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Abstract

We prove that every partially ordered simple group of rank one which is not Riesz embeds into
a simple Riesz group of rank one if and only if it is not isomorphic to the additive group of the
rationals. Using this result, we construct examples of simple Riesz groups of rank, @oatain-
ing unbounded intervaléDy),>1 and D, that satisfy: (a) for each > 1, 1D, # G* for every
(t < qn), butg, D, = GT (Where(q,) is a sequence of relatively prime integers); (b) for every 1,
nD # GT. We sketch some potential applications of these results in the cont&xtlugory.
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Introduction

One of the subjects of interest in the theory of partially ordered abelian groups is the
analysis of intervals, that is, non-empty, upward directed and order-hereditary subsets.
These have been used in instances of quitedfit flavour. For example, in [9,10], they
proved to be essential in studying extensions of dimension groups. In the papers [11] (see
also [6]), [2,13,17], their usage was directed towards an understanding of the non-stable
K -theory of multipliers ofC*-algebras with real rank zero and von Neumann regular rings,
basically by describing the monoid of equivalence classes of projections. Other applica-
tions can be found in [29], where the Riesz refinement property in monoids of intervals is
studied in detail; in [28], where a complete description of the universal theory of Tarski's
equidecomposability types semigips is given, and also in [30], as an instrument to obtain
some extensions of Edwards’ Separation Theorem (see, e.g. [8, Theorem 11.13]).

Since, as just mentioned, these monoids appear useful in the contéxthafory of op-
erator algebras, there is a strong need for constructing explicit examples of such monoids
that help in providing evidence towards the study of certain conditions in multiplier alge-
bras. In this paper, we present such examples in the form of countable Riesz groups of rank
one whose monoids of intervals enjoy certain relevant properties, thus adding new exam-
ples to the knowledge of Riesz groups. Our motivation for the search of these examples
can also be traced back to the following question, asked by Goodearl in [8, Open Prob-
lem 30]: Can every patrtially ordered simple abelian group be embedded in a simple Riesz
group?This was proved to be the case by Wehrung [31] via a cofinal embedding. However,
the fact that part of this construction depends on model-theoretical arguments prompts the
need of finding more concrete realisati@ighese type of embeddings. More concretely,
the embedding result just mentioned was used in [31, Example 3.14] to obtain an example
of a torsion-free simple Riesz grogpcontaining an intervab # G* suchthat ® = G ™.
Wehrung then asked whetharch an example can be realised as a torsion-free Riesz group
of rank one(i.e., with positive cone isomorphic to an additive submonoi@)pfsee [31,
Problem 3.15]. This question was answered by the second author in [15] by constructing
a large family of simple groups that can be embedded into simple Riesz groups of rank
one [15, Theorem 2.11].

We first extend this result, by showing tlzat ordered simple group of rank o€, G1)

— which is not Riesz — can be embedded into a simple Riesz group of rank one if and only
if G 2 Q. Thisis done in Section 1, and used subsequently to provide wide generalisations
of Wehrung’s example. The main tool in [31, Example 3.14] is the construction of a certain
submonoid ofQ* using the submonoid &+ generated by 2 and 7. We extend this con-
struction in Section 2 to combinations of submonoidZbfgenerated by coprime integers

p andg, but with considerable more extra cameaded. This provides us with an example

of a simple ordered grou@G, G*) that contains a proper interval, a multiple of which
equals the positive con&*. However, this is not a Riesz group. An inductive procedure,
based on taking direct limits of this type of construction, leads in Section 3 to a first ex-
ample of a Riesz group for which a whole sequence of (proper and unbounded) intervals
(D,) can be constructed; every such interval has the propertythatt G+ for every

t <q,,andg, D, = G*. Here,(g,) is an increasing sequence of relatively prime integers.
The inductive step is based on a suitable amalgamation of groups (of the type considered
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in Section 2, which is why we can refer to them as basic building blocks) in a commutative
diagram. A further modification of this example, after using the refinement property on the
monoid of countably generated intervals, allows us to achieve that the sequence of intervals
is moreover decreasing.

