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Abstract

This paper examines numerically and theiogdly the application of truncated Singularlva Decomposition (SVD) in a sequential form.
The Sequential SVD algorithm presents two tunable hyperparameters: the number of future temperandehe rank of the truncated
sensitivity matrix(p). The regularization effect of both hyperparameters is consistent with the data filtering interpretation by truncated SVD
(reported by Shenefelt [Internat. J. Heat Mass Transfer 45 (2002) 67]). This study reveals that the most suitable reduced rank is “one”.
Under this assumptiotp = 1), the sequential procedure proposed, presents several advantages with respect to the standard whole-domain
procedure: The search of the optimum rank value is not required. The simplification of the model is the maximum that can be achieved.
The unique tunable hyperparameter is the number of future temperatures, and a very simple algorithm is obtained. This algorithm has beer
compared to: Function Specification Method (FSM) proposed by Beck and the standard whole-domain SVD. In this comparative study, the
parameters considered have been: the shape of the input, the noise level of measurement and the size of time step. In all cases, the FSM a
sequential SVD algorithm give very similar results. In one case, the results obtained by the sequential SVD algorithm are clearly superior to
the ones obtained by the whole-domain algorithm.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction temperature or a heat transfavefficient. The lack of infor-
mation is normally due to the difficulty to installing sensors
The Inverse Heat Conduction Problems (IHCP) are typi- in the boundary. This circumstance appears in applications
cal examples of “ill-posed problems”. Several functions and where the boundary is inaccessible [1,2], in simulation of
parameters can be estimated in the IHCP: static and mov-space vehicle re-entry [3], in maturgic applications [4,5],
ing heating sources, properties, initial conditions, bound- etc. In order to recover the unknown time history, is neces-
ary conditions, optimal shape etc. This study is confined to sary to obtain the additional information provided by remote
the estimation of an unknown boundary condition. The un- temperature sensors placedirterior locations. As a con-
known function can be stated as a surface flux, a surfacesequence of the diffusive nature of heat flow, the thermal
response at some distance of the boundary is damped and
mponding author. Tel.: 434 952 137045, fax.. +34 952 137045 !agg_ed with r_espect to the active input at the boundary. This
E-mail addresses: josen-1arie-1..gutierrez@uca.eé (J.i\./l. Gutiérrez !mp“efsl that in many cases the problem presents a lOW_Or
Cabeza), juanandres.martin@uca.es (J.A. Martin Garcia), insufficient sensitivity. On the other hand, the relationship
alfonso.corz@uca.es (A. Corz Rodriguez). between the thermal response and the unknown input can be
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Nomenclature

data vector
constant

X dimensionless coordinate
X sensitivity matrix

coefficient, Eq. (10) Y measured temperature

estimate of bias Y vector of measured temperatures

b

C

C

D

H partition of sensitivity matrix, Eq. (12) Greek symbols

M total number of time step o

N total number of estimated values P coefficient, Eq. (10)

q dimensionless heat flux At time step size

q heat flux vector € random error

T dimensionless temperature ¢ response to a unit step change
T vector of calculated temperatures A¢  response to a unit pulse
To initial condition A singular value

P reduced rank o standard deviation

r number of future time steps Subscripts

t dimensionless time ; at timey;

u Gaussian random numbers (normalized) fut future components

U orthogonal matrix past  previous components

u left singular vector red reduced rank approximation
Vv orthogonal matrix )

