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Abstract

This paper explores the application of pattern recognition and artificial intelligence techniques in the characterization of a multi-
phase realistic disordered composite and in the design of a multiple regression model to estimate effective thermal conductivity. An
image database of computer simulated microstructures was generated. Some descriptors based on boundary and area shapes of
Voronoi cells were extracted for each fiber distribution. Several approaches have been used to reduce the high original dimensio-
nality. Selected features can be introduced as inputs in a multiple regression model. This procedure provides an alternative to
the finite element method for the computation of effective thermal conductivity. Different regression models (classical and neural
approaches) have been considered and a randomised resampling procedure has been designed in order to choose the best estimation
model from a statistical point of view.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The properties of unidirectional aligned fiber rein-
forced composites depend on: (i) properties of each
phase (matrix and reinforcement conductivities), (ii) fi-
ber volume fraction, (iii) geometrical arrangements.
The spatial arrangement of fibers or microstructure is
usually not uniform, and its nature is linked to the
processing techniques used for making the composites.
Understanding of the microstructure-property relation-
ships is a necessary step in an effective component design
and fabrication, and in the prediction of component
behaviour and life.

The approaches in the literature either idealize the
arrangements as being ordered arrays described by a
0266-3538/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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repeating unit cell [1,2] or simulate disordered arrange-
ments by statistical means and correlation functions [3,4].

Determination of the effective thermal properties of
composites is crucial for a successful design and for
the manufacture of materials. The effective thermal
conductivity of a composite in normal direction to
the fiber axes has been the specific objective to study.
This paper focuses in (iii), specifically considering reg-
ular distributions of fibers (rectangular, squared, and
hexagonal arrays), and exploring realistic composites
microstructures generated through computer simula-
tions adding ‘‘noise’’ to the positions of fibers centres
of each regular array distribution.

In this work, the first step was the computer genera-
tion of simulated artificial microstructures. The ANSYS
program (copyright by SAS IP, Inc.) was used to com-
pute the transversal effective thermal conductivity by
the finite element method (FEM).
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Application of Voronoi tessellation of a planar two-
phase composite has been explored in order to quantify
a composite microstructure. Several techniques based on
automated image pattern recognition have recently been
introduced for characterizing composites microstruc-
tures. Among them, it is necessary to underline the
important contributions made by Brockenbrough et al.
[5], Everett and Chu [6], Pyrz [7], and Ghosh et al.
[8,9], where Dirichlet tessellation has been used as a tool
in the characterization. This characterization it is based
on a set of computed descriptors of the corresponding
Voronoi cells. An alternative approach was proposed
by Pitchumani [10] based on fractal geometry.

Firstly, in this paper the computed descriptors are
used in order to distinguish or classify among different
distributions. Secondly, they are used as inputs to a
regression model which computes an estimation of the
transverse effective thermal conductivity of a composite.
In this way, it will be shown how it is possible to use a
multiple regression approach based on artificial neural
networks (ANNs) as an alternative method to FEM.

Two methods of dimensionality reduction are dis-
cussed: (1) Fisher�s linear discriminant, which aims to
achieve an optimal linear dimensionality reduction max-
imizing a criteria which is discussed in depth in Fuku-
naga [11] and, (2) principal components analysis
(PCA), which extracts the most relevant features, leav-
ing the redundant information behind, but trying to pre-
serve as much of the relevant information as possible.
PCA is also called Karhunen–Loéve transformation
and is discussed at length in Jollife [12].

As well as this, it is necessary the multiple compari-
son of the different regression models proposed [13–
15]. In order to make inferences about population
means, a randomised data collecting procedure has been
designed. Analysis of variance (ANOVA) test [16] allows
to reject the null hypothesis that the means of the groups
are all equal, but it does not pinpoint where the signifi-
cant differences lie. Bonferroni method [17] has been
used in order to compare the models while controlling
the probability of making at least one Type I error (or
null hypothesis false when it is true).

