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Abstract

This paper examines numerically and theoretically the application of truncated Singular Value Decomposition (SVD) in a sequential form
The Sequential SVD algorithm presents two tunable hyperparameters: the number of future temperature(r) and the rank of the truncate
sensitivity matrix(p). The regularization effect of both hyperparameters is consistent with the data filtering interpretation by truncat
(reported by Shenefelt [Internat. J. Heat Mass Transfer 45 (2002) 67]). This study reveals that the most suitable reduced rank
Under this assumption(p = 1), the sequential procedure proposed, presents several advantages with respect to the standard who
procedure: The search of the optimum rank value is not required. The simplification of the model is the maximum that can be
The unique tunable hyperparameter is the number of future temperatures, and a very simple algorithm is obtained. This algorithm
compared to: Function Specification Method (FSM) proposed by Beck and the standard whole-domain SVD. In this comparative
parameters considered have been: the shape of the input, the noise level of measurement and the size of time step. In all cases,
sequential SVD algorithm give very similar results. In one case, the results obtained by the sequential SVD algorithm are clearly s
the ones obtained by the whole-domain algorithm.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The Inverse Heat Conduction Problems (IHCP) are ty
cal examples of “ill-posed problems”. Several functions a
parameters can be estimated in the IHCP: static and m
ing heating sources, properties, initial conditions, bou
ary conditions, optimal shape etc. This study is confine
the estimation of an unknown boundary condition. The
known function can be stated as a surface flux, a sur
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temperature or a heat transfercoefficient. The lack of infor-
mation is normally due to the difficulty to installing senso
in the boundary. This circumstance appears in applicat
where the boundary is inaccessible [1,2], in simulation
space vehicle re-entry [3], in metallurgic applications [4,5]
etc. In order to recover the unknown time history, is nec
sary to obtain the additional information provided by rem
temperature sensors placed atinterior locations. As a con
sequence of the diffusive nature of heat flow, the ther
response at some distance of the boundary is damped
lagged with respect to the active input at the boundary. T
implies that in many cases the problem presents a low
insufficient sensitivity. On the other hand, the relations
between the thermal response and the unknown input ca
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Nomenclature

b data vector
C constant
c coefficient, Eq. (10)
D estimate of bias
H partition of sensitivity matrix, Eq. (12)
M total number of time step
N total number of estimated values
q dimensionless heat flux
q heat flux vector
T dimensionless temperature
T vector of calculated temperatures
T0 initial condition
p reduced rank
r number of future time steps
t dimensionless time
u Gaussian random numbers (normalized)
U orthogonal matrix
u left singular vector
V orthogonal matrix
v right singular vector
S diagonal matrix
S estimate of total error

x dimensionless coordinate
X sensitivity matrix
Y measured temperature
Y vector of measured temperatures

Greek symbols

β coefficient, Eq. (10)
�t time step size
ε random error
φ response to a unit step change
�φ response to a unit pulse
λ singular value
σ standard deviation

Subscripts

i at timeti
fut future components
past previous components
red reduced rank approximation

Superscriptŝ estimated
T transposed
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expressed through a sensitivity matrix. The sensitivity m
trix tends to be quasi-singular. This explains the princ
difficulty of the IHCP: the estimation tends to be unsta
due to the great amplification of measurements errors. Th
difficulty is increased when the time interval between mea
surements is reduced. This particular point can be discu
considering the exact solution of Burggraf [6].

Fortunately, many methods have been reported to s
IHCPs, among the more versatile methods (applicabl
solve multidimensional and non-linear IHCP) the followi
can be mentioned: Tikhonov regularization [7], iterative r
ularization [8], mollification [9], and the function specific
tion method (FSM) [6]. The first two methods are conside
as “whole domain” because all the measured temperatu
data are used in order to estimate simultaneously all
components of the unknown input. In these methods,
sensitivity matrix can be of great dimensions. In contr
the last two methods are sequential. Therefore, only a little
part of available measurement is used in each step and
one component of the unknown input is estimated at e
step. This fact can be an advantage in an on-line proc
A considerable number of contributions have been publis
considering combinations, modifications and comparis
of the previous methods. Beck and Murio [10] presente
new method that combines the function specification metho
of Beck with the regularization technique of Tikhonov. M
rio and Paloschi [11] propose a combined procedure b
on a data filtering interpretation of the mollification meth
and FSM. Zabaras and Lyu [12] combine the Boundary E
.

ment Method (BEM) in conjunction with Beck’s sensitivi
analysis and least-squares method. Blanc et al. [13], in
duced a modification in the FSM, so that the new algorit
uses a time-variable number of future temperatures. Be
al. [14] compare the FSM, the Tikhonov regularization a
the iterative regularization, using experimental data.

