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Multiplicative Square Functions

Maria José Gonzalez and Artur Nicolau

Abstract

We study regularity properties of a positive measure in the eu-
clidean space in terms of two square functions which are the multi-
plicative analogues of the usual martingale square function and of the
Lusin area function of a harmonic function. The size of these square
functions is related to the rate at which the measure doubles at small
scales and determines several regularity properties of the measure.
We consider the non-tangential maximal function of the logarithm of
the densities of the measure in the dyadic setting, and of the loga-
rithm of the harmonic extension of the measure, in the continuous
setting. We relate the size of these maximal functions to the size
of the corresponding square functions. Fatou type results, LF esti-
mates and versions of the Law of the Iterated Logarithm are proved.
As applications we introduce a hyperbolic version of the Lusin Area
function of an analytic mapping from the unit disc into itself, and use
it to characterize inner functions. Another application to the theory
of quasiconformal mappings is given showing that our methods can
also be applied to prove a result by Din’kyn’s on the smoothness of
quasiconformal mappings of the disc.

1. Introduction

A positive measure g in RV is called doubling if there exists a positive
constant C = C(x) such that

1(2Q) < Cp(Q),

for any cube Q@ C R, where 2Q denotes the cube which the same center
as () and twice the sidelength. Lebesgue measure dm is doubling and, as a
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matter of fact, it is the only doubling measure for which the constant C
can be taken C' = 2¥. However, classical constructions ([7, 13]) provide
examples of doubling measures which are singular with respect to Lebesgue
measure. See also [2], [12], [24], [33].

Our main purpose is to describe regularity properties of a measure, such
as being singular, in terms of two different square functions. The first square
function is related to the rate at which the measure doubles at small scales,
while the second one is connected to the logarithm of the harmonic extension
of the measure. An important result in this direction, stated below in a
different way, was proved by L. Carleson ([13]) for N = 1, when studying
regularity properties of quasiconformal mappings. See also (27, p. 5], and [16]
for the extension to R¥.

Theorem A. (a) Let y1 be a doubling measure in RY. Consider

u(@)2y
w(t) = su -1},
R )
where the supremum is taken over all cubes Q in RN of sidelength smaller
than t. Assume
oo dt
/ w*(t)— < 00.
0 t

Then, the measure u is absolutely continuous and its density f satisfies
/ exp(Cf¥dm < oo,
Q

for any cube @ C RN and any C > 0.

(b) Let w: [0,1] — [0,00] be an increasing function with w(0) = 0. As-
sume that for some 0 < € < 1, the function w(t)/t'~¢ is non-decreasing.

Assume also it
/wm—=m.
0 t

Then, there erists a singular doubling measure p on RN such that

N
”:(sz) _ 1‘ <w(l(Q)),

for any cube Q@ C RV,

So, the quadratic condition

sz(t)% =00

governs the existence of singular measures that double at rate w(t). However,
this is a global result because the function w(t) controls the error done by
the measure when doubling at all cubes of sidelength ¢.
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We are interested in local versions of this result. In the additive settir
local results of this sort were proved by Stein and Zygmund [35, p.26
They showed that a rcal valued function f on RY has an ordinary derivat’
at almost cvery point of a set E if and only if both

o+ + flz—1) ~2f() = O(tl), t—0,
[ e+0+ sz -0 - 2@ < oo
ltl<s | [t

for almost every « € E.

Both our results and methods are better explained in the dyadic setti
Let @y be the unit cube in RY. Let us consider the dyacdic decomposit
of Qo, that is, for k = 1,2,..., we consider the collection £, of the
pairwise disjoint subcubes of Qg of the form

Q=[n2™" (h +1)27%) x - x [in27", (v + 1)27%) |
where 7y,...,jn are integers between 0 and 25 — 1. So

m(Q) = |Q] = 27*V.

A positive measure g on Qp is called dyadic doubling if there exists a cons
C = C(p) > 0 such that

1(Q) < Cu(Q),

for any dyadic subcube @ of @y, where @ is the smallest dyadic subcube
which properly contains . These measures were completely characte
in terms of their Haar coefficients by Fefferman, Kenig and Pipher (
Results on null sets of (dyadic) doubling measures can be found in
[39], [40].

A dyadic martingale on Qp is a sequence of functions {S,} fror
to R such that S, is F,,-measurable and the conditional expectation of
on F,is S, n = 0,1,2,.... These two conditions may be rephrase
S, 1s constant (which we denote S,.(Cj)) in each cube é of F,, and

5a(@ = 3 3 Suni(Q)

where the sumn is taken over all cubes @ of F,4 contained in . Not
Sn(z) represents the value of the martingale on the cube @, (z). where
denotes the unique dyadic cube of sidelenght 27" containing x.
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The (truncated) maximal function of the martingale {S,} is

Sn(@)= sup [Sa(z)], m=0,12,...

0<n<m

If m = co, we simply write S*(z). The (truncated) martingale square func-
tion of {S,} is defined as

m 1/2
<s>m<z>=(an—sk_nka_l(x)IIl) ,  TEQ.
k=1

In diniension one, this is the more traditional square function

m

($inm(o) = ( 3(5ua) = Seca(a))?) "

k=1

If m = oo, we simply write (S)(z). It is well known that many properties of
the martingale {S,} can be described using its square function. Burckholder
and Gundy proved that the sets

{z € Qo: "h_r'xolo Sp(z) exists} and {z € Qo: (5)(z) < o}

can only differ on a set of Lebesgue measure 0. Also, for 0 < p < oo, the
maximal function

5 (z) = sup |194(2)]

is in LP(Qy) if and only if (S) € LP(Qo). See [9] and [10]. These results
give comparisons between S* and (S) on the set where they are finite. In its
complement, the following Law of the Iterated Logarithm holds:

lim su |Su()l <
p <1
n—oo  (S)n(z)1/2loglog(S)a(z)
at almost every point € {z € Qq: sup,, |Sn(z)| = oo} ([35, 6]). An impor-

tant result in this dircction is the following good-A inequality established by
Chang, Wilson and Wolff,

{z € Qo: S*(z) > 2\, (S)(z) <eA}| <
(1.1) Schp(—%(l_E) )|{$€QO:S'(.7:)>,\}],

£

Here ¢ is any number in (0,1) and C is a universal constant ([14]).
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Given a positive measure j on Q(h one may consider the dyadic marting

u
Sp=Y_ m kE=1,2,....
&, 1

Thus, many properties of the martingale {S;} and hence of the measure
can be described in terms of its quadratic variation,

2y e (@) plQea(x))
o (l)_,;”‘""{ o 10 )

where the maximum is taken over all cubes Q € Fy contained in Qi
For instance, it is easy to show that, for 1 < p < oo, p has a dew
(with respeet to Lebesgue measure) in LP(Qp) if and only if the squ
function of the martingale is in L?(Q). Because of the additive nature
thesc cxpressions, the martingale {Sx} is very well suited to study addi
properties of the measure p. See [2], [16], [27], [26]. When dealing v
multiplicative properties of a measure, such as doubling conditions, i
natural to consider, somehow, the logarithm of S,. This point of view
already been used by other authors. For instance, we mention the wor
Fefferman, Kenig and Phiper [17] in connection with the theory of weig
(sce also [11], [37]) and the work of P. MacManus ([29]) on quasiconfor
mappings.

Next we introduce a square function of a positive measure whicl
in some sense, a multiplicative analogue of the square function which a
from the martingale. Given a dyadic doubling measure x on ans
the dyadic square function

A*p)(x -Zd z € Qg

k=1

where

i = |

So, the function A%(u)(z) measures the ervor done hy x when doublin
all dyadic cubes containing 2 € Qy. In dimension 1, this is

2oy o (1 20Uk
A(u)(z) = ; (1 [L(Ik~-»l(:r))> 7

where I;(z), 7 = 1,2,.... is the unique dyadic interval of length 277
contains z € I,. Our first vesult is the following.

QeF., QC Qk_l(;r)} .
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Theorem 1.1. Let u be a dyadic doubling measure in @y and A?(y) its
dyadic square function. Let Q.(z) be the unique dyadic cube in F, which
contains = € (Jg. Then,

{a} The sels
{r € Qo: r}fgﬁ%% > G} and {z € Qu: A*(u)(z) < o0}

can only differ in a set of Lebesgue measure 0.
(b) Consider the mazimal function
1(Qn(z))

log ——-

|@n{z)|
Then, for 0 < p < 00, M(log u) € LP(Qp) if and only if A* (1) € LP(Qo).

, TEQ

M{log ) (z) = sup

(c) Let f be the density of p respect Lebesque measure. Then, for 1 <p < oo,
log f € LP(Qo) if and only if A*() € LP(Qu)-

(d) There exists a constant C = C(N), only depending on the dimension,
such that exp(CA*(1)) € L'(Qo) implies that u and Lebesque measure
are mutually absolutely continuous.

{e) There exists a constant c = c(N), only depending on the dimension, such
that if A*(u)(z) < 1 for any x € Qq, then exp(cM?(logu)) € L' (Qo)-

The statements in (a), (b) and (c) are the analogues, in our setting, of the
classical results by Burkholder and Gundy cited above, while (d) and (e} are
consequences of certain good-A inequalities relating the growth of M(logu)
and A?(p) and which are the analogues of the subgaussian estimates of
Chang, Wilson and Wolff. As a consequence of (a) we obtain

Corollary 1.2. Let u be a dyadic doubling measure in @y and let A*(y)
be ils dyadic square function. Then, u is singular with respect to Lebesgue
measure if and only if

A*(u)(z) = oo,

at almost (dm) every point z € Q.

The main idea in the proof is to consider the logarithmic transformation
of the martingale {S5,}. More concretely, given a dyadic doubling measure p
on (Jp, we consider the dyadic martingale
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It is easy to see that there exists a unique (except for adding constan
process X, verifying the following two conditions:

(a) X, is F,_-measurable, that is, X, is constant on any cube of F,_g,

(b) T =log S, + X, is a dyadic martingale.

It turns out that the martingale {7} is the inverse of the exponential tra:
formation of {S.} (sce [27, p.27], [6, p.47]). Actually the process X, ¢
be given explicitly by

= Z Xﬂ(Q)XQ\
Qeln
where
g.m.(Q;)
(1.2) Zlogam Qj)

Here the sum is taken over all dyadic cubes {@;} which properly contain
Also, if @ € Frand ), ..., Q4 are the dyadic cubes in Fi,; contained in
then g.m. (@) (a.m. (@) denotes the geometric (arithmetic) mean of
density of u over Jy,...,Qqn, that is

m(@) = 11 (2@ @) _ 1~ uQ)
5‘@‘H(w4>’ wRALS o T ¢

Now, the main observations are that, under the doubling hypothesis,
quadratic variation {T)%(x) is pointwise comparable to A?(u)(z), and X,
is pointwise comparable to the truncated arca function A2(u)(z), that i

ﬂzZﬁm=ﬁmm
k=1

o (@u()
Hllin (T

log BEE] + X,.(z)] .

