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Abstract
The WDVV equations of associativity arising in two-dimensional topological
field theory can be represented, in the simplest nontrivial case, by a single
third-order equation of the Monge–Ampère type. By investigating its Lie point
symmetries, we reduce it to various nonlinear ordinary differential equations,
and obtain several new explicit solutions.
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Mathematics Subject Classification: 35Q58, 35Q99

1. Introduction

As introduced by Witten, Dijkgraaf, H Verlinde and E Verlinde [10, 1], the equations of
associativity involve the following unknowns: a function F(t1, . . . , tn) ≡ F(t), integer
numbers qα and rα, α = 1, . . . , n, another integer d, a constant symmetric nondegenerate
matrix (ηαβ), other constants Aαβ, Bα, C. These unknowns must obey three main sets of
equations [3].

1. The equations of associativity properly said (with summation over the repeated indices)

∂α∂β∂λF(t)ηλµ∂µ∂γ ∂δF(t) = ∂δ∂β∂λF(t)ηλµ∂µ∂γ ∂αF(t). (WDVV1)

2. A condition singling out one variable, say, t1,

∂α∂β∂1F(t) = ηαβ. (WDVV2)

in which the matrix (ηαβ) is the inverse of (ηαβ).
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3. A condition of quasi-homogeneity,
n∑

α=1

[(1 − qα)tα + rα]∂αF(t) = (3 − d)F(t) +
1

2
Aαβtαtβ + Bαtα + C. (WDVV3)

In the simplest nontrivial case n = 3, there essentially exist two different choices
of coordinates [2], depending on η11 being zero or nonzero, each choice resulting in a
representation of the generating function F in terms of the solution of a single third-
order partial differential equation (PDE) of the Monge–Ampère type, which is either [2],
[4, equation (9)]

1.

η11 �= 0 : F = 1
6 (t1)3 + t1t2t3 + f (t2, t3), (1)

fxxxfyyy − fxxyfyyx − 1 = 0, x = t2, y = t3, (2)

or [3, p 304] [4, equation (22)].
2.

η11 = 0 : F = 1
2 (t1)2t3 + 1

2 t1(t2)2 + F(t2, t3), (3)

(Ftyy)
2 − Fttt − FttyFyyy = 0, y = t2, t = t3. (4)

There exists a Legendre transformation [2] which exchanges these two solutions F (this
transformation exchanges the coordinates t3 of (2) and t2 of (4), whose common value is
here denoted y), and its action on the functions of two variables f (x, y) and F(y, t) is the
hodograph transformation [6], [4, equation (23)]

t = fxx, Fyyy = f 2
xxy

fxxx

, Ftyy = −fxxy

fxxx

, Ftty = 1

fxxx

, Fttt = fxyy

fxxx

, (5)

whose inverse is

fxx = t, fxy = −Fyy, fyy = Ftt , x = Fty. (6)

A nice way to obtain this hodograph transformation (5), (6) is to rewrite both PDEs [6] as
integrable systems of the so-called hydrodynamic type, allowing them to be mapped by a
chain of standard transformations to integrable three-wave systems.

Both PDEs admit a Lax pair [2], e.g. for the PDE (2) [4, equation (10)]

ψx = λ




0 1 0

0 fxxy fxxx

1 fxyy fxxy


 ψ, ψy = λ




0 0 1

1 fxyy fxxy

0 fyyy fxyy


 ψ, (7)

in which λ is a nonzero spectral parameter.
The purpose of this paper is to obtain new explicit solutions of either the PDE (2) or the

PDE (4), and therefore of the equations of associativity in the simplest nontrivial case. Any
such solution f is only defined up to an arbitrary additive second degree polynomial. However,
equation (4) possesses a rather complicated structure of singularities, making the search for
explicit solutions not easy, while equation (2) has a simpler such structure, so we will mainly
consider this latter equation. In particular, the invariance of this PDE under permutation of x
and y has no simple equivalent for the PDE (4).
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To achieve this search for solutions, we perform a systematic investigation, via the Lie
point symmetries method, of the reductions of the PDE (2) to ordinary differential equations
(ODEs), which a priori can be integrated since they inherit the integrability properties of the
equations of associativity. In addition to the reductions or particular solutions of either (4) or
(2) which have already been found [2, 4], we obtain several new results.

The paper is organized as follows. In section 2, we apply the classical Lie method [9, 8],
derive the Lie algebra, compute the commutator table and the adjoint table [8], which then
allow us to derive the optimal system of generators. In section 3, we perform all the associated
classical reductions. Section 4 summarizes the solutions.