In Section 4 we state some arithmetic results on simple components (see below), which
are used in Section 5 to construct an example of a simple Riesz grozgntaining an
unboundedintervab c G* suchthanD # G for everyn > 1. The constructions carried
out in Sections 3 and 5 are combined in Section 6 to obtain an example of a simple Riesz
group that has the properties exhibited in Sections 3 and 5.

An object which is central in this paper is that ofiaple componenas our examples
are built essentially via direct limit constructions of simple components of various kinds. In
short, a simple component is nothing else but the gibupgether with a partial ordering
that makes it simple. This, for example, includ&s (k, [)), where(k, I) is the submonoid
of Z generated by two relatively prime integers. Simple components have been studied
in different contexts, notably with relation tki-theoretical aspects af*-algebras (see,

e.g. [7,23,25], where it is shown that there exist simptealgebras with stable rank one
whoseKg groups are simple components). Consider also the following question:

Question 1 [24]. Let N € N. For every 1< i < N takeg; andm; in N to be relatively
prime, whergy; is prime. Take moreover a positive integethat is coprime with each;
andm;. Consider the following subsemigroup of the positive integers:

1 N
S = z(ﬂ(q,-,m») NZ.

i=1

Can every positive cone of a simple component be express€dassuitable choices of
N, (gi), (m;) andL?

The construction technique developed by Toms in [24] produces, for everySsash
above, a simpl€*-algebra with whos& group is isomorphic t& with positive cones.
The real rank of these examples is not zero, because otherwise they would be weakly
divisible in the sense of [18, Section 5] (see also [21,22]) and their stable rank is believed
to be one. Hence, these results suggest the problem of constructing sifrplgebras
A with real rank zero and stable rank one such ##4(A), Ko(A)™) is isomorphic to
one of the groups we construct in this paper (as well as those constructed in [14,15]), by
lifting connecting maps in the direct limit expression of these groups (as limits of simple
components and order-embeddings);toalgebra maps betweeri*-algebras of the type
constructed in [24]. Other relevant aspects of this discussion are outlined in Section 7.
Throughout the paper we will refer to [8] fotations and definitions on partially
ordered abelian groups. We recall here some basic notions that we shall use frequently.
A coneof an abelian grougs is an additive submonoi@ of G containing zero. We say
that the coneP is strictif P N (—P) = {0}. A partially ordered abelian groufs an abelian
groupG endowed with a strict coné ™, called thepositive conef G. The usual notation
for a partially ordered group i6G, G1), and the elements af ™ are referred to as the
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positive elementsf G. The order induced b ™ is denoted in this paper bys. We say
that (G, G*) is directedprovided that any element can be written as a difference of two
positive elements. An elementin G is said to be awrder-unitprovided that G4 u € G
and for each element in G, there exists: in N such that-nu <g x <¢g nu (note that
G will then be directed). A partially ordered abelian group is said tsibelewhen it is
non-zero and every non-zero positive element is an order-unit. A partially ordered abelian
group(G, G™) satisfies thd&Riesz decomposition propeifyr is aRiesz groupfor short) if
the following condition is met irtG*: whenever < y1 + y2 in GT, there exist; andx»
in Gt such thatc = x1 + x2 andx; <g y; forall j. Itis well known that this is equivalent
to the Riesz refinement and@rpolation properties (see, e.g., [8, Proposition 2.1]).

If (G,G*) and (H, H*) are patrtially ordered abelian groupspasitive morphism
is a group homomorphisnf:G — H such thatf(G™) € H™. A positive morphism
f:G — H is anorder-embeddingf f is one-to-one and € G wheneverf(x) e H+
(in other words f(G1) = f(G) N H™).

1. Embedding results

In this section, we will establish some results about embedding simple groups into sim-
ple Riesz groups, that improve those appearing in [15]. The first one was shown by the
second author in a rather complicated way [unpublished]. The proof we present here was
pointed out by G. Bergman.

We start by recalling some basic facts related to generalised integers (see, e.g. [14]). Let
P be the set of the natural prime numbersgéneralised integet is a map

n:P—{0,1,2,...,00}.

Usually we write

n=[]p"?. (1.1)

peP

Whenn is finite (i.e. it never takes the valus and it is zero except at finitely many
primes), we identifyn with the integer appearing on the right-hand side of (1.1). Multipli-
cation extends naturally to generalised integers, namely, the preductof n andm is
defined agn - m)(p) = n(p) + m(p) for every p in P. Thus we say that dividesm, in
symbolsn | m, if there isn’ such thatm =n - n’. We say that andm are coprime if for
everyp in P we have G {n(p), m(p)}.