The different preprocessing methods have been com-
bined with several topologies of backpropagation feed-
forward neural networks [18] and together with
classical multiple linear regression (MLR). Further-
more, in order to obtain the best possible results, a clas-
sification process has been applied previously to
discriminate between realistic hexagonal samples and
realistic rectangular/squared samples. Then, a separate
regression model has been designed for each class, trying
to improve the estimation done with only one regression
model for the whole set of samples. Thermal conductiv-
ities obtained with FEM are referred to as the exact val-
ues, and serve as a benchmark for comparison with
results of the proposed regression methods.
In the following section, the database creation proce-
dure which will be used in this work, will be formulated.
Section 3 discusses the methods used in order to charac-
terize each composite sample. The primary objective of
Section 4 is to present the feature selection algorithms
used to achieve dimensionality reduction. Formulation
of the estimation problem as a regression system is
introduced in Section 5. The well-known regression
model is briefly outlined in Section 5.1, and the artificial
neural network approach is presented in Section 5.2.
Section 6 discusses the experimental procedure devel-
oped to assure the best generalization performance of
the models. These models will be analysed and com-
pared by the way of statistical methods in Section 7. Fi-
nally, the conclusions are exposed in Section 8.
2. Database calculation of transverse effective thermal

conductivity

The fundamental theory of transverse effective con-
ductivity was given by Maxwell [19], in the frame of elec-
trical properties. This classical model can be considered
as a first-order approximation because it is assumed that
the thermal interaction between fibers is negligible. This
implies that the model is valid only for dilute volume
fractions. In later publications, the prediction of the
classical model was obtained from different points of
view. In this context, the models of Hashin [20], based
on the self consistent scheme (SCS), and Behrens [1],
based on the method of long waves, are well known.
The complexity of the models increases when high fiber
volume fractions are considered. In these cases, interac-
tions terms must be introduced [21,22].

Another possibility to determine the effective proper-
ties is based on the unit-cell approach. This approach as-
sumes a regular arrangement of fibers, but it allows
considerations of symmetry conditions and hence the
analysis remains limited to unit-cell. In this scope, sev-
eral formulas can be obtained from series-parallel or
parallel-series configurations of thermal resistances.
Considering that the flow of heat in the unit cell is per-
turbed by different properties, these unidimensional
approximations are only valid in cases of weak pertur-
bation [23]. Therefore, the solution of the boundary va-
lue problem using numerical methods is a more rigorous
procedure. Different approximations can be found in the
literature such as the ones based on the finite difference
method [24], the finite element method [23,25], the
boundary collocations points [2,26,27] and the bound-
ary element method [28].

The output Key can be found out for each composite
microstructure from Fourier�s law solution through
MEF [29] setting a thermal gradient unity (see Fig. 1).
Fourier�s law establishes (where A is the area, and u is
the temperature),



Fig. 1. Key measurement based on Fourier�s law, setting a thermal
gradient unity in a composite microstructure (u means temperature).
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In order to generate the database of microstructures,
the conductivity ratio fiber/matrix was fixed to 10 and
the volume fraction fiber/matrix was considered equal
to 25%. Each composite microstructure was limited to
a 256 · 256 pixel resolution. Three different patterns of
regular periodic arrangements were considered: squared
array (five samples), rectangular array (20 samples) and
hexagonal array (25 samples). For each sample, a set of
10 additional disordered microstructures has been ob-
Table 1
Number of samples in each class of arrangements

Samples Type of fiber distribution

1–5 Regular square arrangement
6–25 Regular rectangular arrangement
26–50 Regular hexagonal arrangement
51–100 Disordered square arrangement
101–300 Disordered rectangular arrangement
301–550 Disordered hexagonal arrangement