On the other hand, there are other procedures that
been used in other applications (economics, signal proc
ing, image reconstruction, etc.), and have also been ap
successfully in IHCP in order to get a stable estimation
this frame, the well-known Kalman filtering technique [1
has been used to resolve linear and non-linear IHCP
17]. The use of an artificial neural network (ANN) has a
been considered in the IHCP [18]. Another effective te
nique to solve ill-posed problems is based in the Sing
Value Decomposition (SVD) of an ill conditioned matr
[19]. Martin and Dulikravich [20,21] combine SVD in con
junction with the BEM to resolve inverse problems in stea
heat conduction. The inverse problem in transient heat
duction has also been studied using SVD, for example, S
[22] compares the results of the truncated SVD meth
with the corresponding by Tikhonov’s regularization. M
niz et al. [23], consider the estimation of an initial con
tion, and compare three methods: Tikhonov regularizat
maximum entropy principle and truncated SVD. They fou
out that if the initial condition presents a spatial distribu
tion with harmonic form, the truncated SVD presents
best approximate solution. However, in other tests the M
Entropy methods present the best reconstruction. More
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cently, Shenefelt [24] presented the data filtering interp
tation by the truncated SVD in IHCP. In all these previo
authors, the truncated SVD method was applied as a w
domain procedure.

This study examines numerically and theoretically the
plication of truncated SVD in a sequential form. The n
matrix structure is presented. Although the estimations
p > 1 are good, it is found that the corresponding optim
r-value can be too large. Only whenp = 1 the optimum
r-value is similar (or equal) to the one required by the fut
sequential method. Under this assumption(p = 1), the sim-
plification of the model (in each step) is the maximum t
can be achieved. This fact permits the derivation of a v
simple algorithm. This method is compared to the FSM
Beck and to the standard whole-domain SVD. In this co
parison, the parameters considered have been: the sha
the input, the size of time step and the level of noise in
measurement.

In the following section we formulate the direct proble
which will be used in the inverse problem (Section 3) in
der to generate synthetically the measured temperatures
primary objective of this section is to present the sequ
tial SVD algorithm (Section 3.3), nevertheless it require
previous consideration of the whole domain SVD algorit
(Section 3.2). The well-known FSM of Beck is briefly ou
lined in Section 3.1. Section 4 discusses the regulariza
effects of the hyperparametersp andr. On the other hand
a total of five cases are analysed and compared by the
methods. Finally, the conclusions are exposed in Sectio

2. Direct problem

We consider a transient, one-dimensional and linear
conduction problem, represented in Fig. 1. The mathem
ical formulation is given by the differential equation (1a
the boundary conditions (1b), (1c) and the initial condit
(1d).

∂2T

∂x2 = ∂T

∂t
0� x � 1 (1a)

−∂T

∂x

∣∣∣
x=0

= q(t) (1b)

−∂T

∂x

∣∣∣
x=1

= 0 (1c)

T (x,0) = T0 = 0 0� x � 1 (1d)

The previous equations havebeen written in non-dimen
sional form. The boundary condition (1b) represents a
mensionless flux imposed atx = 0. This flux can be an
arbitrary function. In the numerical simulation of this stud
three different functions (test cases) will be considered.
response of the direct problemT (x, t) can be calculated
analytically [25] or numerically. We are interested in the
sponse atx = 1, because it will be used in the next section
the inverse problem. In a linear problem, a linear depende
exist between the input (in this caseq(t)) and the respons
of

e

e

Fig. 1. Scheme of the 1D problem and boundary conditions.

(atx = 1). This dependence can be expressed analytical
the Duhamel integral [6]:

T (x, t) =
t∫

0

q(s)
∂φ(x, t − s)

∂t
+ T0 (2)

whereφ(x, t) represents the temperature response at l
tion x for a unit step change (of flux) in the input, andT0 is
the initial condition (in this case it is 0). The analytical ex
pression ofφ(x, t) can be found in Ref. [6]. Considering th
the objective in the inverse problem is the estimation ofq in
a discrete form, Eq. (2) can be approximated at timetM as

TM = T0 +
M∑

n=1

qn�φM−n (3)

where subscripts denote the time instant considered. We
that the componentsqi are assigned to timeti+1/2, as it can
be seen in Fig. 1.�φ represents the temperature respons
an unit pulse in the input, and hence:�φi = φi+1 − φi . As
it is evident�φi−j = ∂Ti/∂qj , consequently, it represen
the sensitivity coefficient measured at timeti with respect to
componentqj . Obviously, the sensitivity coefficient will b
zero wheni > j . Considering the expression (3) forM =
1,2, . . . , we obtain the following matrix equation

T = [X]q + T0 (4a)

where T = [T1, T2, . . . , TM ]T, q = [q1, q2, . . . , qM ]T, and
the matrix[X] is

[X] =


�φ0 0 . . . 0
�φ1 �φ0 . . . 0

...
...

. . .
...

�φM−1 �φM−2 . . . �φ0

 (4b)

If the time history covers a long period of time, this m
trix and the corresponding vector can be of a consider
dimension.

