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Abstract
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arameters at non-isothermal reactions in materials involving formation and growth of nuclei. By considering the assumptions o
olume and random nucleation, a general expression of the fraction transformed as a function of time has been obtained in
rystallization processes. Considering the mutual interference of regions growing from separate nuclei the Johnson–Mehl–Avram
as been deduced as a particular case. The application of the transformation rate equation to the non-isothermal processes has
ut under the restriction of a nucleation which takes place early in the transformation and the nucleation frequency is zero therea

hese conditions, the kinetic parameters have been deduced by using the techniques of data analysis of single-scan and multip
heoretical method developed has been applied to the glass-crystal transformation kinetics of the semiconducting Ge0.13Sb0.23Se0.64 alloy.
he kinetic parameters obtained according to both techniques differ by only about 2.5%, which confirms the reliability and accur
ingle-scan technique when calculating the above-mentioned parameters in non-isothermal transformation processes. The phase
bove-mentioned semiconducting glass crystallizes after the thermal process have been identified by X-ray diffraction. The diffra

he transformed material shows that microcrystallites of Sb2Se3 and GeSe are associated with the crystallization process, remaining a r
morphous matrix.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Knowledge of amorphous materials is one of the most
ctive fields of research in the physics of condensed matter

oday[1]. The great interest in these materials is largely due
o their ever increasing applications in modern technology.
heir possibilities in the immediate future are huge based
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on characteristic properties such as electronic-excitation
nomena, chemical reactivity and inertia, and supercondu
ity. Therefore, the advances that have been made in ph
and chemistry of the quoted materials during the last 40 y
have been very appreciated within the research comm
A strong theoretical and practical interest in the app
tion of isothermal and non-isothermal experimental ana
techniques to the study of phase transformations has
developed in the last decades. The non-isothermal the
analytical techniques have become particularly prevalen
the investigation of the processes of nucleation and gr
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that occur during transformation of the metastable phases in a
glassy alloy as it is heated. These techniques provide rapid in-
formation on such parameters as glass transition temperature,
transformation enthalpy and activation energy over a wide
range of temperature[2]. In addition, the high thermal con-
ductivity as well as the temperature at which transformations
occurs in most amorphous alloys makes these transforma-
tions particularly suited to analysis in a differential scanning
calorimeter (DSC).

The study of crystallization kinetics in amorphous mate-
rials by DSC techniques has been widely discussed in the lit-
erature[3,4]. There are a large variety of mathematical treat-
ments mostly based on the Johnson–Mehl–Avrami (JMA)
transformation rate equation[5–8]. In this work the condi-
tions of applicability of the JMA transformation rate equa-
tion to non-isothermal crystallization are established. The ki-
netic parameters of the above-mentioned crystallization are
deduced by using the techniques of data analysis of single-
scan and multiple-scan. Moreover, the present paper applies
the quoted techniques to the analysis of the crystallization
kinetics of the glassy alloy Ge0.13Sb0.23Se0.64 and the values
of the kinetic parameters thus obtained differ by about 2.5%.
This fact shows the reliability and accuracy of the single-scan
technique for the calculation of the quoted parameters from a
continuous heating treatment. Finally, the crystalline phases
corresponding to the thermal treatment of the quoted glassy
a re-
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wheremis an exponent related to dimensionality of the crystal
growth.

Defining an extended volume of transformed material
[11–14], the above-mentioned elemental volume, dVe, is ex-
pressed as

dVe = νdN ′ = g

[∫ t

0
u(t′) dt′

]m

dN ′ (3)

dN′ being the elemental number of nuclei existing in the sam-
ple.

To obtain a general kinetic equation for the true volume
transformed, the mutual interference of regions growing from
separated nuclei must be considered. According to Avrami’s
model [5–7] it is now possible to find the following rela-
tionship between the extended volume,Ve(t), and the actual
volume,Vb(t):

dVb(t) =
(

1 − Vb(t)

V

)
dVe(t) (4)

V being the volume of the whole assembly, and where both
Vb andVe change with time.

