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Abstract

A class of exact solutions of the dispersionless Toda hierarchy constrained by a string equation is obtained. These solutions
represent deformations of analytic curves with a finite number of nonzero harmonic moments. The correspfuntttigns
are determined and the emergence of cusps is studied.
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1. Introduction the form

Zy :/deMTexp<—EtrW(M,MT)>, (1)
Integrable contour dynamics governed by the dis- h
persionless Toda (dToda) hierarchy is a multifaceted where
subject. It underlies problems of complex analyiis _ _ -
2], interface dynamics (Laplacian growtfg], quan- " (¥ =2+ w0~ > (net +52"). @
tum Hall effect[4] and associativity (WDVV) equa- k2t
tions[5]. A common ingredient in many of its appli- In an appropriate largev limit (2 — 0, s := AN
cations is the presence of random models of normal fixed), the eigenvalues of the matrices are distributed
N x N matrices[1—4,6,7]with partition functions of  within a planar domainsiipport of eigenvalues) with
sharp edges, which depends on the parametets
(s=35, t1,t2,...).
~ © Partially supported by DGCYT project BFM2002-01607. If the support of eigenvalues is a simply-connected
E-mail addresses: luism@fis.ucm.e4. Martinez Alonso), bounded domain with boundary given by an analytic
elena.medina@uca.€s. Medina). curve y (z = z(p), |pl = 1), then(s,1,12,...) are
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harmonic moments of and the curve evolves with
(¢, 1) according to the dToda hierarchy. Moreover, the
corresponding -function represents the quasiclassical
limit of the partition function(1). A particularly inter-
esting feature is that for almost all initial conditions
the evolution ofy leads to critical configurations in
which cusp-like singularities develop. This behaviour
is well-known in Laplacian growti8] and random
matrix theory[9].

In order to obtain solutions of the dToda hierarchy

L. Martinez Alonso, E. Medina / Physics Letters B 610 (2005) 277-282

with (v, v, ...) being functions dependent onAs a
consequence @fl)—(3), it follows thatz(p, ¢, 1) solves
the dToda hierarchy

.z = (Hy, 2}, .2 =—{Hx, 2},
1
Hy = (z")>1 + E(Zk)o’
_ _ 1.
Hy .= (zk)gfl + E(Zk)o’ (7)

where {f, g} := p(d, fd;g — 9,805 f), the function

describing contour dynamics one mustimpose a string 7,1y js defined by the Laurent series

equation which leads to a particular type of Riemann—
Hilbert problem[10-12] In this Letter we present a
method for finding solutions in the form of Laurent
polynomials

Ug-1

pKfl

3

which describe dynamics of curves with a finite num-
ber of nonzero harmonic moments, namgly: 7, =0

for k > K. We exhibit examples for arbitrarik and
derive their corresponding-functions. Furthermore,
the emergence of cusps is analytically studied.

z=rp+uo+---+

2. dToda contour dynamics

Let z = z(p) be an invertible conformal map of the
exterior of the unit circle to the exterior of a simply

connected domain bounded by a simple analytic curve 7 =

y of the form

2=5(2), 4

where bar stands for complex conjugatiar(f{) =
z(p~1) on y) and theSchwarz function S(z) is ana-
lytic in some domain containing.
The mapz(p) can be represented by a Laurent se-
ries
ad u
wp)=rp+ Y )
k=0 p
with areal coefficient. The coefficientsr, ug, u1, ...)
are functions of the harmonic moments= (s =
5,11, 1t2,...) of the exterior ofy, which in turn can

be introduced through the expansion of the Schwarz

function

o0 o0

S v,

S@= knd =+ =
=1 Sy

Zk+1°

(6)

o
o r _
2p ==+ ) wph, €

P o
and the symbols...)>1 ((...)<—1) and(...)o mean
truncated Laurent series with only positive (negative)
terms and the constant term, respectively. Further-

more, this solution satisfies the string equation

{zm.z2(p Y} =1 )

These properties can be proved through the twistor
scheme of Takasaki—Takef#. It uses Orlov—Schul-
man functions of the dToda hierarchy

o0 o0 v
_ k i
m_Zktkz —l—s—l—zzk,
k=1 k=1

o0 o0 l_}
Zkt_kik—i—s—l—zz—:,

k=1 k=1

(10)
and can be summarized as follows:

Theorem 1. If (z,m, z,m) are functions of (p,t,1)
which admit expansions of the form (5), (8), (10) and
satisfy the equations

m

I=—, (11)

Z

then (z,z) is a solution of the dToda hierarchy con-
strained by the string equation (9).

