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We derive a Laguerre expansion for the inverse Laplace transform, based on the
estimation problem in the gamma distribution. This procedure is used to obtain
the density and distribution functions of a sum of positive weighted central chi-
square variables as a series in Laguerre polynomials. The formulas so obtained will
depend on certain parameters which adequately chosen will give some expressions
already known in the literature and some new ones. Finally, we obtain bounds for
the truncation error in the numerical approximations.
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1. Introduction

The statistics employed in many test and estimation procedures are expressible
as quadratic forms in normal variables. The sample variance is one of the most
common examples. We are interested in definite central quadratic forms. It is
well-known that we can make an orthogonal transformation reducing this type
of quadratic form to its canonical form, i.e., to a positive linear combination of
independent central chi-square variables.

In addition, the distribution of a positive linear combination of central chi-
square random variables with any degrees of freedom arises in the null asymptotic
theory of goodness-of-fit tests, see Rao and Scott (1984). Other applications are
found in connection with ballistics problems, in biology, in communications theory,
etc. (see Jensen and Solomon, 1972).
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The problem of obtaining the distribution of a positive linear combination
of central chi-square random variables has been addressed by many authors. A
comprehensive survey and literature review of the subject was given by Johnson
et al. (1994). Various representations of this distribution have been given including
certain mixtures of chi-square distributions (see Robbins, 1948; Robbins and
Pitman, 1949), Laguerre series expansions (see Bhattacharyya, 1945; Gurland,
1955, 1956; Kotz et al., 1967; Gideon and Gurland, 1976), and power series
expansions (Pachares, 1955). “Though all three types of expansions yield correct
convergent representations, it has been found that the Laguerre series representation
is computationally the most convenient and effective throughout the range of
interesting values” (see Mathai and Provost, 1992, p. 117 and this expansion was
used by Johnson and Kotz, 1968 to tabulate this distribution).

We consider Qn =
∑n

i=1 �iXi, where the �’s are known positive constants and the
X’s are independent chi-square variables with �i degrees of freedom, respectively.
Our aim is to obtain the density and distribution functions of Qn as a Laguerre series
expansion. We also derive bounds on the truncation error in the given expansions
and compare our results with those given by Kotz et al. (1967).

The method that we present is based on the inverse Laplace transform. The
method of inversion that we propose in Sec. 2 is based on the property of uniqueness
of minimum variance unbiased estimators (MVUE) in the gamma distribution.
Then, in Sec. 3, we apply this method for the obtention of the density and
distribution functions of Qn. In Sec. 4, we present some necessary results in order to
study, and in Sec. 5, the truncation error of the proposed expansions are presented.
Moreover we give empirical results on the truncation errors.

2. The Inversion of Laplace Transforms

The main difficulty in applying Laplace-transform techniques is the determination
of the original function from its transform. For a review of analytical methods, see
Spiegel (1991).

In many cases, analytical methods fail and numerical methods must be used.
The best known numerical methods for the inversion of the Laplace transform are
based on the numerical integration of the Bromwich integral or on the expansion
of the original function in a series of orthogonal functions, particularly orthogonal
exponential functions and Laguerre polynomials. In Piessens and Branders (1971)
we found a discussion about the reasons for which Laguerre expansions are
preferable to expansions in orthogonal exponential functions.

In this section, we obtain a method to invert Laplace transforms based on
unbiased estimation in the Gamma distribution. Therefore, first we will treat the
unbiased estimation problem in this distribution.

2.1. Estimation in the Gamma Distribution

Let Y be a random variable following a Ga�p� �� distribution with p > 0 known and
� > 0 unknown parameter and density function g�y� ��, given by

g�y� �� = �p

��p�
yp−1e−�y� y > 0�
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This random variable belongs to the natural exponential family with quadratic
variance function, and so it is possible to use the mean, 	 = p/�, as the parameter
of this distribution, see Morris (1982).

For each 	 > 0� consider the space of functions

�2
	 =

{
T 


∫
T 2�s�f�s� 	�ds < �

}
with f�s� 	� = g�s� p/	�.

As usual in the theory of �2 spaces, we will consider two functions, T1� T2 ∈
�2

	 to be equivalent if T1�x� = T2�x� a.e. With the inner product �T1� T2�	 =
E	 �T1�x�T2�x��, the space

(
�2

	� �·� ·�	
)
is a Hilbert space for any 	 > 0.