The general solution of the preceding differential equation
is given as

Vb(t) = 1 − exp

(−Ve(t)
)

(5)
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lloy were identified by X-ray diffraction (XRD) measu
ents, using Cu K� radiation.

. Theoretical development

The theoretical basis for interpreting DTA or DSC res
s provided by the formal theory of transformation kine
5–7,9,10]. This theory supposes that the crystal growth r
n general, is anisotropic, and in the case of heterogen
ucleation induced by active substrates[11], the volume of a

ransformed region is then

= g
∏

i

∫ t

0
ui(t

′) dt′ (1)

here the expression
∏

i

∫ t

0 ui(t′) dt′ condenses the product
he integrals corresponding to the values of the above q
ubscripti, andg is a geometric factor, which depends on
imensionality and shape of the crystal growth, and there

ts dimension equation can be expressed as

g] = [L]3−i, ([L] is the length).

hen the crystal growth is isotropic,ui =u, an assumptio
hich is in agreement with the experimental evidence, s

n many transformation the reaction products grow app
ately as spherical nodules[11], Eq.(1) can be written as

= g

[∫ t

0
u(t′) dt′

]m

(2)
V V

n terms of the quoted general Avrami formulation to ana
articular models of crystallization is equivalent to ass
ifferentVe(t) dependences[15].

Thus, in the case of a grained glass sample it can be
osed that on the free surface of the material exists a
entration,Cn, of nuclei growing with a velocityu. These
uclei are formed at lower temperatures in the proce

emperature rise, mainly under the catalytic effect of for
ubstrates, dust, active sites, etc.

By integrating Eq.(3) the extended volume is obtained

e(t) = gN

[∫ t

0
u(t′) dt′

]m

(6)

iven that the material is grained the number of nucl
ritten asN=CnSs (Ss being the total surface area of t
ample). This area can be expressed as the multiplicat
he grain number,Ng =V/Vg (Vg = (4π/3)R3

g is the volume

f grain) by the surface area of a glass grain,Sg = 4πR2
g.

earing in mind these assumptions, Eq.(6) becomes

e(t) = Cn
3V

Rg
g

[∫ t

0
u(t′) dt′

]n

(7)

here the kinetic exponent isn=m, since the case of “si
aturation”[16] has been considered.

In the case of linear growth, this is,u independent of th
ime, and considering the initial stages of crystallization w
he growing crystallites do not interact, yet three-dimensi
rowth is to be expected, and the extended volume is g
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as

Ve(t) = Cn
3V

Rg
gu3t3 (8)

This three-dimensional growth of the surface nucleated crys-
tallization centres becomes practically impossible, when the
diameter,dm, and the surface concentration of the corre-
sponding nuclei fulfil the following relationships

Cn = Nn

Sg
= 1

Sm
= 4

πd2
m

(9)

whereNn is the number of nuclei in the surface of a grain
andSm the maximum meridian section of each nucleus (see
Fig. 1). Accordingly, the time elapsed during the quoted three-
dimensional growth is expressed as

t3−D = dm

2u
=
(
u
√

πCn

)−1
(10)

Bearing in mind Eqs.(5) and (8)the volume fraction trans-
formed with three-dimensional growth may be written as

x(t) = 1 − exp

[
−A3−D

Rg
u3t3

]
(11)

whereA3−D = 8d−2
m if it is assumed that the geometric fac-

tor of a hemisphere isg= 2π/3. It should be noted that for
glass semolina samples for which the condition (Rg/u) → 0
i d
a