3. Inverse problem

In the inverse problem the available information is co
tained in the vector of measured temperatures from the in
terior of the body, in this case fromx = 1. This vector will
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be noted asY. Because the measured temperaturesYi are af-
fected by errors, they are simulated using the discrete va
of the analytical (or exact) temperatureTi = T (1, ti) (cal-
culated in the direct problem) at timesti = i�t (the time
intervals of the measurements). Then, random errorsεi are
added according to:Yi = Ti + εi , whereεi = Cui . The ran-
dom numbersui have been obtained using a random gen
ator according to a normal (or Gaussian) distribution with
zero mean, uncorrelated and unit standard deviation.
constantC is chosen, so thatC = σ , whereσ is the stan-
dard deviation of measured temperatures.

The first attempt in order to resolve the inverse prob
can be the identification of measured temperaturesY with
the calculated temperaturesT expressed by Eq. (4), so th
the unknown vectorq can be obtained from

q = [X]−1b whereb = (Y − T0) (5)

We note that diagonal coefficients of [X] are equal to
�φ0. This sensitivity coefficient represents the response
x = 1) to a unitary pulse (with a wideness of one time ste
just when the pulse has finished. If the time step is su
ciently small, this response can be several orders of ma
tude lower than others sensitivity values. This justifies (fr
a physical point of view) that [X] is an ill-conditioned ma-
trix. On the other hand, asY is affected by measuremen
errors, the estimation ofq by Eq. (5) will be unstable. In thi
study we consider three possible methods in order to g
stable algorithm.

3.1. Beck’s algorithm

As FSM is a sequential procedure, it is assumed that c
ponents:q̂1, q̂1, . . . , q̂m−1, have been previously estimate
(they are noted with “̂ ”), and the objective is the est
mation of the componentqm, corresponding to them-time
step (located in the time interval betweentm−1 andtm). The
particular stabilisation technique of this method is based
the specification of the functional form corresponding to
unknown inputq. Since this method is sequential, the sp
ification includes onlyr future steps from the last estimat
component (componentm−1). Then, the future componen
qm,qm+1, . . . , qm+r−1, can be written in terms ofqm, and
only this component is estimated in each step. The tem
ral assumption can be made through several forms: cons
linear, parabolic, etc. In this paper the simplest form is us
and hence ther future components are assumed tempora
constant. Details of this algorithm can be seen in Ref.
The estimated component, noted asq̂m can be expressed a

q̂m =
∑r−1

j=0(Ym+j − ∑m−1
n=0 q̂n�φm−n+j − T0)C0j∑r−1

j=0 C2
0j

(6)

whereC0j = ∑j
�φj−l andq0 = 0.
l=0
,

3.2. SVD algorithm

In order to avoid the difficulties derived from the matr
inversion in Eq. (5), the singular value decomposition [
of [X] is considered, so that this sensitivity matrix can
expressed as

[X] = [U][S][V]T (7)

where [U] and [V] are orthogonal matrices which colum
vectors are the eigenvectors of[X] · [X]T and[X]T · [X], re-
spectively. These vectors will be noted asui andvi , and are
called left and right singular vectors of[X]. The diagona
matrix [S] = diag[λ1, λ2, . . . , λM ] contains the square roo
of the eigenvalues of[X] · [X]T. These coefficients (noted a
λi ) are arranged in decreasing magnitude and are calle
singular values of[X]. The factorisation given by Eq. (7) ca
be expressed as an outer product expansion [26]:

[X] = [U][S][V]T =
M∑
i=1

λiuivT
i (8)

In this expression, the matrix[X], of rankM and dimen-
sion M × M, is decomposed as the sum ofM matrices of
rank 1 and dimensionM × M. This expansion is know
as Spectral Decomposition. The condition number of thi
matrix is the ratio:CN = λ1/λM , so that matrices with
CN � 1 are ill-conditioned.

The factorisation SVD presents important properties,
terpretations and applications. One of the most interes
applications in the ill-posed problems in order to get a
duced model, is based on the reduced rank approximat
If expansion (8) is truncated to thep-first singular values an
the corresponding left and right singular vectors (trunca
SVD), the new matrix and the corresponding factorisat
(noted by the subscriptred) will be expressed as

[Xred] = [Ured][Sred][Vred]T =
p∑

i=1

λiuivT
i p < M (9)

Golub [19] shows that[Xred] is the closest matrix to[X]
that has rankp. With an adequate effective rankp, the ap-
proximation of[X] by [Xred] presents a notable advanta
in order to solve a direct and an inverse problem. In the
rect problem theM −p smallest terms of the sum (8) have
negligible contribution, and in the inverse problem, the el
ination of the same terms, reduces the condition number
the numerical instability.

On the other hand, this rank reduction has a physica
terpretation based on the discussion of the data filterin
frequency-domain. If we consider the SVD of matrix[X],
then Eq. (5) can be expressed by

q = [X]−1b = [V][S]−1[U]Tb

=
M∑
i=1

1

λi

viuT
i b =

M∑
i=1

civi (10)

whereci = 1 βi , βi = uTb andb = Y − T0.