Provided that the variance function is quadratic, the functions

Pj�x� 	� = �−1�j
(
	

p

)j

j!L�p−1�
j

(
px

	

)
� j ≥ 0� (1)

where L���
j �x� =∑j

m=0

(
j+�
j−m

)
�−x�m

m! , � > 0, is the jth generalized Laguerre polynomial,
form a complete system of monic orthogonal polynomials with respect to the
gamma density.

The polynomials defined in (1) satisfy the following properties, see Morris
(1982):

(P1) The recurrence relation:

Pk+1 =
(
P1 −

2k	
p

)
Pk − k

{
1+ k− 1

p

}
	2

p
Pk−1� k ≥ 1�

P0 = 1� P1 = x − 	�

(P2) dj

d	j
f �x� 	� = (

p

	

)j
Pj�x� 	�f �x� 	�

(P3)
〈
Pk� Pj

〉
	
= 
k�jj!

(
	

p

)2j
�p�j , where 
k�j is the Kronecker’s delta and �a�j =

a �a+ 1� · · · �a+ j − 1� if j ≥ 1 and �a�0 = 1�

Definition 1. A function h�	� is said to be MVU-estimable if there exists a function
T ∈ �2

	� ∀	 > 0� satisfying: E�T�X�� = h�	�, for all 	 > 0.
In such a case, T is the minimum variance unbiased estimator, MVUE, of h�	�.

The set of all the MVU-estimable functions will be denoted by �.

We will obtain an expression for T , in the next theorem.

Theorem 1. Let h be a MVU-estimable function, then its MVU-estimator admits the
following expression:

T�x� =
�∑
j=0

�−	�jh�j��	�

�p�j
L�p−1�

j

(
px

	

)
� ∀	 > 0� �a�e�� (2)

with h�j��	� = dj

d	j
h�	�.

Proof. This is a particular case of the formula (3.6) of Morris (1983). �
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Remark 1. One expression for the variance of T is easily obtained by the
orthogonality property of Laguerre polynomials

Var�T�x�� =
�∑
k=1

�	�2k�h�k��	��2

k!�p�k
� (3)

From the a.s.-uniqueness of the MVU estimators, it follows that the choice of 	 > 0
in the right-hand side (rhs) of (2) is arbitrary. Adequate choices of this parameter
may yield formulas computationally efficient as we will see later.

From the unbiasedness condition, E	�T�X�� = h�	�, it is easy to obtain an
alternative expression for the unbiased estimator based on the inverse Laplace
transform (denoted by �−1):

T�x� = ��p�

xp−1
�−1

((
p

	

)−p

h�	�

)
�x�� x > 0� (4)

2.2. The Inversion of Laplace Transforms

From the uniqueness of the MVU estimators, we can obtain the following result
which gives us an expression for inverse Laplace transforms.

Theorem 2. Let G���, � > 0, be a function such that for certain p > 0, h�	� =
�p/	�pG�p/	� is MVU-estimable function, then:

�−1 �G���� �x� = xp−1

��p�

�∑
j=0

�−	0�
jh�j��	0�

�p�j
L�p−1�

j

(
px

	0

)
� �a.e.� (5)

for any 	0 > 0.

Proof. It is immediate from (2) and (4). �

Note that the choice of 	0 is irrelevant. For instance, if we consider 	0 = p =
a+ 1 we obtain the expression given by Piessens and Branders (1971).

3. Computation of the Distribution of Qn

Our aim in this section is to obtain the density and distribution functions of Qn as
applications of Theorem 2.

Let f be the density of Qn, then it can be easily shown that its Laplace
transform is:

� �f�x�� ��� =
n∏

i=1

�1+ 2�i��
−�i/2 = G����

We consider the following transformation to get a better approximation:

H��� = G

(
�− 1
2�

)
= ��/2

n∏
i=1

�� + �i ��− 1��−�i/2 �
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with � > 0. So, using standard properties of Laplace transforms:

f�x� = �−1�G�����x� = �−1�H�1+ 2�����x�

= e−
x
2�

2�
�−1�H����

(
x

2�

)
� (6)

We now apply Theorem 2 to invert H .
Letting h�	� = �p/	�pH�p/	�, with p = �/2 and � =∑n

i=1 �i,

h�	� = ���/2��/2
n∏

i=1

��	 + �i��/2− 	��−�i/2 �

and

h�k��	� = �−1�k�k− 1�!
k−1∑
j=0

�−1�jh�j��	�

j!
n∑

i=1

�i
2

(
� − �i

�	 + �i��/2− 	�

)k−j

�

Then, if we let ck = �−	0�
kh�k��	0�/k!� we have:

�−1�H�����x� = x��/2�−1

���/2�

�∑
k=0

k!ck
��/2�k

L
� �2−1�
k

(
�x

2	0

)
� ∀	0 > 0�

and from (6)

f�x� = e−
x
2�

�2���/2
x��/2�−1

���/2�

�∑
k=0

k!ck
��/2�k

L
� �2−1�
k

(
�x

4�	0

)
� ∀	0 > 0� (7)

with

ck =
1
k

k−1∑
j=0

cjdk−j� k ≥ 1�

c0 =
(

�

2	0

)�/2 n∏
i=1

(
1+ �i

�

(
�

2	0

− 1
))−�i/2

�

(8)

dj =
1
2

n∑
i=1

�i

(
1− �i

�

1+ �i
�

(
�

2	0
− 1

))j

� j ≥ 1� (9)

If we let 	0 = �/2 in (7), we obtain the expansion given by Kotz et al. (1967).
However, we can consider other choices of the parameter in order to improve the
speed of convergence of the series in the rhs of (7).

Similarly, we obtain the following expression for the distribution function:

F�x� = e−
x
2�

�2��1+�/2

x��/2�

���/2+ 1�

�∑
k=0

k!mk

��/2+ 1�k
L

� �2 �

k

(
��+ 2�x
4�	0

)
� 	0 > 0� (10)
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with p = �/2+ 1, and

mk =
1
k

k−1∑
j=0

mjlk−j� k ≥ 1�

m0 =
(
p

	0

)�/2 2�p
p− 	0

n∏
i=1

(
1+ �i

�
�p/	0 − 1�

)−�i/2

�

(11)

lj =
( −1
p/	0 − 1

)j

+ 1
2

n∑
i=1

�i

(
1− �i/�

1+ �i/� �p/	0 − 1�

)j

� j ≥ 1� (12)

In this case, we offer an alternative expression for the distribution function
without knowing the density function. Most of the authors in the literature obtain
an expression for the distribution function from the density function, as was done
for example by Kotz et al. (1967).

An important advantage of this method is that we propose a set of equivalent
expansions depending on a parameter, and so adequate choices of this parameter
give some of the already known expressions as well as computationally efficient
expressions.

On the other hand, as our objective is to evaluate these formulas we study the
errors produced when the infinite series given in �7� and �10� are truncated. So, in
the following section we derive some bounds for the truncation error.

4. Preliminary Results

The following results give us bounds for the Laguerre polynomials as well as for the
coefficients expressed in (8) and (11), respectively. They are necessary to bound the
truncation error.

Lemma 1. A classical global uniform (w.r.t. n, x and �) estimate given by Szegö
(1979) for the Laguerre polynomials is:

∣∣L���
k �x�

∣∣ ≤ ��+ 1�k
k! exp

(x
2

)
� � ≥ 0�

∣∣L���
k �x�

∣∣ ≤ (
2− ��+ 1�k

k!
)
exp

(x
2

)
� −1 < � < 0�

(13)

Lemma 2. Let ck as given in (8), then:

�ck� ≤ �c0�
��/2�k
k! �k� ∀k ≥ 0�

with � = maxi
∣∣∣ 1− �i/�

1− �i/�+ �i/��p/	0�

∣∣∣ �
Proof. It is immediate by induction. �

Similarly, the following lemma is proved by induction.
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Lemma 3. Let mk given in (11), then

�mk� ≤ �m0�
��/2+ 1�k

k! �k� ∀k ≥ 0�

where � = max
(∣∣ −1

p/	0 − 1

∣∣� �), � = maxi
∣∣ 1− �i/�

1− �i/�+ �i/��p/	0�

∣∣, and p = �/2+ 1�

Remark 2. If 	0 < p/2, then 0 < � < 1�

5. Truncation Error and Numerical Results

Given the bounds obtained for the Laguerre polynomials and their coefficients, we
study the truncation error associated with the proposed expansions.