After an intermediate period of crystal selection, radial
growth of a colony of needle-like crystallites, perpendicu-
lar to the surface of the grains is usually observed[15]. In
this stage of the process with one-dimensional growth, the
geometric factor isg = πd2

m/4 and the volume fraction crys-
tallized is expressed, according to Eqs.(5) and (7), by means
of the following expression

x(t) = 1 − exp[−xe(t)] = 1 − exp

[
−A1−D

Rg
ut

]
(12)

whereA1−D = 3 and the kinetic exponent isn= 1. It should
be noted that for this law ofxe(t), atxe(t) � 1 and according
to Eq.(12), the volume fraction transformed may be written
as

x(t) ≈ 3

Rg
ut (13)

i.e. the same approximative solution as this one following
from the classical Jander law[17]

x(t) = 1 −
(

1 − ut

Rg

)3

≈ 3

Rg
ut (14)

for (ut/Rg) → 0.
It follows also from Eqs.(11) and (12)that at constant

temperature and the same time,tz, the logarithmic forms
o na
s es,

F
o

s fulfilled, according to Eq.(11), the fraction transforme
fter timet3–D is x(t3–D) ≈ 1.
ig. 1. An illustration of the determination of the timet3–D, by means of Eqs.(9) an
f the glass grain grow as caps into the bulk of this grain, wheredm is the size of a
f the fractionsx(tz), which crystallize in glass semoli
amples with different grain radii should give straight lin
d (10), during which crystalline nuclei with concentrationCn on the surface
cap andRg the glass grain radius.
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ln[1 − x(tz)] versusR−1
g orx(tz) versusR−1

g for smallxvalues
if ln[1 − x(tz)] is expanded as a series and only the first term
is taken.

It should be noted that Eqs.(11) and (12)may be ex-
pressed by the more general relationships, which reflects a
n-dimensional growth

x(t) = 1 − exp
[
−
[
(An−D/Rg)1/nut

]n]
(15)

whereAn−D is a factor, which depends on the surface con-
centration and the dimensionality of the crystal growth, since
the above-mentioned case of “site saturation” (n=m) has be
considered. Note that the dimension equation of the quoted
factor can be expressed as

[An−D] = [L]1−n

Eq. (15) can be taken as a detailed specific case of the JMA
transformation equation

x(t) = 1 − exp[−(Kt)n] (16)

where the reaction rate constant,K, is a function of temper-
ature, because it depends on the crystal growth rate.

The isothermal transformation rate, dx/dt, can be easily
determined from Eq.(16)taking the derivative with respect to
time and substituting into the resulting expression the explicit
r
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[16]. In addition, in the cases as the above mentioned, the
reaction rate constant,K, could demonstrate a simple Ar-
rhenius behaviour (K =K0 exp(−E/RTa)) or a Vogel–Fulcher
behaviour (K =K0 exp[−E/R(Ta− T0)]) with respect to tem-
perature during the crystallization process, if a sufficiently
limited range of temperature for the crystallization peaks in
DSC experiments is considered[23]. In these expressions of
the rate constant,K0, is the frequency factor,E is the overall
effective activation energy,R is the ideal gas constant,T0 is
a constant temperature, andTa is the absolute temperature.

The analysis of crystallization kinetics is developed in
terms of a generalized temperature parameter,T. The gener-
alized formalism can be applied directly to either Arrhenius
behaviour or Vogel–Fulcher behaviour by substitutingTa or
Ta− T0 for T, respectively. Considering the generalized tem-
perature dependence forK, the kinetic parameters associated
with the transformation process areE, n, andK0. The tech-
niques of data analysis to obtain the quoted parameters can be
divided into single-scan analysis and multiple-scan analysis
techniques.

2.1.1. Single-scan technique
In the derivation of relationships for calculating kinetic

parameters of the glass-crystal transformations by using tech-
niques of continuous heating, a reaction rate independent of
the thermal history is necessary[18]. Thus, the reaction rate
i f ab-
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elationship betweenx andt given by Eq.(16) to yield

dx

dt
= nK(1 − x)[−ln(1 − x)](n−1)/n (17)

his equation is sometimes referred to as the JMA tran
ation rate equation.

.1. Evaluation of the Johnson–Mehl–Avrami
ransformation rate equation under conditions of
ontinuous heating

It was suggested by Henderson[18] in a notable paper th
q.(17)as developed by Johnson, Mehl and Avrami is ba
n the following important assumptions:

. isothermal transformation conditions;

. spatially random nucleation;

. growth rate of new phase dependent only on temper
and not on time.