λi i
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In Eq. (10),q is expressed as a linear combination of
orthonormal vectorsvi . The coefficientci is pondered by the
factors 1/λi and the convolution between the compone
of columns vectorsui and measured temperatures vectob.
In agreement with Shenefelt [24], vectorsui act upon the
measured temperature,b, as a band-pass filter, so that t
band is displaced toward highfrequencies as the number
columns is increased. The band pass-filters correspon
to high frequencies of random noise, might be removed
cause in those frequency ranges, the inverse of the sm
singular values 1/λi are very large, and this provoke a gre
amplification of measurement errors. Hence, the SVD algo
rithm (corresponding to the whole domain procedure) ca
expressed as

q̂ = [Xred]−1b = [Vred][Sred]−1[Ured]Tb

=
p∑

i=1

1

λi

viuT
i b p < M (11)

With an adequate reduced rank we get a good ratio sig
to-noise. As it is expected, the optimump-value is very
dependent on the frequency components of the unknow
put.

3.3. Sequential SVD algorithm

In similar form to FSM, the sequential algorithm SV
uses ther future temperatures (measured and calculated
nevertheless the stabilisation technique is not based o
specification of the unknown input. In order to obtain the
quential algorithm SVD, we consider the Eq. (4), exten
to r future steps from the last estimated component (com
nentm − 1). In a partitioned form, the matrix equation c
be written as[

Tpast
Tfut

]
=

[
Xpast 0

H Xfut

][
q̂past
qfut

]
+ T0 (12)

where the vectors are

Tpast= [T1 . . . Tm−1]T, Tfut = [Tm . . .Tm+r−1]T
q̂past= [q̂1 . . . q̂m−1]T, qfut = [qm . . . qm+r−1]T
and the matrices are

[Xpast] =


�φ0 0 . . . 0
�φ1 �φ0 . . . 0

...
...

. . .
...

�φm−2 �φm−3 · · · �φ0



[H] =


�φm−1 �φm−2 . . . �φ1
�φm �φm−1 . . . �φ2

...
...

. . .
...

�φm+r−2 �φm+r−3 . . . �φr



[Xfut] =


�φ0 0 . . . 0
�φ1 �φ0 . . . 0

...
...

. . .
...



�φr−1 �φr−2 . . . �φ0
t

Notice that future temperatures can be written as

Tfut = [H] q̂past+ [Xfut] qfut + T0
r×1 r×m−1 m−1×1 r×r r×1 r×1

(13)

where the previous history is stored in matrix[H] and vector
q̂hist. The vectors and matrix related with future tempe
tures are:Tfut, qfut and[Xfut]. Considering the identificatio
betweenTfut andYfut, we obtain

qfut = [Xfut]−1b (14)

now the vectorb is given by

b = Yfut − [H]q̂past− T0 (15)

Taking into account Eq. (13), the expression:[H]q̂past+
T0 can be interpreted as the calculated temperature
tm−1 � t � tm+r−1, considering that in this time interval th
input is held at zero. This concept is noted as[H]q̂past+T0 =
T|qfut=0, so that the data vector isb = Yfut − T|qfut=0.

Following, we consider the SVD of the small sensitiv
matrix [Xfut]

[Xfut]
r×r

= [U][S][V]T =
r∑

i=1

λiuivT
i (16)

In order to get a stable algorithm, we consider the clo
matrix to [Xfut] that has rankp. This matrix, called[Xred],
will be given by

[Xred]
r×r

= [Ured][Sred][Vred]T =
p∑

i=1

λiuivT
i p < r (17)

and with an adequatep-value, we obtain a stable algorithm

q̂fut = [Xred]−1b = [Vred][Sred]−1[Ured]Tb

=
p∑

i=1

1

λi

viuT
i b p < r (18)

According to Eq. (18), the sequential SVD algorith
presents two tunable hyperparametersr andp. For a given
p-value, we can carry out numerical experiments in orde
to find the corresponding optimumr-value. This optimum
value is obtained from the minimization of the total errorS,
given by Eq. (23). The numerical experiments given in S
tion 4, show that the most suitable reduced rank isp = 1.
Greater ranks(p > 1) require larger optimalr-values. This
fact represents a disadvantage in an on-line process, becau
the time periodropt · �t (named as “look ahead” [28]) ca
be excessively long. The expression of the data vectorb is
crucial to justify the advantage of sequential SVD algorit
under the assumptionp = 1. In the whole domain proce
dure, the components ofb are the measured temperatu
(with respect to the initial temperature). Normally, in the
data set the signal amplitude is much higher than the n
one. On the other hand, the data vector corresponding t
sequential procedure isb = Yfut − T|qfut=0. Comparing the
data vector used in each procedure, we can state that:
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• Due tor � M, the dimension ofb is much smaller in
the sequential procedure.