v right singular vector Superscripts

S diagonal matrix - estimated

S estimate of total error T transposed

expressed through a sensitivity matrix. The sensitivity ma- ment Method (BEM) in conjunction with Beck’s sensitivity
trix tends to be quasi-singular. This explains the principal analysis and least-squares method. Blanc et al. [13], intro-
difficulty of the IHCP: the estimation tends to be unstable duced a modification in the FSM, so that the new algorithm
due to the great amplificatiorf measurements errors. This uses a time-variable number of future temperatures. Beck et
difficulty is increased when thtime interval between mea- al. [14] compare the FSM, the Tikhonov regularization and
surements is reduced. This particular point can be discussedhe iterative regularization, using experimental data.
considering the exact solution of Burggraf [6]. On the other hand, there are other procedures that have
Fortunately, many methods have been reported to solvebeen used in other applications (economics, signal process-
IHCPs, among the more versatile methods (applicable toing, image reconstruction, etc.), and have also been applied
solve multidimensional and non-linear IHCP) the following successfully in IHCP in order to get a stable estimation. In
can be mentioned: Tikhonov regularization [7], iterative reg- this frame, the well-known Kalman filtering technique [15]
ularization [8], mollification [9], and the function specifica- has been used to resolve linear and non-linear IHCP [16,
tion method (FSM) [6]. The first two methods are considered 17]. The use of an artificial neural network (ANN) has also
as “whole domain” because alhé measured temperature been considered in the IHCP [18]. Another effective tech-
data are used in order to estimate simultaneously all thenique to solve ill-posed problems is based in the Singular
components of the unknown input. In these methods, the Value Decomposition (SVD) of an ill conditioned matrix
sensitivity matrix can be of great dimensions. In contrast, [19]. Martin and Dulikravich [20,21] combine SVD in con-
the last two methods are seaui@l. Therefore, only a little  junction with the BEM to resolve inverse problems in steady
part of available measurement is used in each step and onlyheat conduction. The inverse problem in transient heat con-
one component of the unknown input is estimated at eachduction has also been studied using SVD, for example, Shen
step. This fact can be an advantage in an on-line process[22] compares the results of the truncated SVD methods
A considerable number of contributions have been publishedwith the corresponding by Tikhonov’s regularization. Mu-
considering combinations, modifications and comparisonsniz et al. [23], consider the estimation of an initial condi-
of the previous methods. Beck and Murio [10] presented a tion, and compare three methods: Tikhonov regularization,
new method that combines tharction specification method ~ maximum entropy principle and truncated SVD. They found
of Beck with the regularization technique of Tikhonov. Mu- out that if the initial condition pesents a spatial distribu-
rio and Paloschi [11] propose a combined procedure basedion with harmonic form, the truncated SVD presents the
on a data filtering interpretation of the mollification method best approximate solution. However, in other tests the Max.-
and FSM. Zabaras and Lyu [12] combine the Boundary Ele- Entropy methods present the best reconstruction. More re-
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cently, Shenefelt [24] presented the data filtering interpre- qA
tation by the truncated SVD in IHCP. In all these previous %
authors, the truncated SVD method was applied as a whole - — >,
domain procedure.
This study examines numerically and theoretically the ap- /
plication of truncated SVD in a sequential form. The new
matrix structure is presented. Although the estimations for !
p > 1 are good, it is found that the corresponding optimum i
r-value can be too large. Only when= 1 the optimum
r-value is similar (or equal) to the one required by the future
sequential method. Under this assumptipr= 1), the sim- Fig. 1. Scheme of the 1D problem and boundary conditions.
plification of the model (in each step) is the maximum that
can be achieved. This fact permits the derivation of a very (a1 = 1). This dependence can be expressed analytically by
simple algorithm. This method is compared to the FSM of the puhamel integral [6]:
Beck and to the standard whole-domain SVD. In this com-

x=1

ANNANNNNN
Q

o time

parison, the parameters considered have been: the shape of ; dp(x, 1 —s)
the input, the size of time step and the level of noise in the 7(x,?) = /CI(S)T +To (2)
measurement. 0

In the following section we formulate the direct problem, \yhereq(x, 1) represents the temperature response at loca-
which will be used in the inverse problem (Section 3) in or- 41+ for a unit step change (of flux) in the input, afiglis

der to generate synthetically the measured temperatures. The,g initial condition {n this case it is 0). The analytical ex-
primary object_lve of thls_ section is to present _the Sequen- yression ofs (x, 1) can be found in Ref. [6]. Considering that
tial SVD algorithm (Section 3.3), nevertheless it requires a o objective in the inverse problem is the estimation af

previqus consideration of the whole domain SVD _algorithm a discrete form, Eq. (2) can be approximated at tigp@s
(Section 3.2). The well-known FSM of Beck is briefly out-

lined in Section 3.1. Section 4 discusses the regularization M
effects of the hyperparametepsandr. On the other hand, Ty =To+ Z‘In Adm—n 3)
a total of five cases are analysed and compared by the three n=1