In the past decades Eq.(17) has been applied witho
ualification to the analysis of non-isothermal phase tran
ations[19–21]. However, according to literature[22], the
bove-mentioned equation can be rigorously applied u
on-isothermal conditions if it can be shown that the tran
ation rate depends only on the state variablesxandT. Under

his restriction, according to the literature[18], an exampl
f a system which allows the non-isothermal applicatio
q. (17) is one in which the nucleation process takes p
arly in the transformation and the nucleation frequen
ero thereafter, which can be referred to as “site satura
s expressed as the product of two separable functions o
olute temperature and the volume fraction transforme
hese conditions Eq.(17)can be written as

dx

dt
= nKf (x) = nK0(1 − x)[−ln(1 − x)](n−1)/n

× [exp(−E/RT )] (18)

earing in mind that the heating rate isβ = dT/dt, Eq. (18)
ust be integrated by separation of variables, repla
ln(1− x′) with z′ andE/RT′ with y′, yielding

−ln(1 − x)]1/n = K0E

βR

∫ ∞

y

e−y′
y′−2 dy′ = K0E

βR
I (19)

he integralI is not integrable in closed form and the lit
ture[24,25] gives several series expansions for the qu

ntegral. V́azquez et al.[26] have developed a method to ev
ate it by an alternating series, where it is possible to use

he two first terms, without making any appreciable error.
esulting expression forI is substituted into Eq.(19), whose
ogarithmic form, according to literature[18], gives

n[−ln(1 − x)] − 2n ln T = − nE

RT
+ n ln

(
RK0

βE

)
(20)

f it is assumed that the term 2RT/E is negligible in compari
on to unity, since in most crystallization reactionsE/RT� 1
usually E/RT≥ 25) [23,27]. When n is known, a plot o
n[−ln(1− x)] − 2n ln T versus 1/T yields a straight lin
hose slope provides a value of the productnE. However, ac
ording to literature[28], over a temperature range of 100
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the contribution of the term 2n ln T can be ignored without
causing a substantial error in the calculated slope. On the
other hand, taking the logarithm of Eq.(18), according to
Henderson[18], results

ln

(
dx

dt

)
= ln(nK0) + ln[f (x)] − E

RT
(21)

Hence when ln(dx/dt) is plotted versus 1/T a straight line
is obtained, whose slope allows to calculate the activation
energy,E, of the glass-crystal transformation, if it is assumed
that for 0.25 <x< 0.75 the function ln[f(x)] may be considered
as constant[21,23]. The determination ofnEandE makes it
possible to directly obtain the parametern.

For those systems in whichK shows a Vogel–Fulcher tem-
perature behaviour a determination ofT0 must also be made,
according to Henderson[18]. In this case the effective acti-
vation energy,Eeff (Ta), can be obtained by the relationship:

d[ln(dx/dt)]

dT−1
a

= Eeff(Ta)

R
(22)

The derivative of the Eq.(21) with respect toT−1
a leads to

the expression

d[ln(dx/dt)]

dT−1
a

= −E

R

(
Ta

Ta − T0

)2
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p gen-

eralization of Eq.(16)for the treatment of continuous heating
experiments is interesting. If it is assumed that the transfor-
mation products and mechanism do not change with temper-
ature, then it is reasonable to replaceKt with