Consider the truncation error for the density function as:

�N �f� x� 	0� �� =
∣∣∣∣∣ e−

x
2�

�2���/2
x��/2�−1

���/2�

�∑
k=N+1

k!ck
��/2�k

L
� �2−1�
k

(
�x

4�	0

)∣∣∣∣∣ �
Kotz et al. (1967) proposed the following bound:

�N �f� x� 	0� �� ≤
e−

x
4�

�2���/2
x��/2�−1

���/2�

(
1− �1/2

)−�/2−1
��N+1�/2� (14)

with � = max
i

∣∣1− �i
�

∣∣.
We obtain a better bound from Lemma 2 and Lemma 1 for � ≥ 2,

�N �f� x� 	0� �� ≤
e−

x
2�

�2���/2
x��/2�−1 �c0�
���/2�

exp
(

�x

8�	0

) �∑
k=N+1

ak� (15)

with

ak =
�k��/2�k

k! �

The bound (15) is well defined since the series of general term ak is absolutely
convergent if 0 < � < 1, see Remark 2. As a consequence we have that the expansion

Table 1
Bounds for the truncation error of the density of Q3 = 0�6�21 + 0�3�21 + 0�1�21

x Kotz et al.’s bound (14) 	0 = p = �/2 (15) 	0 = p/10 = �/20 (15)

0.1 1�756687 0�009402 0�2093 · 10−13

0.7 3�027730 0�016575 0�1707 · 10−11

2 2�02211 0�010823 0�4858 · 10−8

3 1�212397 0�6489 · 10−2 0�1804 · 10−5

4 0�685336 0�1508 · 10−3∗ 0�7799 · 10−10∗

5 0�375101 0�8255 · 10−4∗ 0�2643 · 10−7∗

Note: The values indicated with ∗ have been calculated with N = 30.
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Table 2
Bounds for the truncation error of the distribution of Q3

x Kotz et al.’s bound (17) 	0 = p/4 (16) 	0 = p/10 (16)

0.1 0�045657 0�2022 · 10−7 0�2352 · 10−13

0.7 0�550849 0�8825 · 10−6 0�1343 · 10−10

2 1�051131 0�000027 0�1092 · 10−6

3 0�945330 0�000209 0�000060
4 0�712494 0�1640 · 10−6∗ 0�5046 · 10−8∗

5 0�487456 0�9566 · 10−6∗ 0�2138 · 10−5∗

Note: The values indicated with ∗ have been calculated with N = 30.

converges uniformly in any finite interval, for all 	 and � conveniently chosen.
However, it is possible to get uniform convergence for all x > 0 if 	0 > p/2.

In Table 1 we compare the bounds (14), given by Kotz et al., and (15) for
Q3 = 0�6�21 + 0�3�21 + 0�1�21, see Imhof (1961), � = �0�6+ 0�1�/2 and N = 20:

Similarly, we obtain the following bound for the truncation error of the
distribution function

�N �F� x� 	0� �� ≤
e−

x
2�

�2��1+�/2

x��/2� �m0�
���/2+ 1�

exp
(
��+ 2� x
8�	0

) �∑
k=N+1

bk� (16)

with

bk =
�k ��/2+ 1�k

k! �

Kotz et al. (1967) obtained the bound:

�N ≤ �

N + 1
x�/2

21+�/2��/2���/2+ 1�
exp

(−x

4�

)
� ��N+2�/2

(
1− �1/2

)−�/2−2
� (17)

with � = maxi ��1− �i/���. We compare both expressions (16), (17) for Q3 = 0�6�21 +
0�3�21 + 0�1�21, N = 20, and p = �/2+ 1, in Table 2.

Table 3
Approximations for the distribution function of Q5

x Approx. (10) Imhof Trunc. error bounds (16)

5 0�094143 0�094149 0�4759 · 10−12

10 0�291739 0�291731 0�1658 · 10−10

20 0�624755 0�624757 0�3561 · 10−8

30 0�807274 0�807275 0�3724 · 10−6

40 0�899140 0�899138 0�2901 · 10−4

50 0�945864 0�945865 0�3078 · 10−7∗

Note: The column labelled Imhof has been calculated using the result given in Imhof
(1961), p. 463, with � = 0�0001. The value indicated with * has been calculated with N = 40.
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To end this section we present Table 3, in which we present another example
with unbalanced coefficients and more terms, given by Q5 = 10�21 + 4�21 + 3�21 +
2�21 + �21. We compare our results for 	0 = p/10, � = 11/2, and N = 30, with the
results obtained by the Imhof’s formula.

6. Conclusions

We have derived a Laguerre expansion for the inverse Laplace transform. This
expansion has been used to evaluate the density and distribution function of the
sum of weighted central chi-square variables. The formulas so obtained depend on
certain parameters. Adequate choices of these parameters give some expressions
already known in the literature and some new ones. We have also obtained bounds
for the truncation errors in the numerical approximations. Some numerical results
show that our bounds are sharper than those given by Kotz et al. (1967).
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