methods. Finally, the conclusions are exposed in Section 5. where subscripts denote the time instant considered. We note
that the componentg are assigned to timgy 1/, as it can
be seenin Fig. 1A¢ represents the temperature response to
2. Direct problem an unit pulse in the input, and henc®y; = ¢;+1 — ¢i. As
it is evidentA¢,_; = 97T;/dq;, consequently, it represents
We consider a transient, one-dimensional and linear heatthe sensitivity coeffient measured at time with respect to
conduction problem, represented in Fig. 1. The mathemat-component;;. Obviously, the sensitivity coefficient will be
ical formulation is given by the differential equation (1a), zero wheni > j. Considering the expression (3) fof =
the boundary conditions (1b), (1c) and the initial condition 1,2, ..., we obtain the following matrix equation

(120')- T =[Xlg+To (42)
a“T oT
o 0<x<1 (1a) whereT = [T1, T2,..., Ty1", d = [g1.92.....qm]", and
%T the matrix[X] is
"o Lo =40 (1b) Adg O ... 0
oT Agy Ao ... O
-——| =0 (1c) [X]= : : . : (4b)
ax lx=1 : : . :
T(x,00=To=0 0<x<1 (1d) Adpy—1 Adpy—2 ... Ado
The previous equations habeen written in non-dimen- If the time history covers a long period of time, this ma-

sional form. The boundary condition (1b) represents a di- trix and the corresponding vector can be of a considerable
mensionless flux imposed at= 0. This flux can be an  dimension.

arbitrary function. In the numerical simulation of this study,

three different functions (test cases) will be considered. The

response of the direct probleffi(x,t) can be calculated 3. Inverseproblem

analytically [25] or numerically. We are interested in the re-

sponse at = 1, because it will be used in the next section in In the inverse problem the available information is con-
the inverse problem. In a linear problem, a linear dependencetained in the vector of measo temperatures from the in-
exist between the input (in this cagé)) and the response terior of the body, in this case from= 1. This vector will
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be noted a¥ . Because the measured temperatiyese af- 3.2. SVD algorithm

fected by errors, they are simulated using the discrete values

of the analytical (or exact) temperatufe= 7'(1,#;) (cal- In order to avoid the difficulties derived from the matrix
culated in the direct problem) at times= i Ar (the time inversion in Eq. (5), the singular value decomposition [19]
intervals of the measurements). Then, random ewpese of [X] is considered, so that this sensitivity matrix can be
added according tdi; = T; + ¢;, whereg; = Cu;. The ran- expressed as

dom numbers; have been obtained using a random gener- x| _ rujs)vy" @)

ator according to a normal (or @ssian) disibution with ] .

zero mean, uncorrelated and unit standard deviation. TheWhere U] and [V] are orthogonal matrices which columns
constantC is chosen, so thaf = o, whereo is the stan-  Vectors are the eigenvectors[of] - [X]" and[X]" - [X], re-
dard deviation of measured temperatures. spectively. These vectors will be notedwasandv;, and are

The first attempt in order to resolve the inverse problem C&lled left and right singular vectors ¢K]. The diagonal

can be the identification of measured temperatiYresith matrix [S] = diag 1, A2, ..., Ay contains the square root

the calculated temperatur@sexpressed by Eq. (4), so that ©°f the eigenvalues gK] - [X]". These coefficients (noted as
the unknown vectog can be obtained from A;) are arranged in decreasing magnitude and are called the

singular values ofX]. The factorisation given by Eq. (7) can

q=[X1" whereb=(Y —To) (5) be expressed as an outer product expansion [26]:
M
We note that diagonal coefficients ok] are equal to  [X]=[U][S][V] = ZAiUiViT (8)
Ad¢o. This sensitivity coefficient represents the response (at i1
x = 1) to a unitary pulse (with a wideness of one time step), In this expression, the matr], of rank M and dimen-

just when the pulse has finished. If the time step is suffi- gion 17 < M. is decomposed as the sum if matrices of
ciently small, this response can be several orders of magni-rank 1 and dimensio x M. This expansion is known
tude lower than others sensitivity values. This justifies (from a5 gpectral Decomposition. The condition number of this

a physical point of view) that{] is an ill-conditioned ma- matrix is the ratio:CN = A1/Ay, SO that matrices with
trix. On the other hand, a¥ is affected by measurements ¢ x s 1 are ill-conditioned.