Now, since {T) 1s comparable to A{g), the usual stopping time argum:
which go back to Burkholder and Gundy (see [9, 10]) used to compare
distribution functions of 7°(z) and (T)(z) can be used to compare M(lo
and A?(y) and obtain (a) and (b) in Theorem 1.1. However the proof of
and (c) uses the deeper subgaussian cstimates proved by Chang, Wi
and Wolff mentioned above ([14]). These subgaussian estimates are
very closely related to the law of the iterated logarithm. In our casc
get that the logarithm of the density of u behaves very closely to X, (x

the set {z € Qp: limp_x -{gl{%%l = 0} which coincides, except for a s

Lebesgue measure 0, with {z € Qp: X(x) = oo} = {z € Qq: A(u)(z) =

T*(z) = sup |T(z)| = sup
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Theorem 1.3. Let p be a dyadic doubling measure on @y and let X, be
given by (1.2). Then there ezists a constant C depending on the dimension
and on the doubling constant of i, such that at almost every point © € {z €
Qo: lilnn_.(,c,-lﬁog%(—22 0}, one has

‘log BOu)) 4 x ()

- . |Qn ()|
C™! < limsu <
=y VX (z)log log X, (z) ~

Since, as mentioned before, X,,(z) is comparable to A2(u)(z), we deduce

Corollary 1.4. Let u be a dyadic doubling measure on @y, let A%(u) be its

square function and let X, be given by (1.2). Then at almost every point

. A H Qn(z)) _
ze{z€Qp: limyo /i(-i—qun(x)l =0},

#(@n(z))
e XK@

Also, there exists a constant C depending on the dimension and on the dou-
bling constant of 1 such that

S Qn ()]

< AW

at almost every point z € {z € Qq: lim”_.m——l%—é—)zl)- = 0}, for n suffi-
ciently large.

'lo lQn(x))

ct <C,

It sliould be observed that

lo ",gt" < C(u) de(x

is the best possible pointwise estimate. However, the last result shows that
this inequality can be substantially improved at almost every point on the

set {z € Qo: lim, o filgz—(ﬂl =0}.

The sccond part of our work is devoted to study the relation between
singularity, as well as other regularity properties of a measure, and an square
function which arises from the harmonic extension of the measure. Let u be a
harmonic function in the upper-half space R¥** = {(z,v): z € RV, y > 0}.
Given « > 0 and z, € RY, we denote by I'(zy) = [4(z¢) the (truncated)
cone with vertex at z of aperture o, that is

To(zo) = {(z,y) e RY* : |z — 29| < ay, 0 <y < 1}.
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Given t > 0, the (doubly) truncated cone g (o, #) with vertex at @, € RY
Po(zo,t) = {(z,y) € RV o — 29| < ay, t <y <1}
and the (doubly) truncated maximal function of 1 is
My (u)(zo, t) = sup{|u(z,y): (x,y) € T,(z, 1)}

and when t = 0, we simply write M, (u)(zp).
The (donbly) truncated arca function of w is defined by

AL (u) (o, t) = / (e, )2y de dy
Ta(zo,t)
and when ¢ = 0, we simply write A2 (u)(xg).

The size of the area function and the non tangential maximal function
intimately related. For instance, a scrics of results by Marcinkicwicz, Z
mund, Spencer, Calderén and Stein assert that for any o > 0, the follow
two sets

{z € R¥: 4 has non-tangential limit at =}, {r e RV: A, (u)(z) < oo

can only differ in a set of Lebesgue measure 0. Also, C. Fefferman :
E. Stein ([18]) proved that for any 0 < p < oo, there cxists a const
C = C(p,N) > 0 such that for any harmonic function v on RY*' v
lim_, oo u(z,t) = 0, one has
CH [ Aa(w)llp < 1Ma(w)lly < CllAalu)ll,-

So that, the distribution functions of M(u) and A(u) have, roughly speak
the same rate of growth. Many authors have proved good-) inequalitics
M (u) and A(u), which are direct comparisons of their distribution funct
([10, 18)). Muray and Uchiyama ([31]) proved that given 0 < 3 < a, t

exists a constant K > 1 and positive numbers Cy, Cyp such that for
0 <e<landany A > 0 one has

{z € RN: Ag(u)(z) > KX, My(u) < A}
< e {z € RV: Ag(u)(z) > A}|
and
Hz € RY: Ma(u)(z) > KX, Aa()(z) < eA}]
< Crem O {z e RY: Mp(u)(z) > A}

Here Cy, C; are two absolute constants only depending on the dimensic
and on a, 3.
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The proof followed the traditional method of using Green's formula on
sawtooth regions. Notice, however, that the second inequality gives a worst
decay than the first one. Baifiuelos, Klemes and Moore ([3]) improved this
estimate and proved the subgaussian estimate

{z € RY: Mp(u)(z) > KX, Au(u)(z) < €A}
< C3e™C |{z € RN : Ms(u)(z) > A} .

Their proof was based on reducing the estimate to an analogous estimate in
the dyadic-martingale setting. This scheme was first used by Chang, Wilson
and Wolff in ([14]).

These results give comparisons between A,(u) and Mp(u) on the set
where these functions are finite. In its complement, Bafiuelos, Klemes and
Moore ([3]) proved a law of the iterated logarithm. This may be stated
as follows: given 0 < 3 < @ and 0 < v < 1, there exists a constant
C = C(a,B,7v,N) > 0 such that for any harmonic function u on RY*!,
one has

I lu(y, t)|

111 sup 5 = 3
(3,8)—(z,0) \/A;,(u) (z,7t) log log Aq (u)(z, ~t)
(v:1)€rp(z)

for almost cvery z € {z € R": A,(u)(z) = oco}. The opposite inequality
also holds if certain regularity properties of the function u are required ([4]).
It is especially interesting to us that if u satisfies the Bloch condition

ylvu(z)y)l S Cl ) ($7y) € ]Rﬁq-l ?

for some fixed constant Cy, then

limsup [u(y, t)| >
(wt)—(z,0) v/ A2(u)(z,t) log log A2 (u)(z, t)

(.t)ETa(z)

027

for almost every z € {z € RV: A,(u)(z) = o0}.

Given a positive measure g on Qg, let u be its harmonic extension. As
in the martingale setting, the results mentioned above are very well suited
to treat additive properties of the measure y. In our situation it is more
natural to consider the function logu and its area function

(13)  AZ(logu)(z) = / [Vu(w,y)?

S cens ' Ndwdy, zeRV.
oz y

This square function was first considered by J. Brossard [8], who gave a
probabilistic proof of part (a) in the following result.
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Theorem 1.5. Let i be o positive measure on RY such that

dy(x)
e
_/]RN 1+ ISL‘|‘)““H o

Let f be the density of y1 with respect to Lebesque measure. Fiz o > 0.
u be the harmonic extension of u and A,(logu)(z) its erea function. Th

(a) The sets
{zeRY: f(z) >0} and {ze€R": A,(logu)(z) < oo}
can only differ in a set of Lebesgue measure 0.

(b) Consider the mazimal function
M, (logu)(z) = sup{|logu(w, y)|: (w,y) € Tu(x)}.

Let Q be a cube in RY. Then, for 0 < p < oo, M,(logu) € L*(Q
and only if A%(logu) € LP(Q).

(c) Let Q be a cube in RY. Then, for 1 < p < oo, log f € LP(Q) if and «
if A2(logu) € LP(Q).

(d) There ezists a constant ¢ = ¢(N,a) such that exp(cAX(logu)) €
implies that . and Lebesgue measure are mutually absolutely continu

(e) There ezists a constant C = C(N,«) such that if A2(logu)(z) < 1
any z € Q, then exp(CM2(logu)) € L} Q).

Corollary 1.6. With the notations above, p is singular if and only if
A% (log u)(z) = o0 a.e.(dz)z € RY.

Observe that in this result the measurc p does not need to be doub:
Let us explain why. Given a positive measure x in R¥ we may cons
two cxtensions to Rﬁ *1: on one hand its harmonic extension that we de
by u(x,y), and on the other hand the average of the measurc on the «
Q(z,y) centered at z € RY and sidelength y > 0 that we denote Ly u(a
So 4(x,y) = u(Q(z,¥))/y". The reason why we do not need to assume
doubling hypothesis on g in Theoremn 1.5 is that Harnack’s inequality t
for u but not for % unless u is doubling.

A proof of (a) and (b) can be given using the identity

A(logu) = -v]—@i ,

u?
Green'’s Theorem and the traditional techniques of “sawtooth regions”
for instance, [35, Chapter VII]). However, (d) and (e) are harder be
they really depend on the martingale subgaussian cstimate of [14].
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As it was mentioned before, Bafiuelos and Moore ([6]) proved subgaussian
estimates between the distribution functions of the non-tangential maximal
function of a harmonic function and its area function. Their method was
based on using a truncated version of a Calderén-type reproducing formula,
to approximate a harmonic function by dyadic martingales, up to an error
controled by its area function. To obtain the good A-inequalities which are
needed in our setting, we apply their scheme to the logarithm of a positive
harmonic function. Then, a new term, Q(logu), which is analogue to the
process X, in the martingale setting, arises but it can be estimated by the
square of the area function. This is sufficient to prove (d) and (e). In our
analysis it is crucial that the logarithm of a positive harmonic function shares
some propertics with harmonic functions, such as a submean property for its
gradient. As in the martingale setting, the subgaussian estimate also leads
to a Law of the Iterated Logarithm.

We nced some notation. Given y > 0, the (doubly) truncated cone
Lo (z,y) with vertex at z € RV is

Tu(z,y) = {(w,t) e R Jw—z| < at, y<t < 1}
and the (doubly) truncated area function of logu is defined by

Given a smooth, positive, radial function K supported on {z € R":||z|| < p},
with integral 1, consider

1 u(w, 2
(1.4) Q(z,e)://mtl'”[((( )/t)lv(( )t” dwdt, zeRV.

Observe that the integral is really over the cone I'y(z) € RY*L. So, Q(z,¢)
is a smooth version of the truncated area function defined above. Actually,
if0< B3 <p<a,then

“1Aj(log u)(z,y) < Q(z.y) < CAL(logu)(z,y),

where C is a numerical constant depending on «, 8, N and the function K.
Our result shows that logu(z,y) behaves very closely to Q(z,y) at the set
r € {z € R¥: limy_ou(z,y) = 0}, which coincides, except for a set of
Lebesgue measure 0, with {z € RY: lim,_,q A,(log u)(z,y) = oo} and with
{z € R¥: lim,_, Q(z,y) = oo}
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Theorem 1.7. Let u be a positive harmonic function on RY ™' and define

by (1.4). Then, there exists a constant C = C(N, K') such that

limsup llogu(z,y) + Q(z,y)| <c,
y—0  /Q(z,y)loglog Q(z,y)

at almost every point z € {z € RY: limy_ou(z,y) = 0}.

Hence,

Corollary 1.8. Let u be a positive harmonic function in RY ™', Then,

lim esu(@yl

v=0  Qz,y)
at almost every point z € {z € RV : lim,_ou{z,y) = 0}.
Also, given a > 0, there ezists a constant C = C(a, N) such wal

- . log w(a, )|
C '« 11msu>—l—'—~—~‘——»— T,
o A2 (log u)(z. y)

at almost every point € {r € RY: limy,_pu(z,y) = 0} .

It is worth mentioning that there is no pointwisc estimate between
|logu(z,y)] and Qz.y) or A2(logu)(z,y).

Finally, we will apply these results to two dillerent sctiings, the f
one is related to Schwarz's Lemma and the second one to quasiconfon
mappings. The problem on Schwarz’s Lemima which we now describe wa
fact the first motivation for our work. Let I be a holomorphic mapping fi
the unit disc into itself. Schwarz’s Lemma states that I decreases hyperb
distances, or infinitesimally that its derivative with respect to the hyperb
mectric is bounded by 1, that is,

o= S <

for any z € D. We would like to describe the best decay of the hypert
derivative of such non constant holomorphic functions. It is clear th:
normalization of the image domain is needed. A holomorphic mapping f
the unit disc onto itself is called inner if

Ilin} I(re®) =1, ac.e® €D

For such mappings, W. Smith ({34], see also [1]) showed that the best r:
decay of the hyperbolic derivative is governed by a quadratic condition
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Theorem B. (a) Let w be an increasing function on [0,1], w(0) = 0. As-

sume dt
/wQ(t)— < 00.
0 t
Then, there ezists no non-constant inner function I such that
(1 — [ (2)]
1-[I(2)]?