=m,

3. Solutions

Eqg. (11) are meaningful only when they are inter-
preted as a suitable Riemann—Hilbert problem on the
complex plane of the variable. Thus(z, m) must be
analytic functions in a neighborhoat = {|p| > r}
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of p = oo and(z, m) must be analytic functions in a
neighborhood’ = {|p| < v’} of p = 0. The statement
of Theorem 1holds providedA := DN D' # @.

We next prove that Eq11) have solutions satisfy-
ing (5), (8) and(10) with
tx #0.

In this way we assume
K 00 v
_ k 2k
m_Zktkz +s+sz,
k=1 k=1

K 00 5
- - —k _k
m_é ktrz +s+§ R

k=1 k=1

Given two integers1 < r2 we denote by Vr1, r2]
the set of Laurent polynomials of the form

=0 k>K,

12)

1
cnpt +cr1+1pr1+ + - tenp

Let us look for solutions of11) such that; andz
are meromorphic functions gf with possible poles at
p =0andp = oo only. Then, as a consequence of the
assumptiongb), (8) and(12), from (11)it follows that

zeV[1-K.,1, ZeV[-1LK-1]. (13)

The equationn = m is equivalent to the system:

Mmx1=mx1, (14)
mo = mo, (15)
mg_1=mg 1. (16)
If we now set
K K
m=m=3 k(") +mo+ ) kic(z) . (17)
k=1 k=1

with

K
mo=s+ Y _kir(z*),.
k=1

it can be easily seen that has the required expansion
of the form(12) providedz andz satisfy(5) and(8).
On the other hand, the expressi(¥) for m has an
expansion of the fornf12) if the residue ofn/z cor-
responding to its Laurent expansion in powerszof
verifies

Re{ﬁ,z> =3s.
b4

(18)
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Hence the problem reduces to findingndz satisfy-
ing (5), (8), (18)and

m
Z
In view of (13) we look forz andz of the form
Ug_—
Z=rp+uo+---+ plg_i,
r
Z=;+ﬁo+-~+ﬁ1{_1p’<‘l- (20)

Now, in order to prevent from having poles different
from p = 0 andp = oo we have to impose

m(p;) =0, (21)

wherep; denote thek zeros of

r+iigp + - +ig_1p* =0.

In this way by using the expressi¢h7) of m, the only
variables appearing if19) are

(p’t7t_’r’u0’""ukfl?wo""’wK71)7 :zul'

Thus, by identifying coefficients of the poweps, i =
1-K,...,1, we getk + 1 equations which together
with the K equationg21) determine the R + 1 un-
knowns variablesr, ug, ..., ux_1, wo, ..., wWg_1) as
functions of(z, 7). Moreover, provided is a real co-
efficient, the equation§ll1) are invariant under the
transformation

1
Tf(p) =f<5>-

Hence if(r, uo, ..., ug—1, wo, ..., wg—1) solves(19)
so does
(r,wo, ..., Wg—_1,U0, ..., UK—1).

Therefore, if both solutions are close enough, they co-
incide and consequently; = it;, as required.

To complete our proof we must show théi8)
is satisfied too. To do that let us take two cirches
(lpl =r) andy’ (|p| =) in the complexp-plane
and denote by” and I’ their images under the maps
z=z(p) andz = z(1/p), respectively. Notice that due
to (5) and(8), the curves” and I’ have positive ori-
entation ify andy’ have positive and negative orien-
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tation, respectively. Then we have
Re{ﬁ, z> Rei(nj , Z)
z
1
=— Z dz
2i7r  2im % <

= —%Zapzdp— —fzapde

= ﬂ % ap(ZZ) dp = 0,
14

where we have taken into account that the integrands

are analytic functions op in C — {0} and thaty and
the opposite curve of’ are homotopic with respect to

— {0}. Therefore, as we have already proved that
has an expansion of the forgh2), we deduce

Re{ﬂ, z) - Re{@,z) =s,
Z Z

so that(18) follows.
Let us illustrate the method with the cage= 2.
The polynomialpz has two zeros at the points

—ug+ w/"o 4ruq

p1=

3

211
—iig — /13 — 4riiy
p2= o :

and from(21) we get two equations which lead to

—2r2t2b_t(3) + 4F3t21/_t0121 + rtll/_t%ﬁ1

2 -2

+4rt2u0u8u1—r tlul 452 tzuoul

— siloits — g2 — 2t2u0ul +raias=0, (22

—2r3t212(2) + 2r4t2u1 +r tluoul
+ 4r2t2u0ﬁol,_t1 — rsﬁ% — rt_lﬁoﬁi

— 2ripiidi? — 2r’nis = 0. (23)

Identification of the powers g in (19)implies

p: —2r%4rip =0,

po: 2r2t2L_t0 — rtquy — 4rtougiiq + uoft% =0,

p_li —2r2t212(2) + 2r3t2b_t1 + rtquouy
~+ Artougiigity — SIZ% — t_lb_toﬁ%

— 2532 — Aripits + ugits = 0. (24)

Then by solving Eq922)—(24)we get the solution:

2./t 1 + 2nt;
L P\/E__I_ ﬁz__ﬁ- )
Vi—dunn  pJl—4nn 1440k
which corresponds to the conformal map describing an
dlipse growing froma circle [6].