errors, the estimation af by Eq. (5) will be unstable. In this The factorisation SVD presents important properties, in-
study we consider three possible methods in order to get aterpretations and applications. One of the most interesting
stable algorithm. applications in the ill-posed problems in order to get a re-
duced model, is based on the reduced rank approximations.
3.1. Beck'salgorithm If expansion (8) is truncated to thefirst singular values and

the corresponding left and right singular vectors (truncated

] ) . SVD), the new matrix and the corresponding factorisation
As FSM is a sequential procedure, it is assumed that Com'(noted by the subscripq) will be expressed as

ponents:gi, 41, ..., dm—1, have been previously estimated
(they are noted with =), and the objective is the esti-
mation of the componenj,,, corresponding to the:-time
step (located in the time interval betwegn ; andt,,). The ) _
particular stabilisation technique of this method is based on  G0lub [19] shows thafXred] is the closest matrix tgX]

the specification of the functional form corresponding to an that has ranky. With an adequate effective rank the ap-
unknown inpug. Since this method is sequential, the spec- Proximation of[X] by [Xred| presents a notable advantage
ification includes only- future steps from the last estimated N Order to solve a direct and an inverse problem. In the di-

component (component— 1). Then, the future components rect problem thet — p smallest terms of the sum (8) have a
s Gl Gmir—1, CAN be written in terms of,,, and negligible contribution, and in the inverse problem, the elim-
msYm s Ymrr—L my

only this component is estimated in each step. The tempo_ination of the same terms, reduces the condition number and
ral assumption can be made through several forms: constant?he numerical instabilty. . , L
On the other hand, this rank reduction has a physical in-

linear, parabolic, etc. In this paper the simplest form is used, : : : A
. terpretation based on the discussion of the data filtering in
and hence the future components are assumed temporarily frequency-domain. If we consider the SVD of matfi],

constant. Details of this algorithm can be seen in Ref. [6]. then Eq. (5) can be expressed b
The estimated component, notedjgscan be expressed as q P y

14
[Xredl = [Uredl[Sredl[Vred ' = Y _aiuv] p<M  (9)
i=1

r—1 m-1 » q=[XI"*b=[V][SI}U]"b
Z,/:O(Yerj - Zn:O ‘InAqufnJrj — To)Coj

_ ©) W] u
" WETS =2 vuib=2 v 0
. i=1"" i=1

whereCo; = szzo A¢;_; andgo=0. wherec; = A—ll_,Bi, pi=ulbandb=Y — To.
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In Eg. (10),q is expressed as a linear combination of the  Notice that future temperatures can be written as
orthonormal vectors;. The coefficient; is pondered by the
factors 1/2; and the convolution between the components
of columns vectorsl; and measured temperatures vedtor
In agreement with Shexfelt [24], vectorsu; act upon the  where the previous history is stored in maffik] and vector
measured temperature, as a band-pass filter, so that the @y The vectors and matrix related with future tempera-
band is displaced toward highequencies as the number of tures areTsy, grut and[Xsyut]. Considering the identification
columns is increased. The band pass-filters correspondingoetweeriT,; andY st, we obtain
to high frequencies of random noise, might be removed be-
cause in those frequency ranges, the inverse of the smallesffut = Xul ™ (14)
singular values A4; are very large, and this provoke a great oy the vectob is given by
amplification of measuremeasrrors. Hence, the SVD algo-
rithm (corresponding to the whole domain procedure) can be b = Yfut — [H18past— To (15)
expressed as

Trt= [H]  Qpastt [Xfutl Grut+ To

rx1 rxm—1 m—1x1 rxr rx1 rx1

(13)

Taking into account Eq. (13), the expressifii]Qpast+

= [Xred 0 = [Vredl[Sred] [Ured b To can be interpreted as the calculated temperature over
» tm—1 <t < tyyr—1, CONsidering that in this time interval the
1 . . . . ~
= Z —viulb p<M (11) inputis held at zero. This conceptis notedid$dpast+ To =
A

Tlgre=0, SO that the data vector is= Yyt — T|gg,=o0-
Following, we consider the SVD of the small sensitivity