• Due to thermal inertia of heat conduction, the com
nents ofYfut andT|qfut=0 give similar values.

• Yfut andT|qfut=0 are affected by errors. The first is a
fected directly by measurement errors. The second
pends on̂qpast, and it is an estimated vector affected
two types of errors: stochastic (consequence of the m
surement errors) and deterministic (consequence of th
approximation in order to get a stable estimation).

• When Yfut and T|qfut=0 are subtracted to giveb, the
components ofb are small numbers, and as conseque
of the errors, they presents fluctuations. In this case
signal amplitude is of the same magnitude order than
noise one.

According to the data filtering interpretation of Shen
felt [24], the fact that sequential SVD algorithm gives sa
factory results (in all cases considered in this study) w
p = 1, means that the most relevant information is c
tained in the lowest frequency components of the Fou
series ofb. Consequently, under this assumption(p = 1), the
unique tunable hyperparameter is the number of future t
peraturesr. The regularization effect ofr, will be considered
in the next section. Assuming that SVD can be calculated
merically with an efficient code [27], it is possible to obta
a very simple algorithm. Whenp = 1, Eq. (18) is reduced t

q̂fut = v1
1

λ1
uT

1b (19)

wherev1 = [v11, . . . , vr1]T, uT
1 = [u11, . . . , ur1], b = [b1,

. . . , br ]T, and q̂fut = [q̂m, . . . , q̂m+r−1]T. Taking into ac-
count the sequential characteristic of this method, only
first component̂qm is retained. This calculus process is
peated for the next time step. Finally, the sequential S
algorithm can be expressed as

q̂m = 1

λ1
v11

r∑
i=1

biui1 (20)

4. Results and discussions

In an IHCP there are two sources of error in the estim
tion. The first source is the unavoidable bias deviation (or
terministic error). The second source of error is the varia
due to the amplification of measurement errors (stocha
error). The global effect of deterministic and stochastic
rors is considered in the mean squared error or total e
The estimates used in this study for the bias(D), the vari-
ance(σq) and the total error(S) are defined by Eqs. (21)
(23), respectively.

D =
[

1

N − 1

N∑(
q̂i |σ=0 − qi

)2

]1/2

(21)

i=1
Table 1
Comparison of error estimations for different inverse algorithms and se
cases

Algorithm D σq S

Case 1:σ = 0.001,r = 7, �t = 0.03

FSM! 0.0109 0.0104 0.0157
Seq.-SVD• 0.0143 0.0134 0.0197
SVD 1 0.0066 0.0050 0.0083

Case 2:σ = 0.01, r = 12,�t = 0.03

FSM! 0.0344 0.0242 0.0390
Seq.-SVD• 0.0373 0.0299 0.0428
SVD 1 0.0163 0.0091 0.0188

Case 3:�t = 0.1, r = 2, σ = 0.001

FSM! 0.0823 0.0282 0.0939
Seq.-SVD• 0.0654 0.0343 0.0794
SVD 1 0.0081 0.0416 0.0424

Case 4:�t = 0.03, r = 5, σ = 0.001

FSM! 0.1171 0.0359 0.1191
Seq.-SVD• 0.1148 0.0480 0.1197
SVD 1 0.0996 0.0345 0.1054

Case 5:σ = 0.001,r = 9, �t = 0.025

FSM! 0.0099 0.0081 0.0116
Seq.-SVD• 0.0131 0.0102 0.0153
SVD —1— 0.1912 0.0392 0.1952

σq =
[

1

N − 1

N∑
i=1

(
q̂i − q̂i |σ=0

)2

]1/2

(22)

S =
[

1

N − 1

N∑
i=1

(
q̂i − qi

)2

]1/2

(23)

whereN is the total number of estimated values. The b
estimation is obtained from the minimization of total er
S, which gives the necessary balance between the two
ror sources [6]. This criterion is very useful in a comparat
study (as the actual). Nevertheless, in a practical case
residual principle [8] provides a more realistic criterion
must be pointed out that sequential algorithms (FSM
sequential SVD) user measurements before heating sta
(t < 0). In accordance with Beck[6], this is performed in
order to minimise the effect of the anomalous calculat
during the first few steps. In the whole domain SVD, the p
vious measurements are not required, nevertheless they
been included in order to do a comparison point-by-poin

A total of five cases are summarised in Table 1. The
sults correspond to the best estimation obtained by F
the standard whole-domain SVD and sequential SVD
ing p = 1). Before the comparative analysis, we prese
discussion about the tunable hyperparametersp andr of the
sequential SVD algorithm.