2. Classical Lie symmetries

In order to apply the classical Lie method to the Ferapontov equation (2), we consider the
one-parameter Lie group of infinitesimal transformations in (x, y, f )

x∗ = x + εξ(x, y, f ) + O(ε2),

y∗ = y + εη(x, y, f ) + O(ε2), (8)

f ∗ = f + εφ(x, y, f ) + O(ε2),

where ε is the group parameter. The associated Lie algebra of infinitesimal symmetries is the
set of vector fields of the form

v = ξ∂x + η∂y + φ∂f . (9)

One then requires that this transformation leaves invariant the set of solutions of
equation (2). This yields an overdetermined, linear system of equations for the infinitesimals
ξ(x, y, f ), η(x, y, f ) and φ(x, y, f ). Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface condition

� ≡ ξ
∂f

∂x
+ η

∂f

∂y
− φ = 0. (10)

Applying the classical method to equation (2) leads to a ten-parameter Lie group.
Associated with this Lie group we have a Lie algebra which can be represented by the
following generators:

v1 = ∂x, v2 = ∂y, v3 = x∂x + 3
2f ∂f , v4 = y∂y + 3

2f ∂f , v5 = xy∂f ,

v6 = x2∂f , v7 = y2∂f , v8 = x∂f , v9 = y∂f , v10 = ∂f .

2.1. Optimal system

In order to construct the optimal system, following Olver [8], we first construct the commutator
table (table 1) and the adjoint table (table 2) which shows the separate adjoint actions of each
element in vi , i = 1, . . . , 10, as it acts on all other elements. This construction is done easily
by summing the Lie series.

The corresponding generators of the optimal system of subalgebras are

v3,

v4,

−av3 + bv4,

v3 − v4 + av5 + bv10,

3v3 + v4 + av7,



1190 R Conte and M L Gandarias

Table 1. Commutator table for the Lie algebra vi .

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 0 0 v1 0 v9 2v8 0 v10 0 0

v2 0 0 0 v2 v8 0 2v9 0 v10 0

v3 −v1 0 0 0 − 1
2 v5

1
2 v6 − 3

2 v7 − 1
2 v8 − 3

2 v9 − 3
2 v10

v4 0 −v2 0 0 − 1
2 v5 − 3

2 v6
1
2 v7 − 3

2 v8 − 1
2 v9 − 3

2 v10

v5 −v9 −v8
1
2 v5

1
2 v5 0 0 0 0 0 0

v6 −2v8 0 − 1
2 v6

3
2 v6 0 0 0 0 0 0

v7 0 −2v9
3
2 v7 − 1

2 v7 0 0 0 0 0 0

v8 −v10 0 1
2 v8

3
2 v8 0 0 0 0 0 0

v9 0 −v10
3
2 v9

1
2 v9 0 0 0 0 0 0

v10 0 0 3
2 v10

3
2 v10 0 0 0 0 0 0

Table 2. Adjoint table for the Lie algebra vi .

Ad v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 v1 v2 v3−εv1 v4 v5−εv9 v6−2εv8 v7 v8−εv10 v9 v10

+ε2v10

v2 v1 v2 v3 v4−εv2 v5−εv8 v6 v7−2εv9 v8 v9−εv10 v10

+ε2v10

v3 eεv1 v2 v3 v4 e
ε
2 v5 e− ε

2 v6 e
3ε
2 v7 e

ε
2 v8 e

3ε
2 v9 e

3ε
2 v10

v4 v1 eεv2 v3 v4 e
ε
2 v5 e

3ε
2 v6 e− ε

2 v7 e
3ε
2 v8 e

ε
2 v9 e

3ε
2 v10

v5 v1+εv9 v2+εv8 v3− 1
2 εv5 v4− 1

2 εv5 v5 v6 v7 v8 v9 v10

v6 v1+2εv8 v2 v3+ 1
2 εv6 v4− 3

2 εv6 v5 v6 v7 v8 v9 v10

v7 v1 v2+2εv9 v3− 3
2 εv7 v4+ 1

2 εv7 v5 v6 v7 v8 v9 v10

v8 v1+εv10 v2 v3− 1
2 εv8 v4− 3

2 εv8 v5 v6 v7 v8 v9 v10

v9 v1 v2+εv10 v3− 3
2 εv9 v4− 1

2 εv9 v5 v6 v7 v8 v9 v10

v10 v1 v2 v3− 3
2 εv10 v4− 3

2 εv10 v5 v6 v7 v8 v9 v10

v3 + 3v4 + av6,

−3v3 + v4 + av8,

v3 − 3v4 + av9,

av2 + bv3,

av1 + bv4,

av1 + bv2 + cv5 + dv6 + ev7, (11)

where a, b, c, d, e are arbitrary real nonzero constants.