With an adequate reduced rank we get a good ratio signal- .
g 9 9 9 matrix [ Xsut]

to-noise. As it is expected, the optimumvalue is very

dependent on the frequency components of the unknown in-
put. [Xtutl = [VI[SIIV]T = ZA u;vy (16)

rxr
i=1

3.3. Sequential SVD algorithm In order to get a stable algorithm, we consider the closest

matrix to [Xsyt] that has ranky. This matrix, called Xeqd],
In similar form to FSM, the sequential algorithm SVD |l be given by

uses ther future temperatures (meaaed and calculated),
nevertheless the stabilisation technique is not based on th
specification of the unknown input. In order to obtain the se-
guential algorithm SVD, we consider the Eq. (4), extended
to r future steps from the last estimated component (compo-and with an adequate-value, we obtain a stable algorithm
nentm — 1). In a partitioned form, the matrix equation can

e[xred] = [Ured![Sredl Vred] Z)\ u; VT p<r (17)

be written as Afut = [Xredl 20 = [Vredl[Sred] *[Uredl' b
I:Tpast:| _ [Xpast i| |:QDasti| +To (12) _ i iv,»u.Tb p<r (18)
Tfut H Xfut Qfut i1 Ai !

where the vectors are According to Eq. (18), the sequential SVD algorithm

presents two tunable hyperparameteend p. For a given

-
Tpast= [T1~ .. Tm—l] , Tfut = [T m+r l] ; k X
p-value, we can carry out nurmieal experiments in order

Opast=41.-Gm-11", At =[G - Gmr 11" to find the corresponding optimumvalue. This optimum
and the matrices are value is obtained from the minimization of the total erfor
Ado 0 0 given by Eq. (23). The numerical experiments given in Sec-
Ad1 Apo ... O tion 4, show that the most suitable reduced rank is 1.
[Xpasl = . . . . Greater rankgp > 1) require larger optimat-values. This
: : ’ : fact represents a disadvanggig an on-line process, because
Apm-2 Abm-3 --- Ao the time periodrpt - At (named as “look ahead” [28]) can
Appm—1  Apm—2 ... A1 be excessively long. The expression of the data veztsr
Adm App-1 ... A2 crucial to justify the advantage of sequential SVD algorithm
[H]= : . . : under the assumptiop = 1. In the whole domain proce-
) : ’ ) dure, the components df are the measured temperatures
Abmir—2 Afmir-3 ... A¢r (with respect to the initial temperature). Normally, in these
Ago 0 .. 0 data set the signal amplitude is much higher than the noise
A1 Ago ... O one. On the other hand, the data vector corresponding to the
[Xtue] = : : : sequential procedure 3= Yt — T|gq,=0. Comparing the

A, A, . Ado data vector used in each procedure, we can state that:
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Table 1
Comparison of error estimations for different inverse algorithms and several
cases

Due tor « M, the dimension ob is much smaller in
the sequential procedure.
Due to thermal inertia of heat conduction, the compo-

