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Exact solutions of integrable 2D contour dynamics✩

Luis Martínez Alonsoa, Elena Medinab

a Departamento de Física Teórica II, Universidad Complutense, E28040 Madrid, Spain
b Departamento de Matemáticas, Universidad de Cádiz, E11510 Puerto Real, Cádiz, Spain

Received 21 October 2004; accepted 3 February 2005

Editor: L. Alvarez-Gaumé

Abstract

A class of exact solutions of the dispersionless Toda hierarchy constrained by a string equation is obtained. These
represent deformations of analytic curves with a finite number of nonzero harmonic moments. The correspondingτ -functions
are determined and the emergence of cusps is studied.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Integrable contour dynamics governed by the d
persionless Toda (dToda) hierarchy is a multiface
subject. It underlies problems of complex analysis[1,
2], interface dynamics (Laplacian growth)[3], quan-
tum Hall effect[4] and associativity (WDVV) equa
tions [5]. A common ingredient in many of its appl
cations is the presence of random models of nor
N × N matrices[1–4,6,7]with partition functions of
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the form

(1)ZN =
∫

dM dM† exp

(
−1

h̄
trW

(
M,M†)),

where

(2)W(z, z̄) = zz̄ + v0 −
∑
k�1

(
tkz

k + t̄k z̄
k
)
.

In an appropriate largeN limit ( h̄ → 0, s := h̄N

fixed), the eigenvalues of the matrices are distribu
within a planar domain (support of eigenvalues) with
sharp edges, which depends on the parameterst :=
(s = s̄, t1, t2, . . .).

If the support of eigenvalues is a simply-connec
bounded domain with boundary given by an analy
curve γ (z = z(p), |p| = 1), then (s, t , t , . . .) are
1 2

.
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harmonic moments ofγ and the curve evolves wit
(t, t̄) according to the dToda hierarchy. Moreover,
correspondingτ -function represents the quasiclassi
limit of the partition function(1). A particularly inter-
esting feature is that for almost all initial conditio
the evolution ofγ leads to critical configurations i
which cusp-like singularities develop. This behavio
is well-known in Laplacian growth[8] and random
matrix theory[9].

In order to obtain solutions of the dToda hierarc
describing contour dynamics one must impose a st
equation which leads to a particular type of Rieman
Hilbert problem[10–12]. In this Letter we present
method for finding solutions in the form of Laure
polynomials

(3)z = rp + u0 + · · · + uK−1

pK−1
,

which describe dynamics of curves with a finite nu
ber of nonzero harmonic moments, namelytk = t̄k = 0
for k � K . We exhibit examples for arbitraryK and
derive their correspondingτ -functions. Furthermore
the emergence of cusps is analytically studied.

2. dToda contour dynamics

Let z = z(p) be an invertible conformal map of th
exterior of the unit circle to the exterior of a simp
connected domain bounded by a simple analytic cu
γ of the form

(4)z̄ = S(z),

where bar stands for complex conjugation (z(p̄) =
z(p−1) on γ ) and theSchwarz function S(z) is ana-
lytic in some domain containingγ .

The mapz(p) can be represented by a Laurent
ries

(5)z(p) = rp +
∞∑

k=0

uk

pk
,

with a real coefficientr . The coefficients(r, u0, u1, . . .)

are functions of the harmonic momentst = (s =
s̄, t1, t2, . . .) of the exterior ofγ , which in turn can
be introduced through the expansion of the Schw
function

(6)S(z) =
∞∑

ktkz
k−1 + s

z
+

∞∑ vk

zk+1
,

k=1 k=1
with (v1, v2, . . .) being functions dependent ont . As a
consequence of(1)–(3), it follows thatz(p, t, t̄ ) solves
the dToda hierarchy

∂tk z = {Hk, z}, ∂t̄k z = −{H̄k, z},
Hk := (

zk
)
�1 + 1

2

(
zk

)
0,

(7)H̄k := (
z̄k

)
�−1 + 1

2

(
z̄k

)
0,

where {f,g} := p(∂pf ∂sg − ∂pg∂sf ), the function
z̄(p−1) is defined by the Laurent series

(8)z̄(p−1) := r

p
+

∞∑
k=0

ūkp
k,

and the symbols(. . .)�1 ((. . .)�−1) and (. . .)0 mean
truncated Laurent series with only positive (negati
terms and the constant term, respectively. Furth
more, this solution satisfies the string equation

(9)
{
z(p), z̄

(
p−1)} = 1.