(b) Let w be an increasing function on [0, 1], w(0) = 0, such that w(t)/t} ¢
decreases for some € > 0. Assume

/sz(t)% = 0.

Then, there ezists an inner function I such that
RO

1-I(z)2 ~

We will apply Theorem 1.5 to find a non-radial version of this result. Asit

was noticed in [1], this is really a problem on positive harmonic functions.
Actually, let

<w(l—lz)), for any z € D.

w(l —|z|), foranyzeD.

1+2

1-=z

be a conformal mapping from the unit disc onto the right half plane. Given
a holomorphic function I: D — D, let u be the real part of 7o I. So, uis a
positive harmonic function and therefore the Poisson integral of a positive
measure g on dD. It is clear that I is inner if and only if u is a singular
measure. Also, a simple calculation shows

@) _ [Vuz)l
T-EF - u)

Given 8 € [0, 2] and a > 1 we denote by I'4(#) the Stélz angle with vertex
at €, that is

7(2) =

2 zeD.

To(0) = {z€D: |z—€’| <afl —|2))}.
We consider the following hyperbolic version of the area function

2 0y _ 17'(z)?
AQ(I)(C 0) - l‘a(O) (1 _ |1(2)|2)2

which corresponds to the usual area function once one has replaced the
euclidean derivative and the Lebesgue measure by the hyperbolic derivative
D(I)(z) and the hyperbolic density dm(z)/(1 — {z]*)2.

dm(z),
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Geometrically, AZ2(7)(e") is the hyperbolic area (in the d itir
multiplicities, of {{T'x(#)). With the previous notation A2(f)(e") vuincid:
with 4= ' A2 (log u){e). Part (a) of our next result can be understood as tl
hyperbolic analogous of the classical result by Calderdn on the existence
radial limits at almost every point where the usual area function 1 finit
More concretely, since the function [ is bounded, Fatou's Theorem asser
that f has finite radial limits at almost every point of the unit circle. Ho
ever, having limits of modulus 1 means going to infinity in the hyperbol
metric of the dise. So, (a) states that the set where this oceurs coinecide
modulo sets of Lebesgue measure 0, with the set where the hyperbolic ar
funetion is infinite,

Theorem 1.9. (a) Let I be a holomeorphic mapping from the unit disc o
itself. Fix o > 0. Then, the sets
{e" € D : [Ein}l(refs)] <1} and {€dD: AL(N) (") < 0}

can ondy differ in a sel of Lebesgue measure (.
(b) Let h be a positive function li: D — (0,00} for which
(99/100)A(w) < h{z) < (101/100)A(w),
for any pair of points z,w such that |z — w|/[1 —iHz| < 1/2. Given a >

assume that
f h*(z)dm(z) = o0,
Ca{f)

al almost every 8 € [0,27). Assume also that, for any 0 < 8 < 2,
function h(re®) increases in r € [0,1). Then, there czists a non const
inner function [ such that

|7'(2)|
TR < h{z), for any z € D.

Observe that (a) implies part (a) in Theorem B. Actually if

(1=
W—‘SHJ(I_;Z‘)s €D,

one would deduce that for any 0 € [0, 2x],

() ) . o), "
/1—..(9}(1—!1&)[2 % (}S/r_,w) TEmA o [‘}SC“”% ®

Also, part (b) of Theorent B corvesponds to the eise
h(z) = w(l—|z])/(1 —|2])
and the crucial integral assumption on it follows from the corresponding
on w(t).
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As in the preceding situations, L” estimates between the hyperbolic area
function of I and the non-tangential maximal function of log(1 —[7|) can be
proved. Also, a Law of the Iterated Logarithm is obtained. Given a smooth,
positive, radial function K supported on (—p, p), with integral 1, consider

1'(2)|?

—— e dm(z
a1 "

where T4 (6,7) = Ta(#) N {|z] < r} is the truncated St6lz angle with vertex
at . This is a smooth version of the truncated hyperbolic area function
given by

(15)  Q(re") = /r K((Arg z - 6)/p)

» (8,

o rEE
AplD)(re”) ./r,,(o,r) =P )

Our result is the following.

Theorem 1.10. Let I be a holomorphic mapping from the unit disc into it-
self and let Q be defined by (1.5). Then, there ezists a constant C = C(a, K)

such that | w12 i
i up LB = ) + Qre?)| _
ro1 V/Q(re®) log log O(re)

at almost every point e € {e*: lim,_,, |I(re®®)| = 1}.

The other application of Theorem 1.5 is related to the theory of quasi-
conformal mappings of the upper half plane R} onto itself. Let p: Ry — RS
denote a quasiconformal mapping, p(cc) = oo, with complex dilatation
o = Op/3p. Then classical results show that p extends quasiconformally
to R?, in particular its restriction to the boundary F = p|g defines a homeo-
morphism ou R which is quasisymmetric, that is its derivative is a doubling
measure. The converse is also true: any quasisymmetric map F : R — R can
be extended quasiconformally to R2. There is also a one to one correspon-
dence between such quasisymmetric mappings F' and conformal weldings of
quasicircles, that is

F(z) =®[¥(2)]; z€R

where W is a normalized conformal mapping of R; onto a quasidisc 2 which
admits a quasiconformal extension to RY with complex dilatation o, and &
is a conformal mapping of C \ 2 onto RF. A very well studied problem is
to investigate the smoothness properties of the boundary correspondence F
in terms of the complex dilatation o. In [13], Carleson studies this prob-
lem obtaining the conclusions of Theorem A stated at the beginning of the
introduction, where w(t) is, in this case, defined by

w(t)= sup |o(2)|
0<Imz<t
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We are interested in a result [15, Th. 4] proved by Dyn’kin, which we sta
below and that can be thought as a pointwise version of Carleson’s result

Theorem C. Let a(z) be the dilatation cocfficient of a quasiconformal se
mapping ¥ of C\ D, with ¥(co) = oo and let

2 1/2
s = ([ pan(©)
Then there exists a > 0 such thatl if
exp(ag’(o)) € L1(9M)
then ¥ is absolutely continuous on 9.

Dyn’kin’s proof uses the representation of (g as the welding of a qua
circle I and shows that under the liypothesis of the theorem, I is rectifiab
His main tool is the pointwisc estimate

(1.6) S(e®) < const g(a)(e), Ve € ID
where ;
iy _ F1OPNY
S = (/ra(a) 16 )

and where f represents the conformal mapping from D onto the inner dom
bounded by T'.

We will consider instead of S, the area function A2 (logu); where u is
harimonic extension of a doubling measure y, and prove an incquality sim
to (1.6), which does not involve conformal techniques, and which will a
us to recover Dyn’kin’s Theorem. Since we state our result on the real li
we need to impose some control on the doubling constant of i to guarar
the convergence of its Poisson integral. More precisely we obtain:

2
4%

Theorem 1.11. Let i be a doubling measure on R, with doubling const
C < 2V2, that is u(2I) < Cu(l), for all intervals I C R. Denote
u = Plu] the harmonic eztension of p to R and let p : R? — R? |
quasiconformal extension of p(x) = pl0,z]. Then

2

*—‘—"—“—IVU(Z)’Z T2 _________|U(?b') miw
/ram d()sc/R dm(w)

u?(z) - |w—xz)?

where o s the complez dilatation of p and ¢ = ¢(a, C) is a constant depen.
ona and C.
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As a consequence of this theorem and Theorem 1.5, we obtain

Theorem 1.12. With the same notation as in Theorem 1.11, the following
holds:

(a) There erists a constant a > 0 such that if

o)l ,
exp(a_/l;; 'w_ ' d (w)>€Lloc:

then u and Lebesgue measure are mutually absolutely continuous.

(b) If u is singular, then

/ -l—(-f—gw—)lz—dm(w)=oo,

2 Jw — zf?
a.e. (dr)r € R.

(c) Let 0 < p < o0. If

/ M; dm(w) € LY,

Ry lw — x|
then M,(logu) € LY .

The paper is organized as follows. Section 2 contains the results on
dyadic doubling measures. Also an example of a positive, singular, dyadic
doubling measure pu, for which the square functions X,, A2(u) can be given
explicitely, is presented.

Section 3 is devoted to the results on positive harmonic functions. A class
of positive harmonic functions, for which the square function has max1mal
growth, is also introduced.

Section 4 contains the proof of Theorems 1.9 and 1.10 as well as an
analogous result for inner functions into hyperbolic domains in the complex
plane.

In Section 5, we prove the results related to quasiconformal mapppings,
in particular Theorems 1.11 and 1.12.

Finally, in Section 6 a non-dyadic square function of a doubling nieasure
is introduced. This section also contains some questions.

We would like to thank R. Bafiuelos, J. L. Ferndndez and P. MacManus
for several helpful conversations.
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2. Dyadic doubling measures

The logarithmic transform of a dyadic martingale

There is a correspondence between positive dyadic martingales and positix
measures. Given a positive measure g in @, we may consider the positi
dyadic martingale defined by

_ v HQ)
=2 g X

where the sum is taken over all dyadic subcubes @ of Qg of gencration
Conversely, given a positive dyadic martingale {S,} we may define a positi
measure g on Qg by first defining it on dyadic subcubes € as

1(Q) = S.(Q)C],

if @ is of generation n, and extending it by standard methods. As it w
mentioned at the Introduction, the martingale S, defined above does r
seem to be well suited to study multiplicative properties of the measure
and roughly speaking, one should consider instead its logarithm.

Let S, be a positive dyadic martingale on a cube ¢y in RY. Then log
is a supermartingale. We will show that therc exists a unique (except
adding constants) process X, such that

{(a) log S, + X, is a dyadic martingalc.

(b) X, is F,—i-measurable, that is, X, is constant on each cube of gene
tion n — 1.

Let us first show the unicity. Assume that {Y;} is a dyadic mart
gale such that Y;, is constant on cubes of generation n -1, n = 1,2,.
Let @, Q' be two cubes of generation n — 1 which arc contained in the se
cube @ of generation n — 2. Since Y,_1(Q) is the arithmetic mean of
on the cubes of generation n contained in @, we have Y, (@) = Y,_(
Similarly Y,{Q") = Y,,1(Q"). So, Y,(Q) = Y,(Q). Hence, Y, is constant
cubes of generation n — 2. Repeating the argument on cubcs of generat
n—2,...,1, one shows that Y, is constant.

As the following lemma asserts, the process X, satisfying (a) and
can be given explicitely. We recall the notation given in the introduct
Given a positive martingale {S,} in Qg and a dyadic sub: " Q
generation 7, we denote by aan.(@), (g.m. () the arithmetic geomet
mean of the values of S, in the cubes of gencration (n + 1) contained iy
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More explicitely, if @ is of generation n, then

am.(Q) = Su(Q) = 2LN Z Snr1(Q),
gm.(Q) = [] Swna (@)

where both the sum and the product are taken over the 2V cubes Q' of
generation (n + 1) contained in Q. Consider

(2'1) Xn, = Z Xﬂ(Q’(cn))Xle) , n= 1, 2, ey
k
where {ch"): k = 1,...,2""} are the dyadic subcubes of Q, of genera-
tiou n and )
X =—-)% log|>—F=%),
(@) X]: 5 (a.m.(Qj))

where the sum is taken over all dyadic subcubes @; of Qp which properly
contain Q,(C"). It is clear that X, is positive, increasing process satisfying
property (b). Also, X, (Q) measures, roughly speaking, the error the mar-
tingale does when doubling at the dyadic cubes containing Q.