nents ofY syt andT |g,,,—o0 give similar values. Algorithm D % S
o Yt andT|q,—0 are affected by errors. The first is af- Case 10 =0.001,r =7, Ar =0.03
fected directly by measurement errors. The second de-Fsmo 0.0109 0.0104 0.0157
pends orfipasy and it is an estimated vector affected by Seq.-SVDe 0.0143 0.0134 0.0197
two types of errors: stochastic (consequence of the mea-SVPU 0.0066 0.0050 0.0083
surement errors) and detemistic (consequence of the  case 26 =0.01,r =12, Ar = 0.03
approximation in order to get a stable estimation). ESMO 0.0344 0.0242 0.0390
e When Ygy and T|q,,—0 are subtracted to givb, the Seq.-SVDe 0.0373 0.0299 0.0428
components o are small numbers, and as consequence SVDO 0.0163 0.0091 0.0188
of the errors, they presents fluctuations. In this case, thecase 3:a1 = 0.1, r = 2,0 = 0.001
signal amplitude is of the same magnitude order than the g, o 0.0823 0.0282 0.0939
noise one. Seq.-SVDe 0.0654 0.0343 0.0794
sSvDO 0.0081 0.0416 0.0424
According to the data filtering interpretation of Shene- g6 447 =003, = 5,0 = 0.001
felt [24], the fact_ that sequential SVD alg.orithlm gives satis- FSMO 01171 0.0359 01101
factory results (in all cases considered in this study) when geq.svpe 0.1148 0.0480 0.1197
p = 1, means that the most relevant information is con- svbDO 0.0996 0.0345 0.1054
tained in the lowest frequency components of the Fourier -, .5, _ 0001, =9, Ar = 0.025
series ob. Consequently, undert_h|s assumptipn= 1), the FSMO 0.0099 0.0081 00116
unigue tunable hyperparameter is the number of future tem-geq -svDe 00131 0.0102 0.0153
peratures. The regularization effect of, will be considered SVD —— 0.1912 0.0392 0.1952
in the next section. Assuming that SVD can be calculated nu-
merically with an efficient code [27], it is possible to obtain L 1/2
a very simple algorithm. Whep = 1, Eq. (18) is reduced to o, = [N - Z(‘?" — G |U:0)2:| 22)
Gfut = Vliu-;[b (19) = 1/2
A N A :
wherevy = [v11, ..., v1]', UI = [u11,...,ur1], b = [b1, N [N—l;(ql ql) :| (23)

.., b 17, and Gt = [Gms - --» Gmar—1]'. Taking into ac-

count the sequential characteristic of this method, only the Where/ is the total number of estimated values. The best
first componeng,, is retained. This calculus process is re- estimation is obtained from the minimization of total error

peated for the next time step. Finally, the sequential SvD S+ Which gives the necessary balance between the two er-
algorithm can be expressed as ror sources [6]. This criterion is very useful in a comparative
study (as the actual). Nevertheless, in a practical case, the
residual principle [8] provides a more realistic criterion. It
must be pointed out that sequential algorithms (FSM and
sequential SVD) use measurements before heating starts
(t < 0). In accordance with Bec|6], this is performed in
order to minimise the effect of the anomalous calculation
during the first few steps. In the whole domain SVD, the pre-
) _ vious measurements are not required, nevertheless they have
In an IHCP there are two sources of error in the estima- been included in order to do a comparison point-by-point.

.1 ¢
Gm = )\_lvll;biuil (20)
i=

4. Resultsand discussions

tion. The first source is the unavoidable bias deviation (or de-
terministic error). The second source of error is the variance

A total of five cases are summarised in Table 1. The re-
sults correspond to the best estimation obtained by FSM,

due to the amplification of measurement errors (stochasticthe standard whole-domain SVD and sequential SVD (us-

error). The global effect of deterministic and stochastic er-

rors is considered in the mean squared error or total error.

The estimates used in this study for the bi&p, the vari-
ance(o,) and the total erro(S) are defined by Egs. (21)—
(23), respectively.

1/2
|: (Gilo=0— Cli)zi|

N

2.

i=1

N1 (21)

ing p = 1). Before the comparative analysis, we present a
discussion about the tunable hyperparameieandr of the
sequential SVD algorithm.
Consider the case 1 of Table 1. This case corresponds to