3. Classical reductions

Each generator of the optimal system defines a reduction of equation (2) to an ODE. Because
of the invariance of (2) under permutation of x and y, these ten generators only define seven
different reductions to an ODE, which we now consider.

Although these reductions are probably integrable in some sense, performing their explicit
integration is a difficult task. Moreover, since the Lax pair (7) is not isospectral, its reductions,
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which are also Lax pairs for the reduced ODEs, cannot generate any first integral, so the Lax
pair is unfortunately of no use for integrating the reduced ODEs.

From the scaling invariance of the two considered PDEs, an obvious solution is

f = 2i

√
2

3
(xy)3/2, F = y4

8t
, 2t2x + y3 = 0, i2 = −1. (12)

3.1. Reduction with the generator v3 or v4

The generators v3 and v4 define a reduction to the same autonomous linear ODE
[4, equation (30) p 46],{

z = y, f = [x3�(z)]1/2, or z = x, f = [y3�(z)]1/2

�′′′ + 16/3 = 0.
(13)

This contains the scaling solution (12).

3.2. Reduction with the generator −av3 + bv4

With the notation s = a + b, p = ab, a symmetric definition of this reduction is


z = xbya, f = (xy)3/2ϕ(z),

[−16p2sz5ϕ′′ − 8p(4p + 2ps + s2)z4ϕ′ − 3s3z3ϕ]ϕ′′′

+ 8p(2p − 6ps − 3s2)ϕ′′2 − (64p2 + 72ps + 64p2s + 72ps2 + 9s3)z3ϕ′ϕ′′

− 9(2 + s)s2z2ϕϕ′′ − (40p + 16p2 + 72ps + 16p2s + 18s2 + 32ps2 + 9s3)z2ϕ′2

− (33 + 18s + 3s2)szϕϕ′ − 9ϕ2 − 8 = 0.

(14)

An equivalent, shorter expression is obtained by suppressing the term ϕ2 [4, p 46],


z = xy−µ, f =
(

xy

z

)3/2

ϕ(z), or z = yx−µ, f =
(

xy

z

)3/2

ϕ(z),

[16µ2(µ − 1)z2ϕ′′ − 8µ(3µ + 1)(µ + 1)zϕ′ + 3(3µ + 1)(3µ − 1)(µ + 1)ϕ]ϕ′′′

− 8µ(µ − 3)zϕ′′2 + (µ − 3)(µ + 3)(µ + 1)ϕ′ϕ′′ − 8 = 0.

(15)

As results from the scaling solution (12), the ODE (15) admits the particular zero-parameter
solution

∀µ : ϕ = 2i

√
2

3
z3/2, f = 2i

√
2

3
(xy)3/2. (16)

For generic values of (a, b), this ODE is unfortunately outside the class

ϕ′′′ =
3∑

j=0

Aj(z, ϕ, ϕ′)ϕ′′j , (17)

an equation which for some Aj can be linearized by a contact transformation. However, there
exist particular values of µ for which the integration can be performed at least partially. The
invariance of (14) under (a, b) → (b, a) induces an invariance of (15) under µ → µ−1.

1. For µ = 0, 1,−1,−2,−1/2, a first integral K is known,


µ = 0, K = −8z − 3ϕϕ′′ − 3ϕ′2 = [− 4
3z3 − 3

2ϕ2
]′′

,

µ = 1, K = any rational function of a, b, c, see (22),

µ = −1, K = z + 2z2ϕ′′2,

µ = −2, K = −8z − ϕ′2 − 105ϕϕ′′ + 112zϕ′ϕ′′ − 96z2ϕ′′2,

µ = − 1
2 , K = −8z2 + 15

4 (zϕϕ′′ + zϕ′2 − ϕϕ′) − 10z2ϕ′ϕ′′ − 6z3ϕ′′2.