Lemma 2.1. Let {5,} be a positive dyadic martingale in a cube Qy. Let X,
n=1,2,..., be the functions given by (2.1). Then

T, =) (logSs+ Xn)xq,
where the sum is taken over all dyadic subcubes {Q} of Qo of generution n,
1s a dyadic martingale.

Proof. Let Q be a dyadic subcube of Qg of generation n and let us denote
by {Qx} the 2V dyadic cubes of generation n + 1 contained in Q. We have
to show

(22) T(Q) = 55 3 Tan (@)

Since Xn1(Qx) = Xp41(Q;), for any k,5 =1,...,2Y and

gm.(Q)
a.m.(Q)

Xn(Q) — Xp41(Qx) = log
the equation (2.2) is equivalent to
= LS log = log (@)
log 5(Q) = g > 1og Sr1(Q) = log Ty

Since a.m.(Q) = 5,(@), this is an identity and the lemma is proved. n
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The results mentioned at the introduction relate the behaviour of T,
log S, + X, with the size of the square function of the martingale. The ma
observations, which will be proved below, are that when {S,} is a doublh
martingale, X, is pointwise comparable to (T)2 and that (T)(z) behaves

172
(Zuaogsn/sn_l)an;,mu;) . zeq.

Comparing X,, and (T')2 for doubling martingales
A positive dyadic martingale {S,,} is called doubling if there exists a conste
M > 1 such that
M7 <S8 n/Sa <M, n=12....
The main estimate is given in the following result.

Lemma 2.2. Let {S,} be a dyadic doubling martingale in Qy. Let X,
the process given by (2.1) and T,, = log S, + X, be the logarithin transfc
of the martingale. Then, there exists a constant C > 0, which depends
the doubling constant of the martingale, such that

. (T)2(a)
R N1 N N R

Xa(z)
< e <c,
> k=1 1108 (Sk/Sk-1)xae_, ) 1%
foranyr € Qp,n=1,2,....

)

C—l

Proof. We will show that in the corresponding sums, the terms are con
rable, that is,

Y
HT5ar ~ Ti)xom s

c'< 5 <C,
11o8(501/5, x, ol
o1 < ~loglem(Q))/am. (@) _

log(Sjs1/Sidxa,mll%e =

To prove the first estimate note that ||(Th —T-1)X0n- . (2)|leo 18 compar
to max |7T,,(Q;) — Tn(Qx)], where the maximum is taken over the 2N dy
cubes of gencration n contained in Q,-y(x). Since X, is predictible,
quantity is max |log(S,(Q;)/ Su(@x))|. The estimate follows now from
fact that S, is a doubling martingale.
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To prove the second one we will show that given L = 2V positive numbers
a,...,ar, with M~ < ap/a; < M, k,j =1,...,L, there exists a constant
C =C(M,L) > 0 such that

(e 2
- < T - <C
max; (1og(a;/% ¥ o))
We may assume that Y _ ax = L, then we have to show that

— log (Hk a,lc/[‘)

~ maxg(logag)?

-1

Writing ax = 1 + z, this follows from the following observation. [ |

Lemma 2.3. Letm > -1, M >0 and z € [m,M], k=1,...,L, so that

L
Z I = 0.
k=1
Then, there ezists a constant C = C(m, M) > 0 such that

L
- Zk:l[llog(lz_f. Ik) S C .
2 ko1 Tk

Observe that 35 log(1 + zx) < 0, because the arithmetic mean of
zi,...,zy vanishes. So, Lemma 2.3 shows that the trivial estimate

Ccl<

L L
~ Zlog(l + i) < CZ |z&]
k=1 k=1

can be substantially improved when Ef=1 z, = 0.

Proof of Lemma 2.3. One may assume that z,, kK = 1,..., L, are close
to 0, because otherwise the geometric mean of 1 + z; is bounded away from
one and then there exists C; < 0 such that

Zlog(l + SEk> S Cl <0

and the result follows in this case. So, we assume zx, k = 1,..., L are close
to 0. Using that —logt =1 —t + O((1 — t)?) for ¢ close to 1, one gets

N N
—logH(l +rp)~1-— H(l + zi).
k=1 k=1
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We now prove (e). It is sufficient to show that

Q) (u(Q))‘1 } )
Na::sup{—, _—= e L (Q
2 @\ Tal (@
where the supremum is taken over all dyadic cubes which contain z. Let
u(Q)'
Q|

Since eM = N, we will show that eM € L}(Qp). Observe that

M(z) = sup | log

(M - 1)dr =
(]
= / eM{M > A} dr = 3/ eP{M > 32} dr <
0 0
< 3/ MM > 31, A< e\ dr+ 3/ e {A > a1 AY?}|d),
0 0

where 0 < €; < 1 is a constant to be fixed later. Using the estimate (a) in
Theorem 2.4 we bound the first term by

301/ exp((3 — Co/e)N{M > A dr <3G, [ M,
0 Qo

if £, is chosen small enough to guarantee 3 — Cy/e? < 0. The second term is
3 [T > lar / exp(342/e?) dz
0

So, the result follows taking C = 3/e2. The proof of (f) is similar and we
omit it. |

It should be observed that part (e) of Theorem 2.5 implies part (a) of
Theorem A mentioned in the introduction. Recall that w(t) was defined as

w@2~y
Q) 1]’

where the supremum is taken over all dyadic cubes Q of sidelength smaller
than ¢ and the maximum is over the 2V dyadic subcubes Q contained in Q)
of sidelength {(Q)/2. Then

2 < Y < [ wof

So, if the last integral converges, the square function A?(x) is bounded and
it follows from (e) that  must be absolutely continuous.

w(t) = sup max ‘
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The hypothesis in part (e¢) of Theorem 2.5 is closely related to the
space BMO. Let @ be a cube in RY. The space dyadic BMO(Q,) con
sists on the integrable functions H defined on @y for which

|Hlsmo = Supﬁé |H — Hgl < oo,

where

HQzﬁ/QH

and the supremum is taken over all dyadic subcubes @ of @p. Chebyshev'
inequality gives that

. \ , 1.
Hz e Q:[H(z)— Uyl > A} < X|Q].

However, the fact that the BMO condition is given at all scales, impli
a stronger estimate. This is the John-Nirenberg Theorem that states th
there exist constants Cy, Cy > 0 such that for any dvadic cube @ and any

in dyadic BMO, one has

H{z € Q: [H(x) — Hg| > A} < Crexp(—=CoA/[[H ||sai0)]Q) -

Given a measurable function H defined on Q. let e(H) be the infimu
of € > 0 for which

SLlpl—éTLexlj(s'1|H(r) — Hgl) < 0,

where the supremum is taken over all dyadic subcubes @ of Q5. The Jot
Nirenberg Theorem implies that # € BMO if and only if e(H} < 0. G
nett and Jones ([20, 21]) proved that there exists a constant C = C(N) =
such that

(2.4) C_IE(H) < diStBMQ(H, Lm) =
= ll’lf{“H - G“BMO :Ge Loo} < CE(H)

Corollary 2.8. There exists a constant gy = &o(N) such that of p @
dyadic doubling measure on Qg and e(A%(1)(x)) < 4, then y is absolu

x
continuous. Moreover p = fdz with f,1/f € L'(Qo).
Proof. Applying (2.4), we have

A*(p) = H, + Ha,

where H, € L* and ||Haz|lsmo is small if gy is chosen sufficiently so
Thus, the John-Nirenberg Theorem tells e“/ € LY(Qy) if C < Clep) -
as € — 0. Then the corollary follows from part (¢) of Theor -
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The quadratic condition given in (b) of Theorem 2.5 characterizing sin-
gular measures is also sharp in the following sense.

Proposition 2.9. Let h: R2 — (0,00) be a positive function such that if
B C R? is a disc with 2B C R2, then

1
suph< 1~O—(1) inf h.

Fized o > 0, assume

dam(z) o
/ra(:)h @) Tz (Imz)? o

at almost every x € R. Then, there exists a positive, doubling, singular
measure p such that

I
(2.5) “((I,)) - 1‘ < Chiz; +ill]),
for any interval I C R, |I] < 1. Here I’ is an interval adjacent to I of the
same sidelength and x; is the center of I.

Proof. The construction of the measure follows the ideas in [13] and [24].
We will define u by giving its mass on intervals of the form

(2.6) JM = (k4™ (k + 1)47),
where k € Z and n = 0,1,2,... The intervals {J{™: k € Z} are called of

generation n. We may assume that A < 1/8. Set [,L(JIEO)) =1,k €Z, and,
by induction, assume u(J,E")) has been defined satisfying

. I n
1+ A < w (n)) <1+h(J™), keZ,
w5
where A(J{™) = h(k4~"+1i4"™). We now proceed to define u(J,E"H)), keZ.

Let J,J' be two consecutive intervals of generation n. We divide J into
four intervals Ji,. .., J; of generation n + 1 and similarly J' into Jj, ..., Jj.
Let J' be to the rlght of J and let the numbering be from the left_ to the
right. Let h(J) = min{h(J5), A(Js), h(J}), h(J})} and a(J) = (4 + A(J))™!
so that

1+ a(J)h(J)

e 1+ h(J)/2.

(2.7)
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Assume p(J) < p(J'). Then, set

ul) = (1 oD
() = 1+ () AL,
H(A) = (1~ a(DRET),

us)

u(3) = (1+ a(NR()) =]

If u(J) > u{J’), we change all signes in the above formula. This formu
defincs the mass of p over intervals of gencration n + 1. Next we show th

1)
2.8 Lt < 2 R(I),
(28) (4 M) < B5 <14 h)
for any pair of consecutive intervals [, [’ of generation n + 1. The ide
tity (2.7) gives (2.8) when I,1" arc Jy. Jyor Ji, J). If I = Jyand I’ = .
we have to show

(1 —}—E(J))_l < (1 + a(‘])f(‘]))#(']) <1 —}-E(J) )
(1 —a(J)h(J))u(J")
Since u(J) < p(J'), the right-hand inequality follows from (2.7). To prc
the left-hand inequality, observe that, by induction, p(J) < (1+h(J))u(.
Thus, it is sufficient to prove

1+h(J 1~
~‘+—~(—) < 14— h(.]) 5
1+ h(J) 2
which follows from the regularity assumption on the function k. Finally,
need to show that
1+ a(J)R(J)
1 — a(JYR(J')
Since a(J), a(J’) are close to 1/4. this follows from the regularity
sumption on h.
So by induction we have defined the mass of ;2 over all intervals of
form (2.6) and it satisfies (2.8) for such intervals. Next, we will show t
it also holds for any interval, that is,

< 1+ min{k(J),h(J)}.

(z —t,x

Mo %) | G-t it).
wlz,z +1)
Assume z = 0 and let 477" < ¢ < 47 Let (0,¢) = Ul, where {
are pairwise disjoint intervals of the form (2.6) with decreasing len
Hence |[;| = 47" %

(2.9) 1+ C7 'h(z —t+it) <
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Now 4
[.L(Ik) = M(Il)4n+l—m(k)(1 + O(h([l)))m(k)—n—l ,

where I is of generation m(k). Since t = 3 4™(*) we have
(0, ) — tu(1)4™ = p(L)A"1O(A(L))

The same argument applies to u(—t,0) and (2.9) follows.

To show that y is singular, let z € R and [,,(z) be the unique interval of
generation n containing x. The assumption on h gives that

(2.10) > R(I,(z)) = 00,ae zER,
Observe that

w(Ia(2) = 47 TI (1 £ arZu(@)h(I(2))) -

k=1
The signes + and — occur in equal number in the construction. Since
ar(Ik(z)) is close to 1/4, the law of large numbers and (2.10) give that
at almost every point x € R, one has

w(Ix(z))

e
Hence the measure y is singular. This finishes the proof. n

Law of the iterated logarithm for dyadic doubling measures

The subgaussian estimate (1.1) of Chang, Wilson and Wolff implies the law
of the iterated logarithm for dyadic martingales, that is, if {T},} is a dyadic
martingale and (T, is its (truncated) square function, one has

lim sup ITn ()] <1
n—co (T)n(z)\/2loglog(T)u(z) ~

a.c. € {z € Qq: sup, |Tu(z)| = oo}.