These properties can be proved through the twi
scheme of Takasaki–Takebe[3]. It uses Orlov–Schul
man functions of the dToda hierarchy

m =
∞∑

k=1

ktkz
k + s +

∞∑
k=1

vk

zk
,

(10)m̄ =
∞∑

k=1

kt̄kz̄
k + s +

∞∑
k=1

v̄k

z̄k
,

and can be summarized as follows:

Theorem 1. If (z,m, z̄, m̄) are functions of (p, t, t̄)

which admit expansions of the form (5), (8), (10) and
satisfy the equations

(11)z̄ = m

z
, m̄ = m,

then (z, z̄) is a solution of the dToda hierarchy con-
strained by the string equation (9).

3. Solutions

Eq. (11) are meaningful only when they are inte
preted as a suitable Riemann–Hilbert problem on
complex plane of the variablep. Thus(z,m) must be
analytic functions in a neighborhoodD = {|p| > r}
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of p = ∞ and(z̄, m̄) must be analytic functions in
neighborhoodD′ = {|p| < r ′} of p = 0. The statemen
of Theorem 1holds providedA := D ∩ D′ �= ∅.

We next prove that Eq.(11) have solutions satisfy
ing (5), (8) and(10)with

tk = 0, k > K, tK �= 0.

In this way we assume

m =
K∑

k=1

ktkz
k + s +

∞∑
k=1

vk

zk
,

(12)m̄ =
K∑

k=1

kt̄kz̄
k + s +

∞∑
k=1

v̄k

z̄k
.

Given two integersr1 � r2 we denote by V[r1, r2]
the set of Laurent polynomials of the form

cr1p
r1 + cr1+1p

r1+1 + · · · + cr2p
r2.

Let us look for solutions of(11) such thatz and z̄

are meromorphic functions ofp with possible poles a
p = 0 andp = ∞ only. Then, as a consequence of t
assumptions(5), (8) and(12), from (11) it follows that

(13)z ∈ V[1− K,1], z̄ ∈ V[−1,K − 1].
The equationm̄ = m is equivalent to the system:

(14)m̄�1 = m�1,

(15)m̄0 = m0,

(16)m̄�−1 = m�−1.

If we now set

(17)m = m̄ =
K∑

k=1

ktk
(
zk

)
�1 + m̄0 +

K∑
k=1

kt̄k
(
z̄k

)
�−1,

with

m̄0 = s +
K∑

k=1

kt̄k
(
z̄k

)
0,

it can be easily seen thatm̄ has the required expansio
of the form(12) providedz and z̄ satisfy(5) and(8).
On the other hand, the expression(17) for m has an
expansion of the form(12) if the residue ofm/z cor-
responding to its Laurent expansion in powers oz
verifies

(18)Res

(
m

,z

)
= s.
z

Hence the problem reduces to findingz andz̄ satisfy-
ing (5), (8), (18)and

(19)z = m

z̄
.

In view of (13)we look forz andz̄ of the form

z = rp + u0 + · · · + uK−1

pK−1
,

(20)z̄ = r

p
+ ū0 + · · · + ūK−1p

K−1.

Now, in order to preventz from having poles differen
from p = 0 andp = ∞ we have to impose

(21)m(pi) = 0,

wherepi denote theK zeros of

r + ū0p + · · · + ūK−1p
K = 0.

In this way by using the expression(17)of m, the only
variables appearing in(19)are

(p, t, t̄ , r, u0, . . . , uK−1,w0, . . . ,wK−1), wi := ūi .

Thus, by identifying coefficients of the powerspi, i =
1− K, . . . ,1, we getK + 1 equations which togethe
with the K equations(21) determine the 2K + 1 un-
knowns variables(r, u0, . . . , uK−1,w0, . . . ,wK−1) as
functions of(t, t̄ ). Moreover, providedr is a real co-
efficient, the equations(11) are invariant under th
transformation

Tf (p) = f

(
1

p̄

)
.