∫ t

0 K[T (t′)] dt′,
according to the literature[29], and Eq.(16)generalizes to

x = 1 − exp

{
−
[∫ t

0
K(T (t′)) dt′

]n}

= 1 − exp(−In
1) (24)

where K[T(t′)] = K0 exp(−E/RT) and T(t′) is the above-
mentioned generalized temperature. The maximum transfor-
mation rate is found by making d2x/dt2 = 0, thus obtaining
the relationship

nKp(In
1)|p = βE(I1)|p

RT 2
p

+ (n − 1)Kp (25)

where the magnitude values which correspond to the maxi-
mum crystallization rate are denoted by subscript p. Replac-
ing E/RT′ with y′, the integralI1 can be evaluated[26] as in
Section2.1.1, yielding an expression for (I1)|p, that when is
inserted into Eq.(25) results in (I1)|p = (1 − 2RTp/nE)1/n.
By equating both expressions for (I1)|p one obtains a rela-
t
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β

df (x)

dx
exp

(−E

RT

)

onsidering the negligible exponential term, and equa
he resulting expression with Eq.(22), yields

Eeff(Ta)]

(
(Ta − T0)2

T 2
a

)
≈ −E = constant

nd measuringEeff (Ta) at two widely spaced temperatu
a1 andTa2, the value ofT0 can be determined as

0 = (ATa1 − Ta2)(A − 1)−1

ith A = (Ta2T
−1
a1 )

{
Eeff(Ta1)[Eeff(Ta2)]−1}1/2

Finally, after
, n andT0 have been determined, the frequency factor,K0,
an be obtained by directly substituting forE andn in Eq.
18), yielding

0 = dx

dt

[
n
[
f (x)

]
exp

(−E

RT

)]−1

(23)

.1.2. Multiple-scan technique
The single-scan analysis techniques outlined abov

redicated on a detailed knowledge of the functional
endence of the transformation rate, dx/dt, on the fraction

ransformed,x, and the generalized temperature,T. The
ultiple-scan rate analysis techniques do not depend

pecific knowledge of the dependence of dx/dt onx. The pro-
edure requires the characterization of the transformatio
sing several different scan rates. When this procedure
lied to the case of a JMA transformation rate equation,
ionship whose logarithmic form can be written as

n

(
T 2

p

β

)
+ ln

(
K0R

E

)
−
(

E

RTp

)
≈ 2RTp

E

[
1 −

(
1

n2

)]
(26)

here the function ln(1− v) with v = 2RTp/nEorv = 2RTp/E
s expanded as a series and has been taken only the firs
f itself.

Note that, for most crystallization reactions, the right h
ide (RHS) of Eq.(26) is generally negligible in compariso
o the individual terms on the left-hand side for comm
eating rates (≤100 K min−1), thus forn> 1 andE/RTp > 25

he error introduced in the value ofE/R is less than 1%. Eq
26)serves to determine the activation energy,E, and the fre
uency factor,K0, from the slope and intercept, respectiv
f the ln(T 2

p /β) versus 1/Tp plot.
Finally, it should be noted that Eq.(26) with RHS = 0 is

btained, considering that 2RTp/E� 1, according to the lit
rature[23], and therefore (I1)|p = 1. Thus, deriving Eq.(24)
ith respect to time and considering the expression foKp
hen (I1)|p = 1 it is possible to obtain

= dx

dt
|pRT 2

p (0.37βE)−1 (27)

hich permits us to calculate the kinetic exponentn in a se
f exotherms taken at different heating rates and the c
ponding mean value represents the most probable va
he kinetic exponent of the transformation process.
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3. Experimental

The semiconducting Ge0.13Sb0.23Se0.64 glassy was made
in bulk form, from their components of 99.999% purity,
which were pulverized to less than 64�m, mixed in ade-
quated proportions, and introduced into quartz ampoules.
The ampoules were subjected to an alternating process of
filling and vacuuming of inert gas, in order to ensure the
absence of oxygen inside. This ended with a final vacuum-
ing process of up to 10−2 Pa, and sealing with an oxyacety-
lene burner. The ampoules were put into a furnace at 1223 K
for 44 h, turning at 1/3 rpm, in order to ensure the homo-
geneity of the molten material, and then quenched in water
with ice to avoid the crystallization. The capsules contain-
ing the samples were then put into a mixture of hydroflu-
oridic acid and hydrogen peroxide in order to corrode the
quartz and make it easier to extract the alloy. The glassy
state of the material was confirmed by a diffractometric X-
ray scan, in a Siemens D500 diffractometer, showing an ab-
sence of the peaks which are characteristic of crystalline
phases. The homogeneity and composition of the samples
were verified through scanning electron microscopy (SEM)
in a Jeol, scanning microscope JSM-820. The calorimetric
measurements were carried out in a Perkin-Elmer DSC7 dif-
ferential scanning calorimeter with an accuracy of±0.1 K.
A constant 60 ml min−1 flow of nitrogen was maintained
i the
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Fig. 2. Typical DSC trace of Ge0.13Sb0.23Se0.64glassy alloy at a heating rate
of 32 K min−1. The hatched area showsAT, the area betweenTi andT.