Fig. 2. Key values for the database samples.
tained by addition of random noise to the coordinates
(x,y) of each fiber centre, resulting a set of 500 artificial
(but realistic) disordered microstructures (see Table 1).
The value of the introduced random noise was 10% at
maximum of the inter-fiber distance in the original reg-
ular array. This randomness was applied to the 100% of
the fibers in the distribution. Microstructures with over-
lapping in fiber locations were discarded. This database
of artificial microstructures can be considered coherent
[30] with the universe of the realistic microstructures
which can be found in practice (see Fig. 2).
3. Quantitative characterization

The Dirichlet tessellation allows finding out the ‘‘nat-
ural regions’’ of immediate influence of each fiber as
Fig. 3. Voronoi cells for two different microstructures: (a) regular,
(b) disordered. The database contains 550 microstructures (50 regu-
lars + 500 disordered samples).
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shown by Ghosh et al. [8,9]. This facilitates characteriza-
tion of an arrangement of fibers, computing some
descriptors of the resulting Voronoi cells.

In order to perform Dirichlet tesellation, an origi-
nal algorithm has been built, based on a rhomboidal
region-growing of the centres [31]. Fig. 3 shows how
different are the Voronoi cells corresponding to
regular and disordered microstructure samples,
respectively.

Dirichlet tessellation techniques have been used in
composite materials literature [6–9]. In these papers,
Fig. 4. Values of the features for the database of microstru
the main contributions relate to the characterization of
fiber clustering. The present paper focuses on how to
distinguish and characterize different kinds of arrange-
ments of real non-ordered microstructures.

Pattern Recognition techniques categorize or analyse
objects based on some measurements or features made
on those objects, which in this application are the Voro-
noi cells of each microstructure. Each realistic disor-
dered sample includes several fibers in a representative
window or macrocell. A critical step in the estimation
of the composite properties is the description of the dis-
ctures (550 samples). (a) BGFs, (b) FDs and (c) IMs.



Fig. 4. (continued)
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tribution of the disordered reinforcement [32]. This
description must be invariant to scale, since two micro-
structures with different number and diameters of fibers
can share the same volume fraction fiber/matrix. Be-
sides, it must be invariant to location, but it can not
be invariant to rotation because the final goal will be
the prediction of a directional property of the composite
material.

In this paper, the following quantitative descriptors
based on geometric properties of Voronoi cells were
computed [32,33]:

(1) Basic geometric features (BGFs). The ratios given
by height/width, ix/iy, and perimeter/width have
been considered (Fig. 4(a)).

(2) Fourier�s descriptors (FDs) are widely used to iden-
tify objects with the aid of the boundary points. The
best and most complete introduction can be found
in the paper by Wallace [34]. Discrete Fourier
Transform of a function f(x), x = 0, 1, 2, . . .,
N � 1 is defined as (where u = 0, 1, 2, . . ., N � 1),

F ðuÞ ¼ 1

N

XN�1

x¼0

f ðxÞe�j2pux=N : ð2Þ

Firstly, the boundary must be stored in a counter
clockwise direction. Each boundary point will be
addressed as a complex number and the sequence
of N numbers as a complex function f(z). The
resulting transform F(u) gives a set of N Fourier
descriptors. These values need to be normalized
for location and size. Normalization for size is
achieved by dividing all Fourier descriptors by the
descriptor number 1 (u = 1). A further normaliza-
tion is not necessary and only eight Fourier coeffi-
cients were used, where the first and second
coefficients were rejected after the normalization
(Fig. 4(b)).

(3) Invariant moments (IMs) are based on moments of
a multidimensional function f(x,y), which in this
application represents a microstructure image
[35,36]. Central discrete moments of order pq (lpq)
and normalized central moments gpq were used to
get scale invariance selecting the set of values for
pq = {11, 20, 02, 12, 21, 30, 03} (Fig. 4(c)). The cen-
tral moments (lpq) can be easily calculated in their
discrete form with the following equation:

lpq ¼
X
x

X
y

ðx� �xÞpðy � �yÞqf ðx; yÞ: ð3Þ

The central moments can be normalised for size as
follows:

gpq ¼
lpq

lc
00

; where c ¼ p þ q
2

þ 1;

for ðp þ qÞ ¼ 2; 3; . . . ð4Þ

Figs. 4(a)–(c) show the BGFs, FDs, and IMs features,
respectively, computed onto the database of composite
microstructures.
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4. Feature selection