Hence if(r, u0, . . . , uK−1,w0, . . . ,wK−1) solves(19)
so does

(r, w̄0, . . . , w̄K−1, ū0, . . . , ūK−1).

Therefore, if both solutions are close enough, they
incide and consequentlywi = ūi , as required.

To complete our proof we must show that(18)
is satisfied too. To do that let us take two circlesγ

(|p| = r) and γ ′ (|p| = r ′) in the complexp-plane
and denote byΓ andΓ ′ their images under the map
z = z(p) andz̄ = z̄(1/p), respectively. Notice that du
to (5) and(8), the curvesΓ andΓ ′ have positive ori-
entation ifγ andγ ′ have positive and negative orie
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Res

(
m

z
, z

)
− Res

(
m̄

z̄
, z̄

)

= 1

2iπ

∮
Γ

m

z
dz − 1

2iπ

∮
Γ ′

m̄

z̄
dz̄

= 1

2iπ

∮
γ

z̄∂pzdp − 1

2iπ

∮
γ ′

z∂pz̄dp

= 1

2iπ

∮
γ

∂p(z̄z)dp = 0,

where we have taken into account that the integra
are analytic functions ofp in C − {0} and thatγ and
the opposite curve ofγ ′ are homotopic with respect t
C − {0}. Therefore, as we have already proved tham̄

has an expansion of the form(12), we deduce

Res

(
m

z
, z

)
= Res

(
m̄

z̄
, z̄

)
= s,

so that(18) follows.
Let us illustrate the method with the caseK = 2.

The polynomialpz̄ has two zeros at the points

p1 =
−ū0 +

√
ū2

0 − 4rū1

2ū1
,

p2 =
−ū0 −

√
ū2

0 − 4rū1

2ū1
,

and from(21)we get two equations which lead to

−2r2t2ū
3
0 + 4r3t2ū0ū1 + rt1ū

2
0ū1

+ 4rt2u0ū
2
0ū1 − r2t1ū

2
1 − 4r2t2u0ū

2
1

(22)− sū0ū
2
1 − t̄1ū

2
0ū

2
1 − 2t̄2ū

3
0ū

2
1 + rt̄1ū

3
1 = 0,

−2r3t2ū
2
0 + 2r4t2ū1 + r2t1ū0ū1

+ 4r2t2u0ū0ū1 − rsū2
1 − rt̄1ū0ū

2
1

(23)− 2rt̄2ū
2
0ū

2
1 − 2r2t̄2ū

3
1 = 0.

Identification of the powers ofp in (19) implies

p: −2r2t2 + rū1 = 0,

p0: 2r2t2ū0 − rt1ū1 − 4rt2u0ū1 + u0ū
2
1 = 0,

(24)

p−1: −2r2t2ū
2
0 + 2r3t2ū1 + rt1ū0ū1

+ 4rt2u0ū0ū1 − sū2
1 − t̄1ū0ū

2
1

− 2t̄ ū2ū2 − 4rt̄ ū3 + u ū3 = 0.
2 0 1 2 1 1 1
Then by solving Eqs.(22)–(24)we get the solution:

(25)z = p
√

s√
1− 4t2t̄2

+ 2
√

st̄2

p
√

1− 4t2t̄2
− t̄1 + 2t1t̄2

−1+ 4t2t̄2
,

which corresponds to the conformal map describing
ellipse growing from a circle [6].

3.1. Solutions for K � 3

Exact solutions associated to arbitrary values oK

can be found from the previous scheme. However
order to avoid complicated expressions, we set

t1 = t2 = · · · = tK−1 = t̄1 = t̄2 = · · · = t̄K−1 = 0.

and look for particular solutions satisfying

u1 = u2 = · · · = uK−2 = ū1 = ū2 = · · · = ūK−2 = 0,

or equivalently

(26)z = rp + uK−1

pK−1
, z̄ = r

p
+ ūK−1p

K−1.

Under the previous assumptions and from(17) we
have that

(27)

m = KtKrKpK + s + K2t̄KrK−1ūK−1 + Kt̄KrK

pK
.