4. Results and discussion

The typical DSC curve of Ge0.13Sb0.23Se0.64semiconduc-
tor glass obtained at a heating rate of 32 K min−1 and plot-
ted in Fig. 2 shows three characteristic phenomena which
are resolved in the temperature region studied. The first one
(T= 493 K) corresponds to the glass transition temperature
Tg, the second (T= 601 K) to the extrapolated onset crystal-
lization temperatureTc, and the third (T= 619 K) to the peak
temperature of crystallizationTp of the above-mentioned
semiconductor glass. The quoted DSC trace shows the typi-
cal behaviour of a glass-crystal transformation. The thermo-
grams for the different heating rates,β, quoted in Section3,
show valuesTg, Tc andTp which increase with increasing
β, a property which has been widely quoted in the literature
[30,31].

4.1. Crystallization

The analysis of the crystallization kinetics is related with
the knowledge of the reaction rate constant as a function of
the temperature. It should be noted that the assumption of
an Arrhenius type temperature dependence for the quoted
constant, as many authors have considered in the last decades,
is a very rough approximation[23]. Therefore, in the present
w f the
t
f
o

m-
stal
and

ytical
neg-
n order to provide a constant thermal blanket within
SC cell, thus eliminating thermal gradients and ensu

he validity of the applied calibration standard from s
le to sample. Moreover, the nitrogen purge allows to e

he gases emitted by the reaction, which are highly co
ive to the sensory equipment installed in the DSC furn
he calorimeter was calibrated, for each heating rate

ng the well-known melting temperatures and melting
halpies of high purity zinc and indium supplied with
nstrument. The analysed samples were pulverized (pa
ize around 40�m), crimped into aluminium pans, and th
asses were kept about 20 mg. An empty aluminium
as used as reference. The crystallization experiments
arried out through continuous heating at rates,β, of 2, 4, 8,
6, 32 and 64 K min−1. The glass transition temperature w
onsidered as a temperature corresponding to the infle
oint of the lambda-like trace on the DSC scan, as show
ig. 2.

The crystallized fraction,x, at any temperature,T, is given
y x=AT/A, whereA is the total area of the exotherm b

ween the temperatureTi where the crystallization is just b
inning and the temperatureTf where the crystallization
ompleted, andAT is the area between the initial tempe
ure and a generic temperatureT (seeFig. 2). With the aim
f investigating the phases into which samples crysta
iffractograms of the material transformed during ther
rocess were obtained. The experiments were performed
Philips diffractometer (type PW1830). The patterns w

un with Cu as target and Ni as filter (� = 1.542Å) at 40 kV
nd 40 mA, with a scanning speed of 0.1◦ s−1.
ork it is considered that the rate constant is a function o
emperature under more general conditions[23,32]. In order
or these conditions to hold, according to literature[23], one
f the following two sets of hypotheses should apply:

(i) The crystal growth rate,u, can to depend on the te
perature through of the viscosity, when, e.g., the cry
growth takes place by a normal growth mechanism;
over the temperature range where the thermoanal
measurements are carried out, the nucleation rate is
ligible (i.e., the condition of “site saturation”).
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Table 1
The characteristic temperatures and enthalpies of the crystallization pro-
cesses of alloy Ge0.13Sb0.23Se0.64

Parameter Experimental value

Tg (K) 474.0–499.2
Ti (K) 558.7–599.7
Tp (K) 581.1–631.3
�T (K) 42.0–56.7
�H (mJ mg−1) 25.7–32.0

Fig. 3. Crystallization rate vs. temperature of the exothermal peaks, at dif-
ferent heating rates.