Consider the case 1 of Table 1. This case correspon
a triangular test where,σ = 0.001, and�t = 0.03. If p = 1
the condition number(CN) of the matrixXred is CN = 1,
and the best estimation is obtained whenropt = 7. The er-
ror estimations are (see Table 1):D = 0.0143,σq = 0.0134
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and S = 0.0197. If r < ropt, for example,r = 3, then the
error estimations are:D = 0.0008,σq = 0.4629 andS =
0.46304. In this extreme case, the estimation is very d
cient. The dominant error is due to the great amplifica
of the measurement errors. Ifr > ropt, for example,r = 20,
then the error estimations are:D = 0.0764,σq = 0.0009 and
S = 0.0763. In this extreme case, the dominant error is
bias. Note thatCN of Xred is the same in all cases(CN = 1).
Xred is a matrix ofr × r, but the rank isp = 1. Numerical re-
sults show that asr-value is augmented, the damping effe
is more significant. This is consistent with the data filter
interpretation of Shenefelt [24]. According to Shenefelt,uT

1
acts upon vectorb as a band-pass filter. The power spec
density corresponding to the components of vectoruT

1, re-
veals that the wideband of the band-pass filter depend
r-value. Obviously, the most suitable wideband in orde
get the signal reconstruction, corresponds tor = ropt, but if
r < ropt the wideband is increased, and as it is expected, th
high frequencies of random noise are not filtered. Ifr > ropt,
the opposite occurs, so that the amplification factor of m
surement errors can be negligible, but the bias is increa
This fact justifies the regularization effect ofr-value on the
previous examples. Similar numerical behaviour is obse
in other test cases.

Following we treat the effect of the reduced rankp. With
this purpose we consider the same prior case (case 1 o
ble 1) but with a reduced rankp = 2. If r = 7 (this value
corresponds toropt whenp = 1), the condition number o
matrix Xred is CN = 5.78. As it is well known, theCN

quantifies the sensitivity of a linear system [19]. The er
estimations of this case are:D = 0.0033,σq = 0.0939 and
S = 0.0939. Comparing this estimation with the correspo
ing to case 1 of Table 1, now,CN of Xred has been increase
(when p = 1 CN = 1), consequently, the system is mo
sensible to the measurements errors. On the other hand
p = 2 and CN = λ1/λ2. This implies thatCN is sensi-
ble to the numberr of future temperature used. Ifp = 2,
Eq. (18) includes two vectorsuT

1 anduT
2, therefore now we

are considering two band-pass filters. The second filter(uT
2)

permits the amplification of larger frequencies than the
filter, consequently the best estimation forp = 2 requires
graterr-value (or smaller wideband) in order to reduceσq

andCN . The optimumr-value forp = 2 is r = 14, and the
corresponding error estimations andCN are:D = 0.0121,
σq = 0.0082,S = 0.0140, andCN = 4.15. If we compare
these results to the corresponding to case 1 of Table 1
conclude that the estimation is similar (or slightly more
curate), but the look ahead time period now is double, so
the insignificant differences in the estimations error, do
justify the use of the sequential SVD algorithm withp > 1.
The numerical behaviour with respect top-value is similar
in other test.

Following we consider the comparative study. Case
and 2, show the effect of noise level in measurement er
through a triangular test. Two levels of noise measurem
σ = 0.001 (case 1) andσ = 0.01 (case 2) are considere
.

-

Fig. 2. Case 1:σ = 0.001,r = 7, �t = 0.03: (a) Comparison between FS
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

Taking as reference the maximum increase of dimens
less temperature (0.3581) at location sensor(x = 1), and
considering (around the exact temperatures) an error r
between±2.576σ (or 99% confidence interval), these no
levels correspond to error percentages of 0.72 and 7.2%, re-
spectively. In both cases, thedimensionless time step ha
been�t = 0.03. Case 1, corresponds to Fig. 2(a) and
Fig. 2(a) compares the results corresponding to the bes
timation obtained by FSM and sequential SVD (noted
Seq.-SVD). In both methods the number of future temp
atures has beenr = 7. We note that in all cases considere
the optimumr-value is coincident in both sequential me
ods. Fig. 2(b) compares the results corresponding to the
estimation obtained by Seq.-SVD, and whole domain S
(noted as SVD), respectively. The initial rank correspo
ing to sensitivity matrix in the whole domain procedure
64, and the optimum reduced rank has beenp = 8. Com-
paring the graphical representations and the error estim
(Table 1, case 1), the results obtained by the two seq
tial procedures are very similar. The components of Fou
series corresponding to the triangular input are very do
nant in the range of low frequencies. This justifies why
whole domain SVD algorithm provides slightly more a



242 J.M. Gutiérrez Cabeza et al. / International Journal of Thermal Sciences 44 (2005) 235–244

M

e 2.

or a

ime
d. I

s

d.
ture

is
sig
b-

ain
the
(b))
ows

nt

M

ain
tri-
ies.
s
t

e
(Ta-

two
. On
the
by

lica-
za-

in-
ank
re-
Fig. 3. Case 2:σ = 0.01,r = 12,�t = 0.03: (a) Comparison between FS
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

curate results. Similar conclusions are obtained in cas
As expected, a greater noise level requires a greaterr-value
(r = 12 in the sequential methods), and a smaller rank (
more “severe” filter) (p = 4 in whole domain SVD).

