4T KGK1$ _̂q�C

jdj

gr

$ ~r$ _~r

(24)

In order to eliminate the error in the vector parameter q, the following updating law is

chosen:

_̂
q Z G$4T$z3 Z G$t (25)

where tZ4Tz3 represents a tuning function and G a diagonal matrix whose coefficients

are the gains ðgi; iZ0;.; 3; gaÞ. The block diagram of the adaptive system designed for

the vector parameter q is shown in Fig. 7.
Fig. 7. Block diagram for vector of parameters updating.
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If the estimation values of the parameters were correct, then the parameter errors

must satisfy, ~qZqK q̂Z0; ~dZdK d̂Z0; q̂Zq; dZ d̂. The control law could adopt

the following form

U ZK
1

d̂
$ðKK3$x3 K4T$q̂Þ (26)

it would achieve the global asymptotic tracking of yr. Since this is not the case, the

parameter estimation errors, ~q; ~d continues to act as a disturbance which may carry the

system to an unstable region. Our objective task is to find an updating law for q̂ðtÞ and d̂ðtÞ

which preserves the convergence of xðtÞZ ½x1ðtÞ x2ðtÞ x3ðtÞ�
T and achieves the tracking of

the output to yr(t). It is necessary to introduce a third stabilising function a3 and modify the

control (26) in the following manner

U Z
1

d̂
$ða3 CfflyrÞ Z r̂$ða3 CfflyrÞ (27)

with this control, the temporal variation of the third Liapunov function (24), considering

that d is time invariant ð _~rZK_̂rÞ, results in:

_V3 ZK
X2

iZ1

Ki$z2
i

Cz3$ z2 Ca3 C4T$q̂ K
va2

vx2

$x2 K
va2

vx2

$x3 K
va2

vyr

$ _yr K
va2

v _yr

$€yr K
va2

vq̂
$ _̂q

� �

Kd$ ~r$ða3 CfflyrÞK
jdj

gr

$ ~r$ _̂r

(28)

The estimation of the parameter dZ1/r can be found from (28) in the way

_̂r ZK
d

jdj
$grða3 CfflyrÞ ZKsgnðdÞ$gr$ða3 CfflyrÞ (29)

for which, the parameter sign must be known.

The stabilising function a3 is chosen so that the total Liapunov function be semidefinite

negative:

a3 ZKz2 KK3$z3 K4T$q̂ C
va2

vx1

$x2 C
va2

vx2

$x3 C
va2

vyr

$ _yr C
va2

v _yr

$€yr C
va2

vq̂
$ _̂q

ZKz2 KK3$z3 K4T$q̂ K ð1 CK1$K2Þ$x2 K ðK1 CK2Þ$x3 C ð1 CK1$K2Þ$ _yr

C ðK1 CK2Þ$€yr ð30Þ

Previous described laws guarantee that:

_V3 ZK
X3

iZ1

Ki$z2
i %0 (31)
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This choice by means of LaSalle’s invariance theorem or Barbalat lemma (Khalil,

1996), lets us obtain the global stability of the equilibrium defined as z1Z0, that is to say,

yZyr, q̂Zq, and r̂Zr.

The third state equation into the error variables, can be obtained starting from (20) with

the control (27) and the stabilising function a3 (30):

_z3 ZKz2 KK3$z3 C4T$ ~q Kd$ða3 CfflyrÞ$ ~r (32)

Finally, the resulting error dynamics obtained from Eqs. (19) and (32) is written as:

_z1

_z2

_z3

2
64

3
75 Z

KK1 1 0

K1 KK2 1

0 K1 KK3

2
64

3
75$

z1

z2

z3

2
4

3
5C

0

0

4T

2
64

3
75$ ~q Kd$

0

0

a3 Cfflyr

2
64

3
75$ ~r (33)
3.2. Identification procedure

The control objective is to carry out the ship’s manoeuvring of change of yaw angle

from the initial value to the final one, in such a way that indicates the reference yrZJr

given by expression (2). The restriction imposed on the rudder angle (whose dynamics is

also taken into account) is the value that takes during the realisation of the turn until the

third (steady phase) is reached. This value is 208Z0.3491 rad. The identification process

has been carried out by the use of the Backward–Euler algorithm with a step size of 1 s.