a triangular test where; = 0.001, andAr =0.03. If p=1

the condition numbe¢C N) of the matrixXreq is CN =1,

and the best estimation is obtained whgp = 7. The er-

ror estimations are (see Table I):= 0.0143,0, = 0.0134
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and S = 0.0197. If r < ropy, for example, = 3, then the 37 ‘ - '(a) ‘
error estimations areD = 0.0008,0, = 0.4629 andS$ = 06 f A .
0.46304. In this extreme case, the estimation is very defi- e@ﬁ%
cient. The dominant error is due to the great amplification ~ °°[ é
of the measurement errors.Af> ropt, for exampley = 20, il f Q%Q;Q
then the error estimations arB:= 0.0764,0, = 0.0009 and &£
S = 0.0763. In this extreme case, the dominant error is the o3 g’ R
bias. Note tha€ N of Xeqisthe samein all casé€ N =1). o %
Xredis @ matrix ofr x r, but the rank i = 1. Numerical re- 02 b
sults show that as-value is augmented, the damping effect 01t --- Exact %
is more significant. This is consistent with the data filtering ﬁ& O FSM %%
interpretation of Shenefelt [24]. According to Shenefelt, or  Segt- * B S0 Sope
acts upon vectob as a band-pass filter. The power spectral [ ‘ . _ :
density corresponding to the components of vec@qrre— 04 02 0 02 04 06 08 1 12 1,4ﬁmi.
veals that the wideband of the band-pass filter depends on ,; .
r-value. Obviously, the most suitable wideband in order to g (®) '
get the signal reconstruction, corresponds 8 ropt, but if 08 T 1
r < ropt the wideband is increasgand as it is expected, the os ﬁiﬂ
high frequencies of random noise are not filtered. 3 ropt, ’ 5.;2‘ *
the opposite occurs, so that the amplification factor of mea- o4+ g %
surement errors can be negligible, but the bias is increased. g ‘Oba
This fact justifies the regularization effect ofvalue on the o _;f v
previous examples. Similar numerical behaviour is observed  , | o ’%
in other test cases. A Y

Following we treat the effect of the reduced rgnkWith 01 r !ﬂﬂ ==~ Exact ug
this purpose we consider the same prior case (case 1 of Ta- R g Ay
ble 1) but with a reduced rank = 2. If » = 7 (this value ? ko) et
corresponds t@opt Wwhen p = 1), the condition number of e e I T T
matrix Xreq is CN = 5.78. As it is well known, theCN AR Ml R e Yime

guantifies the sensitivity of a linear system [19]. The error

estimations of this case ar® — 0_0033’% — 0.0939 and Fig. 2. Case 15 = 0.001,r ;7, Ar =0.03: (a) Comparison between FSM

S = 0.0939. Comparing this estimation with the correspond- and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

ing to case 1 of Table 1, now,N of Xeq has been increased

(when p =1 CN = 1), consequently, the system is more Taking as reference the maximum increase of dimension-
sensible to the measurements errors. On the other hand, noless temperature (0.3581) at location sengoe 1), and

p =2 andCN = A1/Xp. This implies thatCN is sensi- considering (around the exact temperatures) an error range
ble to the number of future temperature used. i = 2, betweent-2.5760 (or 99% confidence interval), these noise
Eqg. (18) includes two vectons] andul, therefore now we  levels correspond to error percentages of 0.72 apth7re-

are considering two band-pass filters. The second ﬁ@} spectively. In both cases, ttddmensionless time step has

permits the amplification of larger frequencies than the first beenAt = 0.03. Case 1, corresponds to Fig. 2(a) and (b).
filter, consequently the best estimation fer= 2 requires Fig. 2(a) compares the results corresponding to the best es-
graterr-value (or smaller wideband) in order to redugge timation obtained by FSM and sequential SVD (noted as
andCN. The optimuny-value forp = 2 isr = 14, and the Seq.-SVD). In both methods the number of future temper-
corresponding error estimations ad&v are: D = 0.0121, atures has been= 7. We note that in all cases considered,
o, =0.0082,5 = 0.0140, andCN = 4.15. If we compare  the optimumr-value is coincident in both sequential meth-
these results to the corresponding to case 1 of Table 1, weods. Fig. 2(b) compares the results corresponding to the best
conclude that the estimation is similar (or slightly more ac- estimation obtained by Seq.-SVD, and whole domain SVD
curate), but the look ahead time period now is double, so that(noted as SVD), respectively. The initial rank correspond-
the insignificant differences in the estimations error, do not ing to sensitivity matrix in the whole domain procedure is
justify the use of the sequential SVD algorithm wjth> 1. 64, and the optimum reduced rank has bgesa 8. Com-
The numerical behaviour with respect pevalue is similar paring the graphical representations and the error estimates
in other test. (Table 1, case 1), the results obtained by the two sequen-
Following we consider the comparative study. Cases 1 tial procedures are very similar. The components of Fourier
and 2, show the effect of noise level in measurement errorsseries corresponding to the triangular input are very domi-
through a triangular test. Two levels of noise measurementsnant in the range of low frequencies. This justifies why the
o = 0.001 (case 1) and = 0.01 (case 2) are considered. whole domain SVD algorithm provides slightly more ac-
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Fig. 3. Case 20 =0.01,r = 12, At = 0.03: (a) Comparison between FSM  Fig. 4. Case 3Ar =0.1,r = 2,0 = 0.001: (@) Comparison between FSM
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD. and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

curate results. Similar conclusions are obtained in case 2. Finally, case 5 shows a weakness of the whole domain
As expected, a greater noise level requires a greataiue SVD. The reconstruction of this test requires the little contri-
(r =12 in the sequential methods), and a smaller rank (or a bution of some components in the range of high frequencies.
more “severe” filter) p = 4 in whole domain SVD). Consequently the-value (p = 23) cannot be as smaller as