We will apply it to the dyadic martingale T,, = log S, + X,,, given in
Lemma 2.1. When the measure is doubling, {T,,} has bounded increments
and it is known that, in this situation, we also have

lim sup IT(z)|
n—oo’ (T)n(z)v/2loglog(T)n(z)

a.e. z € {z € Qq: sup, |Tn(z)| = oo}. See [4]. Using Lemma 2.2 to esti-
mate (T)n(z), we deduce Theorem 1.3 and therefore Corollary 1.4. Also,
the rate of convergence in the last two results can not be improved. To show
this, let us introduce in dimension 1 a well known dyadic doubling measure.

>C>0,
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An example

Let Iy = [0, 1] be the unit interval in the real line. We will define a measure
by specifying its mass on dyadic intervals. Let 0 < A < 1 and let p(ly) =
Assume j4(I) has been defined on the dyadic intervals of generation k.

We now proceed to define it on the intervals of the next gencratios
Given a dyadic subinterval I of Iy of generation k, let I, (I_) be its rigl
(left) half, that is, J, J_ are the two intervals of generation k + 1 containe
in 7. Then set

W) = =22,
wll) = 22200,

It is clear that if [ is a dyadic interval of generation n,

Iy _ ki1 ek

where k is the number of dyadic intervals containing I which are at rigl
hand position.

Actually, this is a wcll known example. Let us consider a biassed co
that is, a sequence of equally distributed and independent random ve
ables {X,} such that

1=

p{X, =0} = == and (X, =1} = EFN

2

Now, consider the random variable

o0
X = Zz-nxn.

n=1

If I is a dyadic interval of generation n, we have
w(l) =p{X € 1}.

Equivalently, if the left end of 7 is

where &, =0 or 1, then p(I) = p{X, =t1,.... Xn =t,}.
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By construction,
ply) _ 1+
u(l12) 1=
for any pair of dyadic intervals I, I_ of the same generation contained in a
interval of the previous one. Hence u is a dyadic doubling measure. Also,
when 0 < A < 1, u is singular. Actually, the measure g is concentrated in a

set of Haussdorff dimension

(1+/\)logli—,\+(1—/\)log&
2log?2 i

that satisfies v < 1 if 0 < A < 1. See [22] for a more general result.
Let I be a dyadic interval of length 27". Then, an easy calculation shows

Xn([) = _—g log(l - ’\2))
AL (I) =nr®.

So, Theorem 1.3 and Corollary 1.4 state that at almost (dz) every
point z € [0, 1], one has

[log(ﬂﬂfn) — 2log(l — A?)

2.11 Cc10) <li | = () < C(A
(211) () = v Vvnloglogn s 6,
log lizz)

(2.12) L@l _

nll.r{olo 2 log(1—A2)

Next, we show that these estimates are best possible. By the law of large
numbers

(213) lim A"T(z) —1/2, ae (d)ze0]]
and
(2.14) lim sup [An(2) — /2| =1, a.c. (dz)z € [0,1].

n-co Vnloglogn

Now,

log % = Au(z)l0g(1+ ) + (n — Au(z))log(1 - A).

So, (2.11) and (2.12) are equivalent to (2.13) and (2.14), except for the value
of the constant C(X).
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3. Positive harmonic functions

Logarithms of positive harmonic functions

Let u be the Poisson extension of a positive measure g As it was explaine
in the Introduction, the area function associated to the harmonic function
is not well suited to treat the doubling properties of the measure, and or
should consider instead the subharmonic function — logu.

The natural area function associated to a subharmonic function v in RV

AL(w)(z0) = / Av(z, y)y' N dzdy.

JTa(ro)

Observe that if v = u?, where v is harmonic, one obtains the usual ar
function of v. Uchiyama ([38)), extending previous work of McConnell {{30
showed that for any 1 < p < oo,

lAx(0)llp < Clp, N, o, B) [INs ()],

Let u be a positive harmonic function in RY*!. In our case a simy
calculation shows

’v, 2
IV (log u)]? = —A(logu) = | u’;' .

So, the natural square function for logwu is

Alogua) = [ Tunul

1-N
y Vdrdy.
Ta(zo) u(w,y)z

We consider the non-tangential maximal function of log u,
Mo (log u)(zo) = sup{|logu(z, y)|: (z,y) € Ta(ze)}

We now define the local versions of the functions above. Given a ¢
Q C R centered at g and o € Q, define

M,y(logu, Q) (zy) = sup{]logu(z, y) — logu(zg. I{Q))}:
(m,y) € Tulzmo). 0 <y <@},

\Vu(z, y)I*

“Ndrdy.
u(z,y)? Y v

A2 (logw, Q) (z0) = /
L al@)nQ

Now, the good A-inequalities relating these two functious are descr
in the following result, whose proof will be given after the next section
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Theorem 3.1. Let u be a positive harmonic function in the upper half
space Rf“. Then there exists a constant Ky > 1 and positive constants
C, Cy such that for any cube @ C RY, for all K > Ky and A > 1, one has

(a) {z € Q: My(logu, Q)(z) > KX, A(logu, Q)(z) < A}

< Croxp(—CoAK?)|{z € Q: M,(logu, Q)(z) > A}
(b) |{z € Q: Al(logw, Q)(z) > KX, M,(logu, @)(z) < A}

< Crexp(—Ca:K\)|{z € Q: A2(logu, Q)(z) > A}

The proof follows the Baiuelos-Moore scheme of approximating a har-
monic function by a dyadic martingale (see [6, Chapter 2]). In our case the
function logu is not harmonic. However, the approximation scheme is flex-
ible enough to deal with it. As in the martingale case, Theorem 1.5 stated
in the Introduction will follow easily from the result above. However Theo-
rem 1.5 (a) and therefore Corollary 1.6 can be proved in a more elementary
way, as presented in the next paragraph.

Characterization of singular measures

Let u be a positive harmonic function in the upper half space ]Rf‘*'l. Har-
nack’s inequality states that there exists a constant C = C(N) such that

Chu(w,t) < u(z,y) < Culw,?),
for any pair of points (z,y), (w,t) € RY*! such that
(w,t) — (z,9)l| £ y/2.
The infinitessimal version of Harnack’s inequality is the following estimate

y|Vu(z, y)|
u(z, y)

which holds for any (z,) € RY*!. So, the function logu satisfies the Lips-
chitz condition

<N,

|logu(z) — log u(w)] < Cp(z,w),

where p(z,w) is the hyperbolic distance in ]Rf“. By Harnack’s incquality
and the submean property of gradient of u, we obtain

Lemma 3.2. Let u be a positive harmonic function in RY ™. Let B be a ball
centered at z € RY*! such that 2B C RY*!. Then, there exists a constant
C = C(N) such that

| Vu(z)
u(z)

C [ |vuw),
<15, ety dm)-
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Recall that a positive harmonic function w in IR?_’“ has a finite non-ta
gential limit at almost every point z € RY. However, the limit may be 0
a large set. The result we prove next is the following:

Theorem 3.3. Let u be o positive harmonic function in the upper h
space RYT. Fiz o > 0. Then, the sets

[Vu(w, y)l

{x e RY: ]in(l)u(x,y) >0} and {z € RN:/ Ndwdy <
y—

Fo(z) “(’U, U)
can only differ in a set of Lebesgue measure 0.
As a consequence we get

Corollary 3.4. Let p be a positive measure and let u be its harmonic
tension. Fiz o > 0. Then p is singular if and only if

2

/ MyI“N dwdy =c0, ae z€RY
Talz} U(TJJ, y)

Proof of Theorem 3.3. The proof is based on well known arguments us

Green’s formula on saw-tooth regions (sce, for instance [35, Chap. VII]).

A={zeRY: lim u(z,y) > 0} and B={z € R": A, (u)(z) < o0}
y-—t

We first show that almost cvery point of A is in B. So, let £ be a comy
set and € > 0 such that

el > limu(z.y) >«

y—0

Fix 3 > o, Harnack’s incquality provides constants C= C(3,¢), K = K({
such that

inf  u(w,y)>C, sup  u(w,y) < K,
(w.y)€T5(z) (wy)€Tp(x)

for any « € E. Renormalizing, we may assunie
inf  u(w,y) >e¢, sup  u(w,y) <&’ ',
(w,)€lz(z) (w.y)€la(a)

for any z € E. Now, let
R= UIEEFQ(:E)

and note that e7! > u > £ on R. Fubini’s theorem gives

/Azlogu d1<C/ IV'ury ——drdy.

u(z,y)?
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Since A(logu) = —|Vu|?/u?, Green’s formula applied to the functions logu
and y on the domain R yields
[Vu(z, y)|* /
y————drdy = [ (logu)dzy— | ydi(logu).
-/R u(z, y)? 3R ) 8R

The first integral on the right side is bounded by |loge||OR]| and the sec-
ond one by N|GR| because by Harnack’s inequality y|V(logu)(z,y)| < N.
Hence,

/ A2(logu)(z) dz < oo
E

and the proof is finished.
Now, we want to show that almost every point of B is in A. We argue

by contradiction. So, we may assume
{z € RY: A2(logu)(z) <1, lix%u(z,y) =0}/ >0.
y—-i
Then one may find a compact set E of positive measure such that « is
non-tangentially bounded on E and
Az(logu)(z) <1, limu(z,y) =0,
y—-i

for any z € E. Observe that Harnack’s inequality imnplies that
u(w,t) = 0,

whenever (w,t) tends non-tangentially to a point z € E. Considering a
subset of E if necessary, one can assume that log u is bounded from above
on the set

R= U:eEra(z) .

Now applying Green’s formula as above we get

[Vu(z, y)[? / /
— drdy = log u)0zy — Oz(logu) .
./Ry u(z,y)? v aR( B )0y BRy (log )

By Fubini, the volume integral is bounded by a multiple of
/ A2 (log w)(z) dz < |
and by Harnack’s inequalitfl
[ vostiogu)
aR

However, since 8;y > 1/2 at 9RN {y = 1} and logu is bounded from above,
we deduce

< N|9R|.

R
3R

wliich gives the contradiction. |
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Last proof combined with stopping time arguments give versions of the
estimates in Theorem 3.1 with constants having worst decay. Next we
present a proof of the good-A-inequalities stated in that Theorem. As ex-
plained before, the idea is to adapt the Banuelos-Moore method to reduce
the result to the martingale setting.

Approximating log v by a dyadic martingale.
The idca of approximating a function by a dyadic martingale using Calderér
reproducing formula goes back to Chang, Wilson and Wolff {14]. Later
Basiuelos and Moore [6] related a harmonic function in the upper half spac:
to a truncated version of a Calderdn-type integral formula. Let us explai
bricfly their idea.

Let u be a harmonic function in RY*L Given p > 0, fix a positive, smooth
radial function K supported on B(0, p) ¢ RN, with integral 1. Then write

N
oK : -

B Pl ==Y a (o) - (¥ - D),

62 4= (CmPE) + 5@~ P(E) + 5 (@).

Finally write ¢;(2) = t~VNq(z/t) and a similar definition for K;(z). Define

v(z,t) = /I;N Pz —y)uly, t)dy .