In order to avoid the tendency to sparseness, it is nec-
essary to consider a feature selection procedure. In this
paper, the following techniques have been used:

4.1. Principal component analysis

The objective of principal component analysis (PCA)
is to reduce the dimension, preserving as much of the
relevant information as possible, finding out those direc-
tions which maximise the variance. The transformation
maps vectors xn in a d-dimensional space onto vectors
Fig. 5. Results of the principal component analysis. Realistic squared
arrangements are represented by squares, rectangulars patterns by
circles and hexagonals by diamonds. Axes correspond to the basis of a
new PCA 2D transformed space.

Fig. 6. Results of Fisher method. Realistic squared arrangements are
represented by squares, rectangulars patterns by circles and hexagonals
by diamonds. Axes correspond to the basis of a new Fisher 2D
transformed space.
zn in another M-dimensional space, where M < d. The
set of n patterns can be represented as a linear combina-
tion of the original d orthonormal vectors ui [12],

xn ¼
Xd
i¼1

zni � ui: ð5Þ

M basis vectors ui can be retained, and therefore only M

coefficients zi must be used and the remaining coeffi-
cients replaced by constants bi,

~xn ¼
XM
i¼1

zni � ui þ
Xd

i¼Mþ1

bi � ui: ð6Þ

The vectors ui and the constants bi must be selected to
achieve the minimization of EM,

EM ¼ 1

2

XN
n¼1

kxn � ~xnk2: ð7Þ

The minimum error satisfies Rui = kiui and can be ob-
tained by choosing the d–M smallest eigenvalues of
covariance matrix (R) of the set of vectors [16]. Fig. 5
shows PCA reduction onto the database of samples,
where only two final features are used in the PCA trans-
formed space (u1 and u2). These new components are lin-
ear combination of the original features (xi, where
i = 1, 2, 3, . . ., 16 computed features).
4.2. Fisher analysis

Fisher discriminant method achieves an optimal lin-
ear dimensionality reduction for classification problems
[36,37,38]. Fisher criterion is derived by requiring maxi-
mum class separation in the output space, and seeks a
linear combination of the variables which maximizes
the ratio of its between-group variance to its within-
group variance [18]. In this way, the method calculates
the between-group covariance matrix (B) and the with-
in-group covariance matrix (W). Then, the Fisher varia-
bles can be found as in PCA algorithm as the highest
eigenvalues of the matrix ratio B*W

�1. Fig. 6 shows
how the microstructures classes are separated with the
Fisher 2D transformation, where f1 and f2 are the new
basis (linear combination of the original basis xi), and
the database is projected using the Fisher transforma-
tion matrix.
5. Multiple regression models

The final objective of this study is the estimation of
effective thermal conductivity of an unidirectional com-
posite. The overall system can be viewed as a mapping
from a set of input features to an output variable. In
general, it is not possible to determine a suitable form
for the mapping and it is necessary to work with a set
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of examples, which are called the ‘‘training set’’. There-
fore, effective transverse thermal conductivity estimation
can be solved as a regression problem over the database
of samples using two different regression approaches:
the first approach is the classical MLR. The second ap-
proach is based on ANNs.