(ii) Both the crystal growth and the nucleation, which de-
pend on the temperature under general conditions, occur
simultaneously[33].

In this work the first set of conditions is assumed in order
to apply the JMA equation under regime of continuous heat-
ing. From this point of view, the crystallization kinetics of
the Ge0.13Sb0.23Se0.64 alloy has been analysed by using the
calorimetric techniques of single-scan and multiple-scan.

With the aim of analysing the above-mentioned kinetics,
the variation intervals of the quantities described by the ther-
mograms for the different heating rates, quoted in Section3
are obtained and given inTable 1, whereTi andTp are the
temperatures at which crystallization begins and that corre-
sponding to the maximum crystallization rate, respectively,
and�T is the width of the peak. The crystallization enthalpy,
�H, is also determined for each heating rate.

The area under the DSC curve is directly proportional to
the total amount of material transformed. The ratio between
the ordinates and the total area of the peak gives the cor-
responding transformation rates, which make it possible to
plot the curves of the exothermal peaks represented inFig. 3.
It may be observed that the (dx/dt)|p values increase in the
same proportion as the heating rate, a property which has
been widely discussed in the literature[30,31].

The single-scan technique was applied to several sets of
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Fig. 4. Variation of ln[−ln (1− x)] with 1/T for a heating rate of 8 K min−1.

quoted in Section3, and the results fornE from Eq. (20),
E from Eq. (21), n derived there from andK0 are in-
cluded inTable 2. The mean values for these parameters are:
<E> = 202.3 kJ mol−1, <n> = 2 and <K0> = 4.34× 1015 s−1.
To illustrate the above-mentioned technique,Fig. 4 shows
the plots of ln[−ln(1− x)] versus 1/T for β = 8 K min−1, to-
gether with the corresponding straight regression line, while
the plots of ln(dx/dt) versus 1/T with the straight regression
line carried out, are shown inFig. 5.

On the other hand, the multiple-scan technique, which
allows E to be quickly evaluated, has been used to
analyse the crystallization kinetics of the semiconducting
Ge0.13Sb0.23Se0.64 alloy. The plots of ln(T 2

p /β) versus 1/Tp
at each heating rate, and the straight regression line carried
out are shown inFig. 6. The results forE andK0 from Eq.
(26)are given inTable 2.

By using the values of the maximum crystallization rate,
and the temperatures, which correspond to the quoted maxi-
mum values, given inTable 2, it is possible to obtain, through
the Eq.(27), the kinetic exponent of the process correspond-
ing to each of experimental heating rates. The values of the

F of
t

Fig. 6. Plots of ln(T 2
p /β) vs. 1/Tp of the analysed material (β in K s−1).

n-parameter are also shown inTable 2. Bearing in mind that
the calorimetric analysis is an indirect method which makes
it possible to obtain mean values for the parameters that con-
trol the kinetics of a reaction, the corresponding mean value,
<n> = 1.96, has been calculated.

With the aim of correctly analysing the reliability of the
single-scan technique, when calculating kinetic parameters
in non-isothermal crystallization processes, the above pa-
rametersE, n and lnK0, calculated by means of the above-
mentioned technique, are compared with its values obtained
through the multiple-scan technique,Table 2, finding that
the error between them for the less accurate parameter is
less than 2.5%. This result is in agreement with the literature
[21], where is shown that for (n− 1)/n= 0.6 in the range of
0.2 <x< 0.4 it results in an error of 7% in the calculated slope,
E/R, an error acceptable in most crystallization reactions.