3.1. Solutionsfor K > 3

Exact solutions associated to arbitrary value&of
can be found from the previous scheme. However, in
order to avoid complicated expressions, we set

n=h=--=tg_1=f1==---=tx_1=0.

up=up=---=ug2=ur=up=---=ug-2=0,
or equivalently

UK—1 ST _
e=rp+%op z=;+u1<71PK ! (26)

Under the previous assumptions and fr¢fv) we
have that

K
K—1- KtKr

m:KtKerK—i—s—i—Kzt_Kr Ug_1+ s

(27)
Thus, we see thgR1l) leads us to a unique equation

since from(27)it follows thatm depends o through
pX. Furthermore, ifp; satisfiess(p;) =0, then

r
pf=——0.
UKg—1
Therefore(21) becomes
K K+1t _

s— L K (K~ KK Ygiag_1=0.  (28)

Ug—1
On the other hand, it is easy to see that
m _ KthK
T ak-1

_ ig_1— Krk+1s 1
n <K2rK1tK LSk~ Kr K> 1
Uk 1 p

consequently, by equating coefficients and taK2®)
into account, we find thgtl9) leads to two equations
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given by

1 1 _
2logr = — 2% + svo - Ekg(tkvk +av),  (32)

whereu; are the coefficients of the expansi(@), and
vo is determined by

d dlo
90 _logr2,  wo= 19T (33)
as as
Fig. 1. Solution corresponding 1 — 4. For the class of solution80) we have
1 1 _
2logt=—§s2+svo— 5 (kv + ik k), (34)
and from(11) and(30) it follows that
1 s, K
=— d
VK 2 2z 4
r
1 _ K Ug—-1
= o 2(pz(p)* |\ r— (K —1)—% |dp
17T p
r
_ (P9 (Ks — (K = 2r?) (35)

Fig. 2. Solution corresponding & = 10. 2K (K — 1)s

On the other hand, by differentiatir{g4) with respect

only. More precisely, to s and by taking into accour{83) one finds

KFKZ‘K 2
p: r= . l, v0=—s+s|0gr
KD, k2K + (K —2)(K — 1)K|t[;|221<
_ Ks — (K —2)r9)r
siig_1— Krk+1; (
e ) 20K — 12K ik 2K — 9
k= (K =2)(s —r?)
Then, we get three equations for the three unknawns —
g . : . 2(K — 1K

ug_1, ig—1, which proves that there exits a solution 4
of the form(26). In fact, by solving(28), (29) we find < (K + (K —2)r (36)
that (K — 1)2K2|1x |2r2K — 14

. Kigrk-1 30 Thus, (34)—(36)and (31) characterize the-function
Z=rp+ pK-1 (30) of the curves determined Hg0).
with r satisfying the implicit equation

_ 3.3. Cusps
K2(K — Ditgixr?®D 2 50, (31)
Figs. 1 and Zhow examples of the evolution of the The pictures of the curves associated W&h), (31)
curvez(p), |p| =1, ass grows and is kept fixed. show the presence of cusps at some value &br
each fixed value ofx . Indeed, by using the parametric

3.2. t-functions equationp = ¢'? (0 < 6 < 2) for the unit circle, we

have that cusps on the curye= z(p) appear at points
In [1] it was proved that there is a dTod&unction wherezg = 0, z99 # 0 and zgge/z90 has a nonzero
associated to each analytic curye= z(p), |p| = 1, imaginary part. Therefore, a necessary condition for
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SO.

S

Fig. 3. The positive branches ofs) for K = 10.

p=p@)is
az
a—(P) =0, [pl=1
P
Thus from(30) we deduce

pK = K(K — Digrk—2,

which together with the conditiofp| = 1 requires that
1
r=(K(K—-Dlg]) 52, (37)
at some value = s(tg). But according ta(31) one
finds that this happens at the valyegiven by
K-2

o= = (K(K = D)) 2, (39)

which is the point at which the profile of both positive

branches of-, as functions ofs, develop an infinite
slop (se€rig. 3).

Therefore, there ar& cusps given by the roots

K 2 _ 1/K
Zj (r so) : (39)

“K -1\ Kix

which emerge whenr reaches the extreme valsgof
the domain of existence of the two positive branches
of r as a function of.
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