5.1. Multiple linear regression

The purpose of MLR is to establish a quantitative
relationship between a group of independent variables,
X (features), and a response, y (transverse effective ther-
mal conductivities Key). The linear model can be ex-
pressed using matrix notation, as y = Xb + e.
However, computing b by inverting X is really danger-
ous. In most of real situations, X will often be either to-
tally singular or ill-conditioned. It is very interesting to
emphasize that PCA results are independent and uncor-
related. Therefore, in this study MLR is solved with a
QR method when PCA method is used before, otherwise
MLR is solved with singular value decomposition
(SVD) algorithm [39,40]. MLR approach generally pro-
duces suitable estimations for the design samples (train-
ing set) and inadequate estimations for the samples in
the test set (see Table 3).
Table 2
Regression models

Model Preprocessing Regression

1–9 PCA-2 RML, 3 layers BPNN (nhiddens = 1:4),
4 layers BPNN (nhid1 = 1:2) (nhid2 = 1:2)

10–18 PCA-4 RML, 3 layers BPNN (nhiddens = 1:4),
4 layers BPNN (nhid1 = 1:2) (nhid2 = 1:2)

19–27 PCA-8 RML, 3 layers BPNN (nhiddens = 1:4),
4 layers BPNN (nhid1 = 1:2) (nhid2 = 1:2)

28–36 PCA-12 RML, 3 layers BPNN (nhiddens = 1:4),
4 layers BPNN (nhid1 = 1:2) (nhid2 = 1:2)

37–45 No
preprocessing

RML, 3 layers BPNN (nhiddens = 1:4),
4 layers BPNN (nhid1 = 1:2) (nhid2 = 1:2)

Table 3
MLR versus BPNN best models (RMSE in 30-times resampling
procedure)

MLR BPNN

Fisher Class 1 8.2 E � 03 3.1 E � 06
Fisher Class 2 3.3 E � 04 6.6 E � 06
5.2. Backpropagation neural networks

Neural networks have been applied to composites
materials area [41] and many ANN-based models were
developed for very different composites analyses pur-
poses [42–47].

In some cases, MLR may not be the best model avail-
able. In such cases, a nonlinear regression method such
as neural networks (ANN) may provide a better analy-
sis. The most widely used ANN model is known as
multilayer perceptron (also multilayer feedforward neural

network). This neural approach models the relationship
between X and Y in the form (through a weighted struc-
ture of layers, usually input-hidden(s)-output),

Y ¼ g
XM
j¼0

wkj � f
XD
i¼0

wij � X i

 ! !
: ð8Þ

Neural networks, where g(x) = x and f(x) = tanh(x),
have been proved to be universal approximators. Such
networks can, therefore, approximate arbitrarily well
any general function, which makes them highly interest-
ing for regression purposes.

The backpropagation learning rule [48] is based on an
error function that has a particular surface over the
weight space and therefore, an iterative process such
as gradient descent method [18] can be used for its min-
imisation. There are many other algorithms [18,39,40]
for training feedforward neural networks: conjugate
gradients, quasi-Newton, Levenberg–Marquardt and
others. Standard backpropagation learning rule has
slow convergence. In practice, the Levenberg–Mar-
quardt algorithm finds better optima and faster solu-
tions for networks up to several hundred weights [49].
This study uses Levenberg–Marquardt optimization
method.

Capabilities of feedforward neural networks with one
hidden layer can be iluminated by Kolmogorov�s theo-
rem [50,51], and Vapnik and Chervonenkis dimension
[52], but there is no way to determine an optimal net-
work topology just from the numbers of inputs and out-
puts. A simple choice, would be to train many networks
with different number of hidden units and layers, then to
estimate the generalization error for each one, and final-
ly to select the network with the smallest one [13–15].
However, this process depends critically on the train-
ing/test set and the initial weights, so it is necessary to
compute the mean generalization error over a design
resampling experiment.
6. Experimental procedure

Several multiple regression models have been pro-
posed in this study by combinations of above explained
preprocessing methods, and also according to the type
of regression system and the topology of the ANN mod-
els (the number of layers and hidden units). A group of
previous experiments were developed in order to reduce
the number of neural networks topologies [53]. The
models can be found in Table 2.