Considering that the crystallization process of the stud-
ied material is basically a growth of the pre-existing nuclei
in the as-quenched glass, “site saturation”, it is possible to
affirm, according to the literature[15], that the kinetic expo-
nent,n, in the case of crystallization of finely grained sam-
ples has a physical meaning, which is determined by the ratio
of growth rate/radius of sample grains, as it is deduced from
Eqs.(11) and (12). It should be noted that in Eq.(11)of three-
dimensional growth,n= 3, the ratiou/Rg → ∞, whereas in
Eq.(12)of one-dimensional growth,n= 1, the ratiou/Rg → 0.
T c ex-
p ich is
i

5

aks
s
r crys-
t ples
b rpose
ig. 5. Experimental plots of ln(dx/dt) vs. 1/T and straight regression line
he Ge0.13Sb0.23Se0.64 alloy.
his fact shows that in grained glass samples the kineti
onent decreases with the increasing grain radius, wh

n agreement with the literature[15,34].

. Identification of the crystalline phases

Taking into account the crystallization exothermal pe
hown by the semiconducting Ge0.13Sb0.23Se0.64 alloy, it is
ecommended to try to identify the possible phases that
allize during the thermal treatment applied to the sam
y means of adequate XRD measurements. For this pu
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Fig. 7. (A) Diffractogram of the amorphous Ge0.13Sb0.23Se0.64 alloy. (B)
Diffraction peaks of the quoted alloy crystallized in DSC.

in Fig. 7 we show the most relevant portions of the diffrac-
tograms for the as-quenched glass and for the material sub-
mitted to the thermal process.Fig. 7A has broad humps
characteristic of the amorphous phase of the starting ma-
terial at diffraction angles (2θ) between 20◦ and 60◦. The
diffractogram of the transformed material (Fig. 7B) shows
that the crystallization process analysed in this work is as-
sociated with crystallites of Sb2Se3 and GeSe indicated with
solid and open circles, respectively, together with some traces
of elemental crystalline Ge, Sb and Se, remaining a resid-
ual amorphous matrix. The two quoted phases Sb2Se3 and
GeSe crystallize in the orthorhombic system[35] with unit
cells defined bya1 = 11.633Å, b1 = 11.78Å, c1 = 3.895Å,
anda2 = 4.39Å, b2 = 3.827Å, c2 = 10.824Å, respectively.

6. Conclusions

The described theoretical procedure enables us to study
the evolution with time of the volume fraction transformed in
materials involving nucleation and crystal growth processes.
This method assumes the concept of extended volume in
the transformed material and the condition of random nu-
cleation. Using these assumptions a general expression for
the transformed fraction as a function of time in bulk crystal-

lization processes has been obtained. In the case of isother-
mal crystallization, the above-mentioned expression has been
transformed in an equation, which can be taken as a specific
case of the JMA transformation equation. The application
of this equation to non-isothermal transformations implies
restrictive conditions, as it is the case of a transformation
rate which depends only on the fraction transformed and
the temperature. Under this restriction the kinetic parame-
ters have been deduced both for the single-scan technique
and for the multiple-scan technique, which are applicable to
constant scan rate DTA and DSC experiments on materials
which obey the JMA transformation rate equation.

The above-mentioned techniques have been applied
to the crystallization kinetics of the semiconducting
Ge0.13Sb0.23Se0.64alloy. The difference between the obtained
values for the kinetic parameters by means of both techniques
is less than 2.5%. This good agreement shows the reliabil-
ity of the single-scan technique for the calculation of kinetic
parameters, mainly in the interval (0.2–0.5) of the volume
fraction crystallized, a fact in agreement with the literature.
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[22] T. Kemény, Thermochim. Acta 110 (1987) 131.
[23] H. Yinnon, D.R. Uhlmann, J. Non-Cryst. Solids 54 (1983) 253.
[24] P. Murray, J. White, Trans. Br. Ceram. Soc. 54 (1955) 204.
[25] C.D. Doyle, Nature 207 (1965) 290.
[26] J. Vázquez, C. Wagner, P. Villares, R. Jiménez-Garay, Acta Mater.
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