In cases 3 and 4, the effect of the dimensionless t
step size through a rectangular test has been considere
both cases, the noise level has beenσ = 0.001. Case 3 refer
to a relatively large dimensionless time step�t = 0.1. Be-
cause of its size, onlyN = 16 measurements are include
As expected, large time step requires small number of fu
temperatures. The best estimation is obtained withr = 2.
Nevertheless whenr = 1, the estimation is unstable. In th
test, the dissimilarities among the three methods are less
nificant than in the triangular test. A similar conclusion is o
tained when the size of time step is decreased(�t = 0.03).
As expected, shorter time step requires largerr-value in or-
der to assure the stability. Considering the whole dom
SVD algorithm, the comparison between the results of
triangular test (Fig. 2(b)) and the rectangular test (Fig. 5
(both cases with the same time step and noise level), sh
that the rectangular test requires a largerp-value. This jus-
tifies the greater amplification observed in the measureme
errors.
n

-

Fig. 4. Case 3:�t = 0.1, r = 2, σ = 0.001: (a) Comparison between FS
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

Finally, case 5 shows a weakness of the whole dom
SVD. The reconstruction of this test requires the little con
bution of some components in the range of high frequenc
Consequently thep-value(p = 23) cannot be as smaller a
in the triangular test(p = 8). If the reduction of rank is no
drastic, the inverse of the smaller singular values 1/λi cause
a notable amplification of measurements errors in the invers
problem. These circumstances can be seen in this case
ble 1, case 5). Fig. 6(a), shows the estimations by the
sequential methods. They are excellent and very similar
the other hand, Fig. 6(b) shows that the estimation by
whole domain SVD is very inferior to the corresponding
sequential SVD.

5. Conclusions

In this paper we have presented a study about the app
tion of truncated SVD in a sequential form. The regulari
tion effect of the hyperparametersp andr is consistent with
the data filtering interpretation by truncated SVD. The pr
cipal regularization effect is carried out by the reduced r
p. This implies the elimination of the band-pass filters cor
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Fig. 5. Case 4:�t = 0.03,r = 5, σ = 0.001: (a) Comparison between FS
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

sponding to high frequencies of random noise. Additionally
the sequential algorithm presented in this study, permits
control of the wideband with the number of future tempe
turer. This study reveals that the most suitable reduced r
is p = 1. Greater ranks(p > 1) provide similar accuracy bu
require larger optimalr-values (or larger look ahead time p
riod). In other words, the most simple model with a uniq
band-pass filter(p = 1) and a great wideband (or a reduc
r-value) is quasi-equivalent to a more complex model w
several band-pass filters(p > 1) and a smaller wide-band (o
largestr-value).

Five cases have been used in order to compare the se
tial SVD algorithm, usingp = 1, to a sequential algorithm
based in the FS method, and to the standard whole-do
SVD method. Considering the comparison carried out w
the FS method, the following conclusions can be drawn:

• In both algorithms, the unique tunable hyperparam
is the number of future temperaturesr.

• In all the cases considered, the optimumr-value is the
same for the two algorithms.

• Although the stabilisation techniques are different, b
sequential algorithms give very similar results.
-

Fig. 6. Case 5:σ = 0.001, r = 9, �t = 0.025: (a) Comparison betwee
FSM and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

If we consider the comparison between sequential e
mation using SVD (andp = 1) and the whole domain est
mation using SVD:

• The search of the optimum rank value(p) is not required
in the sequential SVD.

• As the sequential SVD usesp = 1 in all cases, the sim
plification of the model is the maximum that can
achieved. This fact allows to obtain a very simple
gorithm.

• The whole domain algorithm provides the best
timations when the components of Fourier series
the unknown input are very dominant in the ran
of low frequencies. In other circumstances, the
timation can be deficient. In contrast, the sequen
SVD algorithm assures a reasonable estimation in
cases.

Acknowledgements

This work is supported in part by a grant from the A
dalusian Government through P.A.I. (Group TEP-157). T



244 J.M. Gutiérrez Cabeza et al. / International Journal of Thermal Sciences 44 (2005) 235–244

ro
ve
tre

ate-
by

p-
iers
rmo-

m
lec-

A-1
tion
175–

en
fer 40

end

Ill

n

rk,

of

n-
tion

ra-
, J.

rse
s-

on-
res,

rse
Heat

-

ear
94–

is-
on

n
grg.

i-

n-
tion,

eat
20

ms,

ov-
a-

rse
ition
–

Uni-

a-

l
2.
or
h. 2
authors would like to thank Prof. Dr. L. Cohen Mesone
and Prof. F.J. González Gallero for their help to impro
the English text. We also thank Dr. I. Rodríguez Maes
for useful discussions. Finally, the authors are very gr
ful for the helpful comments and suggestions offered
reviewers.