Once the models were developed, it must be consid-
ered the problem of determining the best model on a
previous set. Statistical methods analyze how the models
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behave on average. As well as, it is necessary to consider
the performance of a model over all the training sets that
might be drawn from the underlying distribution. Anal-
ysis of variance (ANOVA) [54] has been used to test the
null hypothesis taking into account certain assumptions,
i.e., all populations are approximately normal and the
samples from each population should be random and
independent. Besides, the population variances should
be equal. However, this assumption is not meaningful
when all the models have the same number of error
measures. In this paper, the first assumption has been
verified using the Kolmogorov–Smirnov test.

Only a limited sample of data is available and a com-
plete strategy of experiments must be described to guar-
antee the independence of the results. In accordance
with the works of Galindo, Pizarro et al. [13–15], a rand-
omised procedure has been designed to control the dif-
ferent sources of variation in order to compare the
different models. The averaged performance of the mod-
els over resampled training sets has been considered. In
order to carry out this procedure, the database must be
divided into a training set and a test set. The complete
strategy is repeated 30 times using the well-known two-
fold cross-validation method [18,39] for the estimation
of the root mean squared error (RMSE) for the M

models.
Bonferroni multiple comparison procedure [55] has

been used to decrease the probability of making at least
one Type I error. This approach is a follow-up method
to ANOVA based on the following: if n comparisons
are to be made, each one with confidence coefficient
(1 � a/n), then the maximum value of overall probabil-
ity of making one or more Type I errors is a. If the dif-
ference between the sample means exceeds a critical
threshold, there is sufficient evidence to conclude that
the population means differ. Bonferroni method adjusts
the observed significance level based on the number of
pair comparisons.
Table 4
ANOVA test results

Intergroup
variance

Residual
variance

F

Class 1 model 4.10 E � 010 9.03 E � 012 45.45
Class 2 model 2.24 E � 08 3.98 E � 09 5.73
C12 model – error C1 6.02 E � 09 4.65 E � 10 12.94
C12 model – error C2 8.45 E � 09 4.16 E � 10 20.29

C12 model means only one model for the two classes 1 and 2, where 1
is the class of squared-rectangular disordered arrangements and 2 is
the class of hexagonal realistic distributions of fibers.
7. Results and discussion

Figs. 5 and 6 show results from PCA and Fisher pre-
processing methods. Different final features were tested
in the experiments (see Table 2). With this dimensional
reduction the data can be shown in a planar graph
which is another advantage of these methods. Fisher
method produces a perfect discrimination in 2D trans-
Table 5
Selected models obtained with Bonferroni method in the resampling proced

dt Model number

Class 1 model 0.311 15
Class 2 model 0.646 8
C12 model – error C1 0.222 12
C12 model – error C2 0.211 12
formation, therefore two classes of real-disordered sam-
ples should be considered (class of squared and
rectangular disordered arrangements and class of hexag-
onal disordered patterns).

Two regression models (one for each class) have been
built in order to improve the results obtained using only
one regression model. Regression results obtained using
PCA transformation versus the performance obtained
by using all of the original features are compared in
the experiments, computing the RMSE (for 30
simulations).

Comparing the classical MLR and ANN analyses, it
becomes clear that the predictions from neural net-
works models follow the experimental data much more
closely than those obtained from multiple regression
analysis (Table 3). Neural networks models are highly
robust with respect to underlying data distributions
(non-parametric). Thus, neural networks models are
well-suited to modelling estimation of transverse
conductivities.

The RMSE means (for the 45 models considered in
Table 2) have been compared by using the ANOVA Test
(Table 4). In any case, ANOVA F-test is significant and
therefore the null hypothesis is rejected. This fact is due
to the intergroup variability of the different models (see
second column of Table 4). Therefore, Bonferroni meth-
od was used in order to pinpoint which the best model is
(Table 5 summarizes the best models obtained). When
these strategies are adequately applied to the obtained
error rates in a well designed experiment, and the needed
assumptions are verified, it is possible to determine the
optimal complexity, or even, to determine which model
fits better the samples. Results are shown in Table 5,
where dt is the threshold difference between groups,
and statistical significance a is fixed at 0.1. Results are
shown for the models explained above: one separate
ure