The Banuelos-Moore approach may be divided into the following step
Let £, = 27™"2/4p and recall that A, (u)(z,t) denotcs the truncated ar
function of u.
(I) Given a > 0, one can choose p sufficiently small such that for m
1,2,... ifEm_H <ty L Em,

|U(I) to) - U(Ia Em), < CAQ(U)($1 7t0) ’
where 0 < v < 1 Is a constant depending on p. See [6, p. 72).
(II} For0 <e < £ < 1/4,

v(z, &) ~ v(z,€) =/ / @(r — w)Vyu(w, t)dw dt + A(z)
e JRV
where
A(z) =/ EKz(x - w)@-(w &)dw —/ eK (z - w)a—u(w ) d
RV ot 'V ot

Moreover, if p is chosen sufficiently small witl respect to o, A{z
bounded by a fixed multiple of A,(u)(x,ve). Here 0 ~ - ~ 1 i
constant depending on p. See [6, p. 56, p. 70].
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(IIT) Consider the function

1/4
V(z,em) = / AN @(z — w)Vyu(w,t)dwdt.

If p is taken sufficiently small with respect to a, there exist a pos-
itive number L = L(N) and martingales (with respect to different
translates of the usual dyadic filtration), {S{}, ..., {S$¥}, such that

lV(m, Em) — i S¥)(z)| < C 4+ CAa(u)(z,7€m) s

k=1
L

> (8 m(@) < CAalu)(z,7em) -

k=1

See [6, p. 50).

So, if p is taken sufficiently small, combining (I), (II) and (III) we get
that for m =1,2,... and gp41 <t < &g,

< C+ CAL(u)(z,7t),

u(z,t) — Z S:z(r)
k=1

L
D (F)m(@) < CAalu)(z, 1),
k=1
where v is a fixed constant. These estimates allow us to transfer problems
on the growth of the harmonic function « on regions where its (truncated)
area function is bounded to the martingale setting, that is, to problems
on growth of martingales on regions where its quadratic variation remains
bounded, since in this context the subgaussian estimate is available. In this
scheme, the harmonicity of v is used in different ways. The steps (I) and (III)
only depend on the submean property of |Vu|, that is,

nwmwuﬁﬁwmwmm

where B is a ball centered at (zp.yp) contained in Ri"“. However the
identity in (II) uscs the whole information Au = 0.

Now, given a positive harmonic function u, our strategy consists on re-
placing u by logu in the previous scheme. So we consider

va(z,t) = ./;N Py(z — w)logu(w, t) dw.
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Recall that by Lemma 3.2 the submean value property for |V(logu)
holds. So the proof of (I} and (I1I) by Banuelos and Moore applies in ou
situation, that is,

(I') Given a > 0, one can choose p sufficiently small such that for m -
112:‘ =R ]f Em+1 < tD E Ems

[logulz, to) — vo(z, 2, € CA(Jogu)(z. via) .

(L1I*) Consider the function

I Em / / qulz — w)Vy logul, t) dwdt.
Con RN

1f p is choscen sufliciently small with respect Lo e, there exists a positi
number L = L{N} and martingales (with respect to different translat:
of the usual dyadic filtration). {S{}... .. {SI} such that

jv.(x,em) -3 5¥)
k=1

D (8")m(z) < CAallogu)(z, vem) -
k=1

<C+ ‘:"Aa(]og u)(Ir‘)‘Em) '

The analogue of (II) for logu is harder to establish and it is the me
content of the two following results.

Lemma 3.5. Let u be a positive harmonic function in RY*!.  Given

positive, smooth, radial function K supported on {x € R": ||z} < p}, w
integral 1, consider the funetions P, g given in (3.1) and (3.2). Define

vz, t) =/ Pz — w)logu{w. t) dw .
RN

Then, for 0 < e < 1/4,
vz, 1/4) — vz, e) = Vi(z, &) + Qlz, ) + R{x,£),

where

/
Vifze) = fl 4[ gz — wiV, log u)(w, t) dwdt,

(z.) f]“/ - 1V1¢{u’ szmd!
RN ulw, t)? -

R(x.e) = / 1Kl _m)dl"” (w0, 1/4) diw
Juy M
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Proof. We follow the proof of (II) by Bafiuelos and Moore (see [6, p. 56]).
Let 0 < € < €. Applying the fundamental Theorem of Calculus, we get

vu(z, ) — vu(z, €) / / — (tNP((z — w)/t))) log u(w, t) dwdt
+ / /RN t=N P((z — w)/t)d,(log u)(w, t) dw dt .

Using that

2 (= P((z - u)/1) E o (Bt - w)

and integrating by parts, the first integral becomes

/,[RNZ tN+1 )/t)alogu( , O dwdt.

Using that
tNP((z —w)/t) = (t"N“K((x - w)/t)),

and an integration by parts, the second integral becomes

- /‘ /R,‘- t VK ((z - )/t) (10gu)(w t) dw dt

!
+/ Koz — w) g”(wadw /EKE(:c—w)a 8 (11, ¢) du
RN R 6t
=A+B+C.
Since
8210gu__i8210gu [Vul?
ot —~ O} u? ’
we get

/ / N (2 )/t)zagzg:,“( ¢) dwdt

N1 [Vu(w, t)|?
//Mt HEK(z - w)/t)———5— (w17 dwdt.

Another integration by parts shows that the first term can be written as

_/j/wt_wé(%((z_ )/t)( 1‘9;‘1’5“( ,t)) dwdt .
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So, collecting all the identities, one gets
e, B - vle.e) = [ | ale = w)9allog . o du
N1 [Vu(w, t)?
/ / VK (2 )/t S e du
+/ EK(x — )aou(wjdw
RN
—/ eK (z— w)alOgu(w,e)dw.
RN ot

This finishes the proof. [ |

Theorem 3.6. Let u be a positive harmonic function on RY . Fiz a > 0.
Let K be a smooth, positive, radial function supported on {x € RV : ||lz|| < p}
with integral 1. Consider the function

L ey VRO D
Q(I,E) = Z /R,\- tI\L(:L - M)W dw dt

If p/a 15 small enough, there ezists a positive number L = L(N} and mar-
tingales (with respect to different translates of the dyadic filtration)

{sy,... {1
such that form=1,2,..., and €41 <y < &py,

L
llog u(z,y) + Q(z,6m) = »_ SW(z)] < C + CA(log w)(z,7y)

k=1

L
Z(S(k))m(x) < Aq(log u)(z,vy) ,
k=1

where €y, = 2772 /4p and 0 < v < 1 is a constant depending on p. Here (
is a constant depending on o and N .
Proof. Observe that Harnack’s inequality and (I)* assert that
| og u(z, 1) ~ (3, €m)| < CAu(log)(z,760) + C .
By Lemma 3.5,

'U.(I, 1/4) - ’U,.(.’E, Em) = M(I, Em) + Q(xvam) + R(I E-m) .
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Now, (III)* provides the martingales which approximate V,(z,ée,,). Hence,
it only remains to show that

R(z,en) < C + CAg(logu)(z, vem) .

It is cnough to prove

dlogu
/RN eKe(z —w)—=— r (w, €)dw

Observe that the integral is over all the w contained in the ball centered al «
of radius pe. By the submean property of the gradient
dlogu

1 vu[?\ 1?2
w,E)| S| =5 —_— ,
g () <|B<w>[ o) )

where B(w) is a ball centered at (w, ) of radius #e. Now if  and p arc
sufficiently small, there exists § < 1 such that

B, C Be = {z e RY* ||z = (z,¢)| < 66} C Tu(z)

< CAq(logu)(z,ve) .

for any w such that ||w — z|| < pe. Then

dlogu 1 iVu2\
l e (“’:5)‘50<EN+1/B‘ = :

2\ 1/2
l/ ek, (z - E)logu(w €) dw ' <C (/ —N+1__|V7:' )
RN B, U

< Aa(log)(z, 7¢)
This finishes the proof. |

Next we will show that given 0 < 8 < «, one can choose p in such a
way that the resulting quantity Q(z,e€) is, roughly speaking, intermediate
between AZ(logu)(z, ) and A}(log u)(z, ).

Lemma 3.7. Let u, K,Q be as in Theorem 3.6. Let {z € RY: |jz|| < p} be
the closed support of K. Let 0 < 8 < a.

(a) If p< c,

So,

Q(z,¢e) < CA%(logu)(z,¢) .
(b) Ifp> B,

Qla,e) > C™ =N+ [Vu(w, t)}2

2 dwdt.
Ty(z.e)n{t<1/4} u(w, t)

Here C is a constant depending on the function K, o and (.
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Proof. Since K is supported in {z € R¥: ||z < p}, the integral over w in
the definition of Q(z, £), is really over w in the ball of center z and radius pt.
So, letting C = sup | K|, if p < e, Q{z, €) is bounded hy

1/4 e ]
C'/ gV |Vu w, ) dwdt <C t“NHLYWu\w? ';' dw dt
lw—z[l<pt U w, ) Caf(a)n{t>e} 'LL('LL«', t)

This gives the first estimate.
Given 3 < p, we choose 0 < § < [ such that

Ta(z) C {(uw, t): fhw—z| < (1= 8)pt}.

Now let m = min{K(z): ||z]| < p(1 ~§)}. Thus

4 ; Vu(w,t
(z,€) >m/ - \/ [Vu(w, )% ) du dt
{w: w—z)j<(1-8)pt} ”(“) f)

> m/ L‘"Ni—w dw dt .
- Cp(x)n{t<1/4} u(w, t)? |

The sets {z € RV : 4,(logu)(z) < oo} do not depend on «, except for
sets of Lebesgue measure 0. In their complement, next result shows that the
order of growth of A,(logu)(z,y) does not depend on a.

Lemma 3.8. Let u be a positive harmonic function in RY*!. Let0 < 8 < a.
Then, there exists a constant C = C(e, 3, N} > 0 such that

_ Aq(logu)(z. t)
lim sup Salo8UNZ-E)
s o)z t) =

at almost every point x € {z € RV : Ay(logu)(z) = oo}.

Proof. By contradiction, assume that for any positive constant C there
exists a compact set F' = F(C) of positive Lebesgue measure such that

. Aq(logu)(x,t)
1 e vl
TSP Ay(logu)(x, b)
%irr&A (logu)(z,t) = o0,

> C.

for any z € F. Considering a point of density of F. one can assume that F
is contained in a cube @ and |[F N Q] > (1 - ¢€)|Q|. Thus, for arbitrarily
large A > 0, one can find a set Fy € @, |F\] 2 (1 ~ 2¢)|Q], such that for

any z € F) there exists ¢ = ¢(x,A) > 0 for which A,(logu)(z,t) = X and
Ap(logu)(z,t) < CA.
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Next we run a stopping time argument. Let {Q;} be the maximal dyadic
subcubes of ¢ for which there exists x € ¢; satisfying
Aa(logu)(z, H@;)) = A.

Since F) C UQ,, we have

Yol = (-2l
Observe that Harnack's inequality yields that whenever |z — w| < y,
| Aa(log u)(z, y) — Aa(log u)(w,¥)| < C(N,a).
Thus, for any z € ¢); one has
Aa(logu)(z,4(Q5)) 2 A - C(N, ).

Given a cube Q in R¥ we denote by § the set {(z,y) : z € Q,0 < y < {(Q)}.
Let © = 2\ UQ;. Then Fubini gives

[Vu(w, y)|? j‘ ([ 1w | Vu(w, ) )
— _dwdy>C ——dwdy | d
js:ty u(w, y)? e (=) Q r.(:)nny uf{w, y)? e

> Cy(e) (1 - 2)Ql.