References

[1] O.V. Nagornov, Yu.V. Konovalov, V.S. Zagorodonov, L.G. Thom
som, Reconstruction of the Surface Temperature of Artic Glac
from the data of temperature measurement, J. Engrg. Phys. The
phys. 74 (2001) 253–265.

[2] M. Janicki, M. Zubert, A. Napieralski, Application of inverse proble
algorithms for integrated circuit temperature estimation, Microe
tronic J. 30 (1999) 1099–1107.

[3] F. Rosa, A. Valverde, J.M. Aranda, J. Aranda, J. Rodríguez, CES
Project capabilities for high temperature material testing: Applica
to the Hermes wing leading edge tests, Solar Energy 46 (1991)
182.

[4] T.-G. Kim, Z.-H. Lee, Time-varying heat transfer coefficients betwe
tube-shaped casting and metal mold, Internat. J. Heat Mass Trans
(1997) 3513–3525.

[5] J. Lin, Inverse estimation of the tool-work interface temperature in
milling, Internat. J. Mach. Manufact. 35 (1995) 751–760.

[6] J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse Heat Conduction:
Posed Problems, Wiley–Interscience, New York, 1985.

[7] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-Posed Problems, Winsto
& Sons, Washington, DC, 1977.

[8] O.M. Alifanov, Inverse Heat Transfer Problems, Springer, New Yo
1994.

[9] D.A. Murio, The Mollification Method and the Numerical Solution
Ill-Posed Problems, Wiley–Interscience, New York, 1993.

[10] J.V. Beck, D.C. Murio, Combined function specificatio
regularization procedure for solution of inverse heat conduc
problem, AIAA J. 24 (1986) 180–185.

[11] D.C. Murio, J.R. Paloschi, Combined mollification-future tempe
tures procedure for solution of inverse heat conduction problem
Comput. Appl. Math. 23 (1988) 235–244.

[12] N. Zabaras, J.C. Liu, An analysis of two-dimensional linear inve
heat transfer problems using an integral method, Numer. Heat Tran
fer 13 (1990) 527–533.
[13] G. Blanc, J.V. Beck, M. Raynaud, Solution of the inverse heat c
duction problem with a time-variable numbers of future temperatu
Numer. Heat Transfer B 32 (1997) 437–451.

[14] J.V. Beck, B. Blackwell, A. Haji-Sheikh, Comparison of some inve
heat conduction methods using experimental data, Internat. J.
Mass Transfer 39 (1996) 3649–3657.

[15] R.E. Kalman, A new approach to linear filtering and prediction prob
lems, ASME J. Basic Engrg. Ser. B 82 (1960) 35–45.

[16] Yu.M. Matsevityi, V.A. Maliarenko, A.V. Multanovskii, Identification
of time-variable coefficients of heat transfer by solving a nonlin
inverse problem of heat conduction, J. Engrg. Phys. 35 (1979) 10
1098.

[17] N. Daouas, M.-S. Radhouani, Versión étendue du filtre de Kalman d
cret appliquée à un problème inverse de conduction de chaleur n
linéaire, Internat. J. Therm. Sci. 39 (2000) 191–212.

[18] S.S. Shyam, A neural network approach for non-iterative calculatio
of heat transfer coefficient in fluid-particle systems, Chem. En
Processing 40 (2001) 363–369.

[19] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins Un
versity Press, Baltimore, MD, 1983.

[20] T.J. Martin, G.S. Dulikravich, Inverse determination of boundary co
ditions and sources in steady heat conduction with heat genera
ASME J. Heat Transfer 118 (1996) 546–554.

[21] T.J. Martin, G.S. Dulikravich, Inverse determination of steady h
convection coefficient distributions, ASME J. Heat Transfer 1
(1998) 328–334.

[22] S.-Y. Shen, A numerical study of inverse heat conduction proble
Comput. Math. Appl. 38 (1999) 173–188.

[23] W.B. Muniz, F.M. Ramos, F. De Campos, Entropy and Tikhon
based regularization techniques applied to the backwards heat equ
tion, Comput. Math. Appl. 40 (2000) 1071–1084.

[24] J.R. Shenefelt, R. Luck, R.P. Taylor, J.T. Berry, Solution to inve
heat conduction problems employing singular value decompos
and model-reduction, Internat. J. Heat Mass Transfer 45 (2002) 67
74.

[25] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford
versity Press, London, 1959.

[26] D. Kalman, A singularly Valuable Decomposition: The SVD of a M
trix, The American University, Washington, DC, 2002.

[27] W.H. Press, S.A. Teukolsky, W.T.Vetterling, B.P. Flannery, Numerica
Recipes in Fortran, Cambridge University Press, Cambridge, 199

[28] K.A. Woodbory, S.K. Thakur, Redundant data, future times and sens
location in the IHCP: A case study, Inverse Problems Engrg. Mec
(1996) 319–333.