Thus, we see that(21) leads us to a unique equatio
since from(27)it follows thatm depends onp through
pK . Furthermore, ifpi satisfies̄z(pi) = 0, then

pK
i = − r

ūK−1
.

Therefore,(21)becomes

(28)s − KrK+1tK

ūK−1
+ (K − 1)KrK−1t̄K ūK−1 = 0.

On the other hand, it is easy to see that

m

z̄
= KrKtK

ūK−1
p

+
(

K2rK−1t̄K + sūK−1 − KrK+1tK

ū2
K−1

)
1

pK−1
,

consequently, by equating coefficients and taking(26)
into account, we find that(19) leads to two equation
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Fig. 1. Solution corresponding toK = 4.

Fig. 2. Solution corresponding toK = 10.

only. More precisely,

p: r = KrKtK

ūK−1
,

(29)

p−(K−1): uK−1 = K2rK−1t̄K

+ sūK−1 − KrK+1tK

ū2
K−1

.

Then, we get three equations for the three unknownr ,
uK−1, ūK−1, which proves that there exits a solutio
of the form(26). In fact, by solving(28), (29) we find
that

(30)z = rp + Kt̄KrK−1

pK−1
,

with r satisfying the implicit equation

(31)K2(K − 1)tK t̄Kr2(K−1) − r2 + s = 0.

Figs. 1 and 2show examples of the evolution of th
curvez(p), |p| = 1, ass grows andtK is kept fixed.

3.2. τ -functions

In [1] it was proved that there is a dTodaτ -function
associated to each analytic curvez = z(p), |p| = 1,
given by

(32)2 logτ = −1

2
s2 + sv0 − 1

2

∑
k�1

(tkvk + t̄k v̄k),

wherevk are the coefficients of the expansion(6), and
v0 is determined by

(33)
∂v0

∂s
= logr2, v0 = ∂ logτ

∂s
.

For the class of solutions(30)we have

(34)2 logτ = −1

2
s2 + sv0 − 1

2
(tKvK + t̄K v̄K),

and from(11)and(30) it follows that

vK = 1

2iπ

∮
Γ

z̄zK dz

= 1

2iπ

∮
Γ

z̄(p)z(p)K
(

r − (K − 1)
uK−1

pK

)
dp

(35)= (r2 − s)(Ks − (K − 2)r2)

2K(K − 1)s
.

On the other hand, by differentiating(34)with respect
to s and by taking into account(33)one finds

v0 = −s + s logr2

+ (K − 2)(K − 1)K|tK |2

× (Ks − (K − 2)r2)r2K

2((K − 1)2K2|tK |2r2K − r4)

+ (K − 2)(s − r2)

2(K − 1)K

(36)×
(

K + (K − 2)r4

(K − 1)2K2|tK |2r2K − r4

)
.

Thus,(34)–(36)and(31) characterize theτ -function
of the curves determined by(30).

3.3. Cusps

The pictures of the curves associated with(30), (31)
show the presence of cusps at some value ofs for
each fixed value oftK . Indeed, by using the parametr
equationp = eiθ (0 � θ � 2π ) for the unit circle, we
have that cusps on the curvez = z(p) appear at points
where zθ = 0, zθθ �= 0 and zθθθ /zθθ has a nonzero
imaginary part. Therefore, a necessary condition
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Fig. 3. The positive branches ofr(s) for K = 10.

p = p(θ) is

∂z

∂p
(p) = 0, |p| = 1.

Thus from(30)we deduce

pK = K(K − 1)t̄KrK−2,

which together with the condition|p| = 1 requires tha

(37)r = (
K(K − 1)|tK |)− 1

K−2 ,

at some values = s(tK). But according to(31) one
finds that this happens at the values0 given by

(38)s0 = K − 2

K − 1

(
K(K − 1)|tK |)− 2

K−2 ,

which is the point at which the profile of both positiv
branches ofr , as functions ofs, develop an infinite
slop (seeFig. 3).
Therefore, there areK cusps given by the roots

(39)zj = K

K − 1

(
r2 − s0

KtK

)1/K

,

which emerge whens reaches the extreme values0 of
the domain of existence of the two positive branc
of r as a function ofs.
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