(18)
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2. For µ = 1, the third-order equation [4, equation (31) p 46],{
z = x/y, f = y3ϕ(z), or z = y/x, f = x3ϕ(z),

2(3ϕ − 2zϕ′)ϕ′′′ + 2zϕ′′2 − 2ϕ′ϕ′′ − 1 = 0,
(19)

is linearizable since its derivative factorizes into

2(3ϕ − 2zϕ′)ϕ′′′′ = 0, (20)

so its general solution is

ϕ = αz3 + 3βz2 + 3γ z + δ, 36(αδ − βγ ) − 1 = 0, (α, β, γ ) arbitrary. (21)

It is interesting to note that, knowing the three first integrals a, b, c,


12a = 1 + 2ϕ′ϕ′′ − 2zϕ′′2

3ϕ − 2zϕ′ = 2ϕ′′′,

4b = −z + 6ϕϕ′′ − 6zϕ′ϕ′′ + 2z2ϕ′′2

3ϕ − 2zϕ′ = 2ϕ′′ − 2zϕ′′′,

4c = z2 + 12ϕϕ′ − 8zϕ′2 − 12zϕϕ′′ + 10z2ϕ′ϕ′′ − 2z3ϕ′′2

3ϕ − 2zϕ′ = 4ϕ′ − 4zϕ′′ + 2z2ϕ′′′,

(22)

there exists no first integral which would be polynomial in (ϕ, ϕ′, ϕ′′).
3. For µ = −1, the ODE reduces to a linear equation for ϕ′′2, identical to the particular case

r1 = r2 = s1 = s2 = 0 of reduction (27) given below.
4. For µ = 3, 1/3 and µ = −3,−1/3 respectively, the ODE is just the subcase a = 0 of

reductions (30) and (32) given below.
5. For µ = 2, 1/2, two rational solutions for ϕ2 can be obtained,


µ = 2, ϕ = 2

15c
(z − c)5/2, f = 2y2

15c

(
x

y
− cy

)5/2

,

µ = 1

2
, ϕ = 2

15c
z−1/2(1 − cz2)5/2, f = 2x2

15c

(y

x
− cx

)5/2
,

(23)

and


µ = 2, ϕ = 2i

√
2

3
z3/2(1 − cz), f = 2i

√
2

3
(xy)3/2

(
1 − cx

y2

)

µ = 1

2
, ϕ = 2i

√
2

3
z−1/2(z2 − c), f = 2i

√
2

3
(xy)3/2

(
1 − cy

x2

) (24)

in which c is arbitrary.
The first solution (23) represents the octahedron solution B3 of Dubrovin, see [4, p 41].
The second solution f extrapolates the scaling solution (12).

6. For µ = 5/3, 3/5, one rational solution exists, which depends on one arbitrary
parameter c, 


µ = 5

3
, ϕ = c

6
z3 +

1

24c
,

µ = 3

5
, ϕ = c

6z
+

z4

24c
.

(25)

This represents the tetrahedron solution A3 of Dubrovin, see [4, p 41].
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3.3. Reduction with the generator v3 − v4 + av5 + bv10

This reduction to a nonautonomous ODE,

z = xy, f = ϕ(z) + (az + b) log x, (26)

can be defined more symmetrically as [4, p 45, example 2]


z = xy, f = ϕ(z) + (r1z + r2) log x + (s1z + s2) log y,

z2ϕ′′2 + (r1 + s1)zϕ
′′ − (r2 + s2)ϕ

′′ − r1s2 + r2s1

z
+

r2s2

z2
+

z

2
+

(r1 + s1)
2

4
+ k0 = 0,

(27)

in which k0 is a constant of integration. Its general solution is obtained by quadratures,


ϕ = k1z + k2 − r1 + s1

2
(z log z − z) − r2 + s2

2
log z

±
∫

dz

∫
dz

√
−2z3 − 4k0z2 − 2(r1 − s1)(r2 − s2)z + (r2 − s2)2

2z2
,

f = −s2 log x − r2 log y +
r1 − s1

2
xy log

x

y
±

∫
dz

∫
dz

√· · ·
2z2

,

(28)

and it generically involves elliptic integrals. A particular solution is


f = 2i

√
2

3
(xy)3/2 + cxy log

x

y
,

F = i

√
2

8
x−1/2y3/2

(
4c2 log

x

y
− xy

)
+

cy2

4
+

c3y

x
+

(
c3y

x
− cy2

2

)
log

x

y
,

(29)

which is another extrapolation of the scaling solution (12).