On the other hand, by Fubini again

Mﬁ 1-n [ Vulw, y)?
fny Sl dwdy < C(ﬁ)/‘; (frﬁ(x}my T dwdy) dr

and applying Txebicheff’s inequality one can find a set G C @, |G| =
C(a, 3)|@Q| such that

1+N1v“[‘”=y}|2 2
LAY dwdy > Cla, B)A2.
/r a{mmy o) y > Cla, 8)

Let B be the family of the cubes {Q,} for which
Ap(log u)(z,1(Q;)) > 2C™'A

for some x € Q;. Then
3105 < 2¢[Ql.
B
If C is large enough this gives the contradiction and finishes the proof. W
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We are now ready to prove Theorem 3.1

Proof of Theorem 3.1. Given a cube Q of center zg and sidelength {{Q),
let us denote zg = {zg, {Q)) and

T(Q) = {(z.y) e R{* 1 2 € Q,1(Q)/2 < y < UQ)}-
To prove {a), we consider {Q;} the maximal dyadic subcubes of @ such that

sup Jlogu(z) — logu(zg)l > A + C(a),
2€T(Q;)

where C(a) is a constant depending on ¢ (and independent on A) to be
chosen later. It follows from Harnack’s incquality that if C(a) is chosen
conveniently, then

{z € Q: My(logu,Q)(z) > A} D UQj.

Also, by maximality and Harnack’s incquality, we have
[logu(zg;) — log u(zq)| < A+ Cy(a),

where C|(a) is another positive constant depending on . Now, in each @;
we will use the martingales 59 given in Theorem 3.6. Let:

L

Sm= Y _(S9 — S9(Q))xe,-

i=1
Then, the estimates in Theoremn 3.6 and Lemma 3.7 give

{z € Q;: My(logu,@;)(z) > (I — L)X, Af,(logu,Qj)(x) < A}
C{z € Q;: sup|Sm(z)] > (K - 20)A — C.(S)*(z) < C + AC}.

The subgaussian estimate (1.1) applicd to SO i = 1...., L, implics that
the measure of this set is bounded by
C1 EXP(—CQ/\I{Q)IQJ| .
Adding up, we deduce that
{z € Q: My(logu, Q)(x) > KX, A2(logu, Q)(z) < A}

< Crexp(-CrK20) 3 101

< Crexp(—=CoICN)|{z € Q: Ma(logu, Q)(z) > A},
which is (a).
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The proof of (b) is similar. Let {Q;} be the maximal dyadic subcubes
of @ such that
Ai(logu, Q)(z, U(Qy)) = A+ Cy,

for some z € Q;, where C; = Ci(a) is a constant depending on & (and
independent on A) to be chosen later. It follows from Harnack’s inequality
and the maximality that if C' is chosen conveniently, then

A < Ax(logu, Q)(z, U(Qy)) £ A +2Cy,
for any z € Q;. So,
{z € Q: A2(logu,Q)(z) > A} D U;Q;.

Now, in each @Q; we will run a stopping time argument to find cubes where
A%(logu, Q) has increased kA units. More concretely, for j = 1,2,..., let
{Qji:1=1,2,...} be the maximal dyadic subcubes of Q; such that

AL(logu, Q;)(2,4(Q;0) 2 (k =)A= Cy
for some z € Q;;. By Harnack’s inequality
(k —1)A = Cy < Al (logu, Q;)(z, U(Qj1)) < (k= 1)A + C3,

for any £ € @, where Cj is a constant depending on «, C; and the dimension.
If the constants are chosen conveniently the set {z : A2(logu, @)(z) > kA} is
contained in U;;Q;,;. Let A be the subfamily of {Q;,,7 =1,2...,0=1,2...}
for which M, (logu, Q)(z) < A, for any z € Q;;. Now in each Q; we will use
the martingale % given in Theorem 3.6. Let

L
Sm= (5%~ SP(Q)xa;-
=1
The estimates in Theorem 3.6 and Lemma 3.7 give that for any @;, in A4,
if 2-m2/4p = 1(Q;),

Sm(:l:) > C4k)\7
(S>m(x) S CS\/EX’

for any z € Q;;. Hence, the subgaussian cstimate (1.1) implies that

3 1Qul < Csexp(—CrEA)|Q1.
{

Adding up, we obtain (b).
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It is worth noticing that if one tries to adapt the proof of the correspond-
ing subgaussian estimate for harmonic functions to our setting, a worst decay
on the constants is obtained, as we show next. Let J > « > 0 and set

E={z € Q: M,(logu,Q)(z) < A}

and

R=|JTy(z).

Thus, R is a Lipschitz domain sayleg = {(z,y): v > &(x)}, where ¢ is a
Lipschitz function. Observe that
llogu(z,y)| < A+ Cla, B), (z,y) € R,
where C(a, ) is a constant depending on «, 5.
Claim. Let
A3ogu)(e, o) = [ Vel )l

=y — &)V dwdy,
PalledEne) (W, Y)
where Tg((z, #(z)), @) is a vertical cone with vertex at (z,¢(z)} of aper-
ture . Then
|| A2 (log u)(z, ¢(z))lIzmo(Q) < C1A.
This is the main step in Uchiyama’s proof [38]. Then, the John-Niremberg
Theorem implics
{o € Q: AZ(log, Q)(2) > KA, Ma(logu, Q)(z) < A}
= |[{r € Q: A2(logu)(z, &(x)) > KA}
< Crexp(—~CoK){z € Q: A (logu, Q)(x) > A}|. -

As in the martingale setting, the good-A-inequalities have a number of
consequences.

Theorem 3.9. Let yu be a positive measure on RN such that
dp(z)
— < 00.
_/RN 1+ |z|V+!

Let p = fdz + pg, where fdr and ps are its absolutely continuous and
singular part with respect to Lebesgue measure. Fiz o > 0. Let u = Ply] be
the harmonic extension of 1 and

AZ(log u)(x) = [ [Vu(w,y)*

oyt N dw dy
JTa(z) u(’w:y)u

its square function. Then,
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(a) The sets
{zeRY: f(z) >0} and {z€R": A2(logu)(z) < oo}
can only differ in a set of Lebesgue measure 0.
(b) w is a singular measure if and only if

Al(logu)(z) = 00, a.e. z€RV.

(c) Consider the non-tangential mazrimal function of logu,

M,(logu)(z) = sup |logy].
ae)

Let Q be a cube in RN, Then, for 0 < p < oo and any « > 0,
M,(logu) € LP(Q) if and only if A2(logu) € LP(Q). Also, for 1 <
p < oo, log f € L7(Q) if and only if A2(logu) € L*(Q).

(d) There exists a constant C = C(N, ) such that exp(CA2(logu)) € L},
implies that y and Lebesgue measure are mutually absolutely continuous.

(e) There erists a constant ¢ = c(N,a) such that if A%(logu)(z) < 1 for
any x € @, then
exp(cM2(log ) € L(Q).

The proof is identical to the one in the dyadic martingale setting and we
omit it.

Law of the iterated logarithm
Let u be a positive harmonic function on Rf“. Given a positive, smooth,

radial function X supported on B(0,p) C R¥, recall that Q(z,¢) was de-
Vu(w t)?

fined as
1/4

Observe that the mtegral is really over the (w, t) in the cone I'y(z, €) in RY+L
So, Q(z, €) is a smooth version of the truncated area function Af,(log u)(z, €).
Hence, the scts

dw dt .

{z e RV: lir%u(m,y) =0} and {z€R": lin(l)Q(a:,y) =00}
y— y—

can only differ in a set of Lebesgue measure 0.
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Next result is an analogous of the LIL for dyadic measures given in
Theorem 1.3.

Theorem 3.10. With the notations above

Hogu(z,y) + Q= y)l -
\/Q (z,y)loglog Q(z,y) —

llm sup

at almost every point

z€{zeRY: lin?'u(.r, y) = 0}.
oo

Here C s a constant depending on N and K.

Proof We use Theorem 3.6 to get a collection of L dyadic martingales
(s¥ )}J*1 such that

L

‘logu(:C V) +Q(z,y) = > SP(z)| < C + CAullogu)(z, vy),

(3.4) =
Z (57 )rrt(l ) < CAL( (-E YY) -

5=1

Here m is chosen such that 41 < y < £, where e, = 27772/4p, 0 <y < 1
is a constant depending on p, and p/a is sufficiently small. Now, the LIL
for martingales states

lim sup , ,(,Jl)(a:) - <Cy,
m—co /(SN2 (z)loglog(SM),,(z)

at ae. x € {a: (SD)(x) = oo}, Hence, for any j=1,.... L

()
lim sup <,
m—oo \/AZ(logu, £m)(z)loglog Ay (log 1, €,,) ()

]
fora.c.z € {x € RV: A,(logu)(z) = oco}. Then the result follows from (3.4)
and Lemmas 3.7 and 3.8. |

Applying the Theorem above and Lemmas 3.7 and 3.8, we deduce Corol-
lary 1.8.
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An example

There is a class of positive harmonic functions for which these LIL’s give
sharp results. Let u be a positive harmonic function on ]R;Y'H. Harnack’s
inequality asserts

yIVu(z,y)| < Nu(z,y),  (z,y) e RY™.

Now given ¢ > 0 and R < 1, let M(g, R) be the class of positive harmonic
functions u for which

sup {ylvul(‘—ii%n: (=) = (zo, %)l < Ryo} >e
for any (zq, yo0) € ]Rf *1 This is analogous to a class of holomorphic functions
considered by P. Jones ([23]). For € > 0 small and R close to 1, the class
M (g, R) is non trivial. For instance, if one considers the measure u given in
Proposition 2.9 and u its Poisson extension, then v € M(g, R) for some €
and R. Now, if u € M(g, R), the submean property given in Lemma 3.2,
gives that

Q(z,y) = C(e, R) log 1/y,
while Harnack’s inequality gives
Q(z,y) < Clogl/y.
Similarly
c(a)log1/y < AX(logu)(z.y) < C(a)log1/y.

So if u € M(g, R), then A,(logu)(z) = oo at almost every z € R¥, that is,
lim, o u(z,y) = 0 a.e. z € R¥, or equivalently u is the Poisson integral of a
positive singular measure. Moreover, since

lim sup |logu(z,y) + Q(z,y)| <c,

< aezeRY ,
y—0 /log1/ylogloglog1/y

and
C(e,R)log1/y < Q(z,y) < Clogl/y,

we deduce that for a.e.z € RV, one has
1
moup oM@ _
y—0 log1/y

and

. |logu(z,y)|
luyn_glf log 1/3 >C(e, R).
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4. Hyperbolic derivatives of holomorphic mappings

Decay in Schwarz’s lemma

This subsection is devoted to the proof of Theorem 1.9. As explained in the
introduction, (a) of Theorem 1.9 follows from Theorem 1.5 (a). To prove (b)
it is more convenient to consider the upper half plane. An analytic function 7
from the upper-half plane R% to the unit disc is called inner if

lim I{z + iy)
y—0
has modulus 1 at almost every z € R.