In cases 3 and 4, the effect of the dimensionless time in the triangular testp = 8). If the reduction of rank is not
step size through a rectangular test has been considered. ldrastic, the inverse of the smaller singular valugs; tause
both cases, the noise level has beea 0.001. Case 3refers  a notable amplification of measments errors in the inverse
to a relatively large dimensionless time stap= 0.1. Be- problem. These circumstances can be seen in this case (Ta-
cause of its size, onlyv = 16 measurements are included. ble 1, case 5). Fig. 6(a), shows the estimations by the two
As expected, large time step requires small number of future sequential methods. They are excellent and very similar. On
temperatures. The best estimation is obtained with 2. the other hand, Fig. 6(b) shows that the estimation by the
Nevertheless when= 1, the estimation is unstable. In this whole domain SVD is very inferior to the corresponding by
test, the dissimilarities among the three methods are less sigsequential SVD.
nificant than in the triangular test. A similar conclusion is ob-
tained when the size of time step is decreased= 0.03).
As expected, shorter time step requires largealue in or- 5. Conclusions
der to assure the stability. Considering the whole domain
SVD algorithm, the comparison between the results of the  Inthis paper we have presented a study about the applica-
triangular test (Fig. 2(b)) and the rectangular test (Fig. 5(b)) tion of truncated SVD in a sequential form. The regulariza-
(both cases with the same time step and noise level), showdion effect of the hyperparametessandr is consistent with
that the rectangular test requires a largevalue. This jus- the data filtering interpretation by truncated SVD. The prin-
tifies the greater antification observed in the measurement cipal regularization effect is carried out by the reduced rank
errors. p. This implies the elimination of the band-pass filters corre-
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Fig. 5. Case 4At = 0.03,r = 5,0 = 0.001: (a) Comparison between FSM

) Fig. 6. Case 50 = 0.001,r = 9, Ar = 0.025: (a) Comparison between
and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

FSM and Seq.-SVD; (b) Comparison between SVD and Seq.-SVD.

sponding to high frequencie$ mndom noise. Additionally, If we consider the comparison between sequential esti-

the sequential algorithm presented in this study, permits themation using SVD (angh = 1) and the whole domain esti-
control of the wideband with the number of future tempera- mation using SVD:
turer. This study reveals that the most suitable reduced rank

is p = 1. Greater rankép > 1) provide similar accuracy but e The search of the optimum rank val(e) is not required

require larger optimal-values (or larger look ahead time pe- in the sequential SVD.

riod). In other words, the most simple model with a uniqgue e As the sequential SVD usgs= 1 in all cases, the sim-

band-pass filtep = 1) and a great wideband (or a reduced plification of the model is the maximum that can be

r-value) is quasi-equivalent to a more complex model with achieved. This fact allows to obtain a very simple al-

several band-passfilte¢g > 1) and a smaller wide-band (or gorithm.

largestr-value). e The whole domain algorithm provides the best es-
Five cases have been used in order to compare the sequen- timations when the components of Fourier series of

tial SVD algorithm, usingp = 1, to a sequential algorithm the unknown input are very dominant in the range

based in the FS method, and to the standard whole-domain  of low frequencies. In other circumstances, the es-
SVD method. Considering the comparison carried out with timation can be deficient. In contrast, the sequential
the FS method, the following conclusions can be drawn: SVD algorithm assures a reasonable estimation in all
cases.
e In both algorithms, the unique tunable hyperparameter
is the number of future temperatures
e In all the cases considered, the optimuraalue is the Acknowledgements
same for the two algorithms.
¢ Although the stabilisation techniques are different, both ~ This work is supported in part by a grant from the An-
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