3.4. Reduction with the generator 3v3 + v4 + av7 or v3 + 3v4 + av6

These two generators define a reduction to the same nonautonomous ODE,
z = xy−3, f = y6ϕ(z) − a

4
y2, or z = yx−3, f = x6ϕ(z) − a

4
x2,

12(3z2ϕ′′ − 8zϕ′ + 10ϕ)ϕ′′′ − 1 = 0,

(30)

which a linear transformation can make second order in ϕ′,


z = xy−3, f = x2ϕ(z) − a

4
y2, or z = yx−3, f = y2ϕ(z) − a

4
x2,

[36z6ϕ′′ + 48z5ϕ′]ϕ′′′ + 216z5ϕ′′2 + 504z4ϕ′ϕ′′ + 288z3ϕ′2 − 1 = 0.

(31)

Since f is defined up to an arbitrary additive second degree polynomial, the reduced ODE
does not depend on a, and this case is identical to the case µ = 3, 1/3 of (15), in which no
solution is known other than (16).

3.5. Reduction with the generator −3v3 + v4 + av8 or v3 − 3v4 + av9

These two generators define a reduction to the same second order, nonautonomous ODE
for ϕ′,


z = xy3, f = xϕ(z) − a

3
x log x, or z = yx3, f = yϕ(z) − a

3
y log y, a �= 0,

[−72z4ϕ′′ − 84z3ϕ′ + 9az2]ϕ′′′ − 234z3ϕ′′2

−324z2ϕ′ϕ′′ + 18azϕ′′ − 72zϕ′2 + 2aϕ′ − 1 = 0,

(32)

but, with a �= 0, we could not find any solution to this ODE.
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Table 3. Summary of solutions F(y, t), f (x, y) of equations (4), (2). A3, B3, H3, label solutions
linked to regular polyhedra [2]; Dubn, solutions found by Dubrovin [2]; Fn, additional solutions
listed in [4, p 41]; and Nn, solutions apparently new. A prime (′) labels the solution deduced by
permuting x and y in f . A blank field in the column ‘Equation’ indicates a solution not arising from
a known reduction. The irrelevant constant k reflects the scaling invariance and can be set to 1.
Pn denotes a polynomial of degree n.

Label F(y, t) f (x, y) Equation Link (t, x, y)

y4

8t
2i

√
2

3
(xy)3/2 (12) x = − y3

2t2

F1 i
√

2y5/2x−15/2λ−5P8(x) 2i

√
2

3
(xy)3/2λ, (13) t = i

√
2y3/2x−9/2λ−3P4(x)

λ2 = 1 +
α

x
+

β

x2
+

γ

x3

F1′ 4αγ − β2 + 12γy + 6βy2 + 4αy3 + 3y4

24t
2i

√
2

3
(xy)3/2λ, (13) x = −λ2y3

t2

λ2 = 1 +
α

y
+

β

y2
+

γ

y3

F2
r1 − s1

2
xy log

x

y
(28) t = fxx

−s2 log x − r2 log y

±
∫

dz

∫
dz

√· · ·
2z2

, z = xy

F3 (29) 2i

√
2

3
(xy)3/2 + cxy log

x

y
(29) t = i

√
2

2

(
y3

x

)1/2

+ c
y

x

F4
12(β2 − αγ )y3 − 6βy2t + yt2 + 2γ t3

12α

αx3 + 3βx2y + 3γ xy2 + δy3

36(αδ − βγ ) − 1 = 0

(21)

(35)
t = 6(αx + βy)

octa

B3

ky3t

3
+

2k2y2t3

3
+

8k4t7

105

2y2

15k

(
x

y
− ky

)5/2

(23) x = 4k2yt2 + ky2

octa′ λ11

528k3
+

λ7x2

6k
+

λ5x3

3
+

7kλ3x4

3

2x2

15k

( y

x
− kx

)5/2
, (23) t = 2kλx2 +

λ5

10k

+
4k2λx5

3
y = kx2 + xλ2

N1
i
√

2

24
x1/2y−7/2 2i

√
2

3
(xy)3/2

(
1 − kx

y2

)
(24) t = i

√
2

2(xy)1/2
(y2 − 5kx)

×
(

25k3x3

7
− 5k2x2y2 − 7kxy4 − 3y6

)

N1′ i
√

2

24
x−11/2y5/2

(
125k3y3

11
− 25k2x2y2 2i

√
2

3
(xy)3/2

(
1 − ky

x2

)
(24) t = i

√
2

2
x−5/2y3/2(x2 − ky)