The initial estimations were the same for all model parameters (25% of its true values).

The procedure start from Eq. (33), straight on by its integration with the updating laws

(25) and (29) with some optimisation criteria on the errors between the estimation of the

parameters and its true values. The final step consists in the change between the states zi

and the xi ones by the application of the equations of change of coordinates. These

equations can be easily obtained from expressions (6a), (6b) and (11). The results are:

z1 Z x1 Kyr (34a)

z2 Z K1$x1 Cx2 KK1$yr K _yr (34b)

z3 Z ð1 CK1$K2Þ$x1 C ðK1 KK2Þ$x2 Cx3 K ð1 CK1$K2Þ$yr C ðK2 KK1Þ$ _yr K €yr

(34c)
Table 4

True parameters of the ship model

Parameter True value Estimate value Units

A K8.26149!10K2 K8.26235!10K2 sK1

C3 K2.44894!10K2 K2.4546!10K2 radK2/s

C2 K0.146117 K0.144152 radK1/s

C1 2.39669.10K3 2.39703.10K3 sK1

C0 K7.77.10K7 K7.93144.10K6 rad

D 4.27019!10K5 4.27019!10K5 sK3



Table 5

Values of the gains utilised in the identification process

Gain Value (p.u)

K1 23.8227

K2 28.4585

K3 25

g0 2000

g1 K5.63348.10K4

g2 K2.08884

g3 K5.63348.10K4

ga 1.85566!10K2

gr 0.547183
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In Table 4, the true parameters of the ship model (3c) obtained from Table 2 are shown,

and the corresponding ones that were obtained by the identification procedure, while in

Table 5 appear the values of the used gains.

The identification algorithm and the optimisation one fails in the determination of the

coefficient c0. There is an alternative form of computing this coefficient. The procedure

starts from the steady value in the yaw rate temporal variation shown in Fig. 4. Under this

condition, from Eq. (3c) yields

c0 ZKðc3$ �x3
2 Cc2$ �x2

2 Cc1$ �x2 Cd$UÞ (35)
Fig. 8. Variation of the yaw angle. Continuous line: fitted curve to experimental. Data using the least square

method. Sign plus: using the parameters identified.



Fig. 10. Variation of the error state z2.

Fig. 9. Variation of the error state z1.
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Fig. 12. Variation of the stabilising function a1.

Fig. 11. Variation of the error state z3.
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Fig. 14. Variation of the stabilising function a3.

Fig. 13. Variation of the stabilising function a2.
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where �x2Z2:04618!10K2 rad/s, UZ0.3491 rad and ci (iZ1,.,3), d are the true values

shown in Table 4.

Fig. 8 shows the variation of the yaw angle. There is an excellent agreement between

the experimental values and the corresponding ones obtained by the simulation-

optimisation processes. Figs. 9–11 show that state error variables z1, z2 and z3, used in

expressions (34a)–(34c), converge quickly towards the null values for the gain values K1,

K2, K3, gi (iZ0,.,3), ga, gr shown in Table 5. Furthermore, stabilising functions a1, a2,

and a3, shown in Figs. 12–14, converge also according to imposed requirements.
4. Conclusion

The adaptive, identification and tracking processes have been carried out. The

procedure based on the backstepping procedure by the tuning functions design is capable

of realising this task starting from initial estimations values in a nonlinear ship

characterised by a relatively complex nonlinear model capable of adjusting the ship’s

dynamics. The identification procedure only needs the values of the temporal variation of

the yaw angle in a traditional turning test. The fail in the determination of the independent

term c0 can be due to the optimisation algorithm used for this purpose. This inconvenient

can be overcome by the use of more complete algorithms, such as the Fletcher–Reeves or

the Polak–Ribiere ones.
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