Model type Preprocessing RMSE test mean

BP1x1 PCA-4 3.1E � 06
BP2x1 PCA-2 6.6E � 06
BP2 PCA-4 9.3E � 06
BP2 PCA-4 7.5E � 06
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model for class 1 (squared-rectangular arrangements),
another model for class 2 (only hexagonal arrange-
ments), and finally, one model for the whole database.
In this three models scenario using Bonferroni method,
the groups are overlapped and therefore, the model with
the smallest error should be selected. In Table 5, data
are collected from a training/test set size of 100. For
class 1, the best model is a backpropagation neural net-
work with two hidden layers (each one with one hidden
unit) and PCA preprocessing method with four final fea-
Fig. 7. FEM versus neural regression models. Results for the best
models in one of the 30 simulations in the resampling procedure. Class
Model 15 (Topology BP1x1, Preprocessing PCA-4). (a) Test RMSE-
06, R correlation coefficient (test set) = 0.998 Class 2:Model 8
(Topology BP2x1, Preprocessing PCA-2). (b) Test RMSE-5.55E-06,
R correlation coefficient (test set) = 0.915.
tures. In a similar way, for hexagonal samples (class 2)
the best model is obtained with PCA-2 preprocessing
and a four layer backpropagation neural network
2 · 1. In both classes, the magnitude order of RMSE
is E � 06.

Furthermore, different sizes of the sets (training/test)
in the resampling procedure have been tried showing
that the error means do not sensibly change. It is worth
emphasizing that RMSE is better when separate neural
regression models are built for each class, and also that
in general, the results obtained with this approach are
more accurate since standard variations are smaller.
The procedure of resampling simulation has been de-
signed to avoid variation proceeding from different
sources, thus independence and randomness are guaran-
teed. Therefore, the generalization obtained is suffi-
ciently adequate. These results show how statistical
methods can be successfully employed for the topology
determination of neural networks architectures applied
to the problem of effective thermal conductivity
estimation.

Fig. 7 shows R correlation coefficient (for each class)
for the best neural models (over test sets). It can be no-
ticed that the R correlation coefficient for the rectangu-
lar arrangements (Fig. 7(a)) is greater than the one
obtained for hexagonal class (Fig. 7(b)). As it is ex-
pected, the effective thermal conductivity corresponding
to the hexagonal class is less sensitive to the added noise
(with respect to the regular array distribution) than the
showed by the rectangular class. Finally, the neural esti-
mations (over the test set), once trained the network are
showed in Fig. 8. The effective thermal conductivities
obtained by ANN models provide estimations very close
to those obtained by a rigorous FEM analysis. On the
other hand, considering the computing times required
by the proposed analysis (tmean = 13.17 s, SD = 1.73 s)
and the corresponding to FEM analysis (tmean = 31.54 s,
Fig. 8. Key neural estimation. FEM conductivities are represented by
circles and ANN estimations are represented by X.
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SD = 6.44 s), it is evident that this procedure based on
ANN is more computationally efficient.
8. Conclusions

The following concluding remarks can be made from
the results discussed above:

• PCA method prevents problems arising from ‘‘the
curse of dimensionality’’ and although there is a
loss of information, the overall performance of
the selected models has increased.

• Fisher method allows a perfect classification of the
database, suggesting that square-rectangular and
hexagonal disordered arrangements should be con-
sidered in different classes. Therefore, each class
must be modelled with a specific regression system.

• ANN models, once trained, are fast at predicting
the desired values, so that the computing time
required by this procedure is noticeable smaller
than the required to perform the FEM calcula-
tions. The main advantage is that the accuracy of
generalization of the neural models is higher than
standard MLR models over test sets.

• In the experiments carried out for the selected
models, the values of R correlation coefficient
(over test sets) yields close estimations to conduc-
tivities calculated with FEM. These results suggest
that the selected neural models provide a properly
and alternative procedure to compute effective
thermal conductivities on real unidirectional com-
posite materials.
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