+ 5kx4y − 3x6

)
tetra

A3

y2t2

4k
+

t5

60k2

kx3

6y
+

y4

24k
(25) x = ty/k

tetra′ x3y

3k
+

3ky4

8x2
+

k3y7

28x7

ky3

6x
+

x4

24k
(25) t = ky3

3x3
+

x2

2k

Dub1
e2kt

8k3
+

y2 ekt

2k
− ky4

48

kxy3

12
− x2

2k
log

x

y
− 3x2

4k
x = y ekt

Dub1′ y4

32k3x4

(
4 log

y

x
− 3

) kyx3

12
− y2

2k
log

y

x
− 3y2

4k
t = kxy

2
+

y2

2kx2

+

(
y3

8kx
+

kx2y2

16

)(
2 log

y

x
+ 3

)

Dub2 − ky4

24
+

y

k
ekt kxy3

6
+

x2

2k
log x − 3x2

4k
x = ekt



Symmetry reductions of a particular set of equations of associativity in 2D topological field theory 1195

Table 3. (Continued.)

Label F(y, t) f (x, y) Equation Link (t, x, y)

Dub2′ t2 log y

2k

kxy3

6
+

x2

2k
log x − 3x2

4k
x = t

ky

icosa

H3

ky3t2

6
+

k2y2t5

20
+

k4t11

3960

k2y4t3

6
+

7k3y3t6

30
x = ky2t +

k2yt4

2

+
4k4y2t9

45
+

ky5

60

icosa′ (36)
4k4x2T 9

45
+

7k3x3T 6

30
y = kx2T +

k2xT 4

2

+
k2x4T 3

6
+

kx5

60
t = kx3

3
+ k2x2T 3 +

k4T 9

36

3.6. Reduction with the generator av2 + bv3 or av1 + bv4

They lead to the same autonomous ODE,{
z = bx − a log y, f = y3/2ϕ(z), or z = ay − b log x, f = x3/2ϕ(z), ab �= 0,

[16a2ϕ′′ − 8aϕ′ + 3ϕ]ϕ′′′ − 24aϕ′′2 + 9ϕ′ϕ′′ + 8b−3 = 0.

(33)

We could not find a particular solution for this ODE.

3.7. Reduction with the generator −av1 + bv2 + cv5 + dv6 + ev7

The reduced ODE is autonomous and linear [4, p 44, example 1],


z = bx + ay, f = ϕ(z) + c3x
3 + c2x

2y + c1xy2 + c0y
3, ab �= 0,

c = −2ac2 + 2bc1, d = −3ac3 + bc2, e = −ac1 + 3bc0,

2(3a3c3 − a2bc2 − ab2c1 + 3b3c0)ϕ
′′′ + 36c0c3 − 4c1c2 − 1 = 0

(34)

and the solution f (x, y) (always defined up to an arbitrary polynomial of degree two in (x, y))
is identical to that defined by equation (21), i.e. the third degree polynomial depending on
three arbitrary independent constants,

f (x, y) = αx3 + 3βx2y + 3γ xy2 + δy3, 36(αδ − βγ ) − 1 = 0. (35)

4. Summary of solutions

The explicit solutions to (2) are summarized in table 3. This table does not include the
reductions for which no solution could be found. The too long expression for the ‘icosa′’
solution is


F(y, t) = k2x6T

4
+

29k3x5T 4

24
+

29k4x4T 7

30
+

k5x3T 10

10
+

3k6x2T 13

80
+

k8T 19

3040
,

f (x, y) = 4k4x2T 9

45
+

7k3x3T 6

30
+

k2x4T 3

6
+

kx5

60
,

y = kx2T +
k2xT 4

2
, t = kx3

3
+ k2x2T 3 +

k4T 9

36
.

(36)
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5. Conclusion

Finding additional solutions to the obtained reductions could generate algebraic solutions of
the sixth Painlevé equation P6 [2], in which the four monodromy exponents of P6 could
depend on one arbitrary constant, as in some particular cases (tetrahedron and octahedron
solutions) found by Kitaev [7]. In particular, the two solutions labelled N1 and N1′ in table 3
obey the quasi-homogeneity condition (WDVV3) recalled in the introduction. This question
is currently under investigation.
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Kitaev A V 2003 St Petersburg Math. J. 14 453–65 (Preprint nlin.SI/0102020) (Engl. Transl.)
[8] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[9] Ovsiannikov L V 1962 Group Properties of Differential Equations (Novosibirsk: Siberian Section of the

Academy of Sciences of the USSR) (in Russian). Translated by G W Bluman (1967)
[10] Witten E 1990 On the structure of the topological phase of two-dimensional gravity Nucl. Phys. B 340 281–332