We apply Proposition 2.9 to obtain a positive, singular, doubling mea-
sure g such that

I
(4.1) al ,) —ll <Ch(z)lmz, 1>Imz>0,
wli)
where I, is the interval of the real line eentered at Re(z) of length n » Tiet u
be the harmonic extension of g to the upper half planc and . -

where ¥ is the unique harmonic function in R2 with u(i) = 0 such that
H = u+1 is analytic in R%. Finally I = 7710 /I, where 7 is a Mobius map
from the unit disc to the right- half plane. Since g is singular, the function /
is inner. Also,

1'(z)] [Vu(2)|
; = , Imz>0.
=[P w(z)
So, we have to show that
[Vu(z)]
<
w2 S Ch(z),
for any z = z + iy € R%. An integration by parts shows
du 1 [ 3P,(t) .
5@(% ) =-3 e sign(t)[u(z, z +t) - p(z —t, x)] dt
and
u, . 1 3*P,(t)

3. B =5 R sign(t){u(z. z +t) — plz — t,z)] dt

(see Lemma 2.2 in {16]). Here P,(t) = 7~ 'y(t* + y*)~! is the Poisson kern
in the upper-half plane. We split these integrals dyadically, that is, ov

the intervals Iy \ Ir_;, £ = 1,2,..., where I; is the interval associated -
T + i12%y. Using the estimate
2P, (t 1P, (t 2

2 Byt | = 2%y
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and (4.1), one deduces

1
iky3

[Vu(z,y)| £ Ca ulz,z + 2ky)h(:r + i2ky)(2ky)2

| -

Cy u(z, x + 25y)h(z + i2ky) .

e 1s

[\*]

2ky

x
]

0

Since we are now working in the upper-half plane, the function A(z + iy) is
decreasing for y € (0,1/2]. Thercfore

— 1 . :
V@, 9)| < Cohle+iy) Y gplz @ +2%) < Cahla + )ul(z,y),
k=0

‘because B,(z — t) is comparable to 1/2%y for t € I; \ I;—;. This finishes
the proof.
Law of the iterated logarithm

For 0 < v < 2m, let 7,,(2) = (e + 2)(e"” — z)~! be a Mobius transformation
from the unit disc onto the right-half plane. Given a holomorphic mapping I
from the unit disc into itself, let u, be the real part of 7., o . Thus

1—|I(2)f?

Uuy(2) = e~ IR zeD,
and a simple calculation shows that
!
LT\ G

I-1@P ~ w(2)

which is independent of . So, moving the notation from the upper-half
plane to the disc, the truncated area function .A%(I)(re®) coincides with
471 A2 (log u,)(re®) and Q(re™®) is 471 Qq(log u,) (re¥?). Thus by Theorem 1.7
i0 i6
imeup 110807 + Qe _
r—1 /Q(re®)log log Q(re®)

Now, since for any z € D, one has

y .

27
/ log [e — z[*dy =0,

Theorem 1.10 follows integrating on .
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Inner functions in complex domains

Let © be a hyperbolic domain in the complex plane, that is, @ < C suc
that C \ Q contains at least two points. Let Ap(z)|dz| = (1 — |z|*)™* |d:
be the Poincaré (or hyperbolic) metric in D and IT: D — © a holomorphi
covering map onto 2. Then Ap(z) projects to the Poincaré . . th
domain Q, Ag(z)|dz|, that is,

Aa(TI(DIT ()] = An(z). zeD.

Let f be a holomorphic mapping from I into Q. Then, Schwarz’s lemm
asserts that
M(fNIf(2)] < Apl2), zeD,
that is,
A= 2BfEPa(f) <1, z€D.
A holomorphic mapping 7 from the unit dise into Q0 is called inner into
if the set

{¢ € OD: liulxl(r(:"") exists and belongs to 2}

has length 0. R. Nevanlinna proved that a liolomorphic mapping from t)
unit disc into a domain whose complement has positive logarithmic capacit
has radial limit along almost every radius. (sce [32, p.209]). So, given sw
a domain Q C C, a holomorphic mapping I from I} into € is inner into
and only if

11_1}} I(rey € 00

for almost every ¢ € 9D.

The functions which are inner into I are the usual inner functions. A ¢
ering map IT from D onto a domain £ is inner into © and, as a matter of fa
if f is a holomorphic mapping from D into 2 which factorizes as f = Il ¢
where b: D — D, then f is inner into  if and only if b is an inner functi
(see [19]). Also,

Aa(fENI(2)] = Aa (IO GV (2)] = Ap(b(2))1E'(2)]
Thus, Theorem 1.9 gives the following result.

Corollary 4.1. Let Q be a hyperbelic domain in the compler plane. .
a > 0. Let f be a holomorphic mapping from the unit disc into Q. Ther
is inner into Q if and only if

/ X(F(NIF () dm(z) = oo

a

for almost every 8 € [0, 2.
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5. Quasiconformal Mappings

This section is devoted to the proof of Theorem 1.11. We start by proving
some auxiliary results.

Lemma 5.1. With the notation of Theorem 1.11, the following identity
holds:

|Ou(z)] = ‘/Rz_ (zpm(u;))s dm(w)‘, for any z € R%.

Proof. Since u(z) = Re (z Ja %ﬁ_(?), one has

8, / du(t)|

RZ'—t -

Bu(2)| =

/ du(t)
R (21?2

Approximating p by smooth functions with compact support, we can assume
that dp(t) = p/(t)dt. Therefore the above integral is equal to

[ 2.
r (t—2)
Now, Green’s Theorem is applied to get

o2 (255) 4ncw)] -

Note that the lemma above holds under weaker assumptions: p does not
need to be quasiconformal.

Fp(w)
/m 90lw)_ 1w

|u(z)] = e .

Lemma 5.2. With the same notation as in Theorem 1.11,

0u@)] . C ([° 0, 0 %) i e R2
2 SW /y w(z,t)t2 , forallz=z+1iy € RL,

where

1
Hat =g [ lowdn),
t* JBztrR;
and B(z,t) denotes the ball centered at z and radius t.

Proof. Since dp = c8p, by Lemma 5.1 we get

|Ou(2)] < /R_ Mdm(w).

— .3
;  lw—2
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Consider now the balls By centered at z of radins 2%y, and define
Dy =B, NRy

Denote by J,(w) the Jacobian of the quasiconformal mapping p, then

oo

|Ou(2)] S Z 23;43/ |o(w)] |Jﬂ(w)|1/'2 dm(w)

k=1 Dy

i][ o ()| |, (w)]*? din(w)
2 Dy

-~ (7[ |o<w)|2)1/2 (/ l.f,,(wn)l/z ,

where the symbol fD g represents the mean of the function g over D. Now,
by the circular distortion theorem the quantity Area (p(Dy.)) f,) BACHY
is comparable to the square of the diameter of the interval p(/y), where I
is the interval centered at x = Rez and length 2*y. Therefore

<1 2 12 (1)
o s 3 gy ()

with all comparison constants depending only on the quasiconformal con-
stant of the mapping p. Since u is doubling, ;(Ix) <€ C*u(l,) where I,
denotes the interval centered at x = Rez and length y. and C is the dou-
bling constant. Writing C' = 2!*¢, we get

w<2kf/_‘£ﬁ
el = L]

1R

s T

L]

[\
=2

7AN
x
il

1

Hence if e < 1/2

18u(2)| <zk: - (][

1/2

Dy,
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We finally proceed to prove Theorem 1.11.
Proof of Theorem 1.11. We have to show that

By Fubini, the left term can be expressed as:

/R; lo(w)[? (/r.,(z) 5 (/:o zlzXB(z,z)(w) dt) dm(z)) dm(w) .

On the other hand

* 1 © dt 1
/ {;XB(;,L)(UJ)dt':-J
¥

— ’z —
|z—w] t4 |Z - wls

/ l dm(z) < 1
Fa(z) ¥ |z —wpd ~ |z —w|?

which ends the proof of the theorem. |

and

6. Concluding remarks

Centered square function

Let i be a doubling measure in Q. It is natural to consider analogues of the
square function in Section 1 which do not use the dyadic filtration. Given a
point (w,y) € RY*, let us consider

2V 1(Qx)
#Q)

where Q is the cube in R centered at w of sidelength y and {@Qx: k =
1,...,2"} are the 2V disjoint subcubes of @ of sidelength y/2. So, d(w,y)
measures the error done by u when doubling at a cube centered at w of
sidelength y. Define

d(w7y) = mf‘x - 1‘ 1

dwd
A2 () (z) = / L Ew T, seRY.

Again, doubling measures which are singular can be characterized in terms
of this square function.
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Theorem 6.1. Let u be a doubling measure in Qy. Fiz o > 0. Then p is
singular if and only if
Ax()(z) =

at almost every x € Q.

Proof of Theorem 6.1. Given 0 < € < 5, let us consider the (doubly)
truncated square function
dw dy
A enli)@) = [ & (w,y) el
1 Ca(z)N{e<y<n} yN+l
The main step is to prove the following comparison estimate between inte-
grals of the logarithm of the density of g and the truncated square func-
tion .A:‘;” More concretely, there exists a constant C' = C(, @) > 0 such

that for any cube Q C @y and 0 < y < I(Q)/2, onc has

c! 1+-—— /.Aaqu) u)(x)dr)

(6.1 IQt/ og e dr —1og i3
<01+!QI/A(,,J¢(Q)( )(z)dz).

To show this, first note that, as in Lemma 2.2,

gm.(Q(w.1))
am (Qw,y))

where g.m. and a.m. are defined as in the martingale setting. By Fubini’s
Theorem

l(Q Q)
/A wl@) / / gm (Qu ’t))@dw—/ @(t)ﬁ,
o weQ am Q(w,t)) t v t

wher
- P(t) = / log gm.(Qw.t)) dw
arn am.(Q(w,t)

Then, splitting the integral of ®(t) dyadlcally and using the following can-
cellation property,

l/log msz;))) |Q(w,t/2)l) duw

we obtain (6.1). Now Theorem 6.1 follows from standard stopping tim:
arguments. We omit the details. 1

d*(w,y) ~ —log

< C(uth
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Given a doubling measure p, let us consider the maximal function

2

M, (log 1)(z) = sup

where the supremum is taken over the points (w, y) in the cone I'p(z). Again,
using (6.1), standard methods also give the analogue of part (b) in Theo-
rem 1.1, that is, for 0 < p < o0,

M,(log ) € LP(Qo) if and only if A2(u) € LP(Qy).

However, we have not explored the analogues of (d) and (e) in Theorem 1.1
and the LIL of Theorem 1.3 for the square function .A. For this, it seems
necessary to prove the analogue of the good A-inequality, given in Theo-
rem 2.4 (a).

Sharp control of A by M

Theorem 2.4 and Theorem 3.1 establish comparisons between the distribu-
tion function of a non-tangential maximal function and a square function
in two different settings: dyadic doubling measures and positive harmonic
functions. Part (a) in both results provide the same subgaussian decay.
However the estimate in part (b) in both results gives a worst decay and it
probably could be improved. This is particularly convenient if one is inter-
ested on LIL’s relating the growth of the (truncated) square function with
the non-tangential maximmal function. For harmonic functions, such LIL's
were considered by Baiiuelos and Moore (see [6, Chapter 4]).

Non-harmonic extensions

It is natural to consider the non-harmonic version of the results in Section 2.
Let ¢: RY — R be a smooth function with integral 1. Let g be a positive
measure on RY such that

[, le@lduta) < oo.

Consider
u(z, t) = (e * du)(z),

where
T
t

wt(z)zt_Ncp( ), z€RY,t>0.
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Under some additional restrictions on the function ¢, it is known that,
for 0 < p < o0, the non-tangential maximal function of u is in L* if and only
if the square function

A, 0)(2) = / [Vau(w, t)|t =Y dwdt
Ta(z)

is in L? (sce [18]). In our setting, the natural square function to be consid-

ered is
Mrtld\r dw dt
u(w, t) o

Aog i 9)(x) = [
Ta(2)
We have not explored the square function in this generality. It is worth
mentioning that in this generality, even the analogue of the subgaussian
estimates of Chang, Wilson and Wolff is open (see [6, p. 113] and [36]). So,
proving sharp cstimates for A%(log p, ) scems to be a difficult problem.
One could also ask for results analogous to the oncs in Section 2, with
the area function replaced by the g-function

Vu(z,y)

1
2 _ |
g (logu)(ﬂs)—/D Yy iz y)? dr.

Again the main difficulty is the subgaussian estimate of Theorem 3.1, which
is open in the context of harmonic functions (see [6, p.114])
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