Given a generalised integer we associate to it an additive subgroup@tontaining
1 by settingZ,, = {a/b € Q | a € Z andb | n}. Conversely, one can associate a generalised
integer to any subgroup @ that contains 1, and these assignments are mutually inverse
(see [14, Lemma 2.3]).

Given a sequencd = (a,),>1, we definen(A) = ]_[n>1a,,, and we say that the se-
guenceA is the sequence associatednt). A sequenced = (a,) is associated to a
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generalised integarwhenn = n(A). We can always associate a sequence to a generalised
integer, as shown in [14, Lemma 3.10].

One notion that will become relevant in this paper is that sinaple componerjiL4].
This is, by definition, the grouf with a positive coneG* such thatG = (Z, G™) is
partially ordered and simple. It was proved in [23, Proposition 2.4(ii)] and [23, Proposition
2.5]that, if(Z, GT) is a simple component, the®™ is the submonoid ot generated by
a (unique and minimal) finite set of elements.. .., n; in Z* (so thatG™ = (n1, ..., ny),
and in fact gcthy, ..., nx) = 1). In the particular cas€* = (k, ) (and thusk and! are
coprime integers), one can determine the smallest non-negative ilefperwhich N +
peGtforallp>0,butN —1¢ Gt (see[23, Lemma 2.3]); namely, =kl — k —[.

Proposition 1.1. Every simple ordered group of rank o€, G™) is isomorphic(as an
ordered groupto a direct limit of a directed systeng,, f, .+1), such thaiG, = (Z, G;)
is a simple component for everyin N and f;, ,+1: G, — G,+1 is an order-embedding.

Proof. SinceG is an abelian group of rank one, we can assume without loss of generality
that 1€ G. Thus, by [14, Lemma 2.4], there exists a (unique) generalised integer
]_[k>1ak such thatG = Z,. For eachn > 1, letb, = [];_; ax, and defineH, = (1/b,)Z.
Notice thatH,, C H,1 for eachn > 1, and also tha; = Un>1 H,. Now, foreveryn > 1,
let g, n+1: H, — H,+1 denote the natural inclusion map, and defifjg = G* N H,,.

We claim that(H,,, H,}) is a simple group for each> 1. To check this, pick a non-zero
elementx in H,", and lety € H, be any element. Sinocg, G*) is a simple group, there
existsm in N such that-mx <¢ y <¢g mx. Thus,mx —y,y+mx € G" N H, = H,", so
that the previous inequality also holds#f,, as desired.

We claim now that the mag, ,,+1: H, — H,+1 is an order-embedding for every> 1.
By definition, it is a positive one-to-one map. Now, k€ H, be an element such that
gnnii(x) € H,fjrl = G' N Hy41. Sincex = g, ,11(x) € Gt andx € H,, we conclude
thatx € H,".

Finally, for eachn > 1, let f,:Z — H,, given by multiplication by(1/b,). Define
G =by,H CZandG, = (Z,G;). Thenf,:G, — H, is an order-isomorphism and
hence the grouf,, is a simple component. Moreover, for eack 1, the map

-1 .
Son+1= fn+1 0 8gnn+10 fn:Guy— Gni1

is an order-embedding. Hence, for eack 1 we get a commutative diagram

fn,n+1
G, —— Gn+l

Jn l l fn+1

8n,n+1
Hy —" Hya

whence the mapyg, induce an order-isomorphisrfi from lim((Z, G,J{), Sfa.nt1) onto
(G,G™), as wanted. O
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As mentioned in the introduction, one of the main objectives in [15] was to study the
embedding of a certain class of simple partially ordered groups of rank one into simple
Riesz groups of rank one. Such groups are parametrised by a(#tipk ), whereH is
a sequence of simple groups (basic&lyvith different positive cones) and and B se-
guences of positive integers, all subject to certain axioms. The proof of the key embedding
result, established in [15, Theorem 2.11], is based on the fact that these groups are isomor-
phic to a direct limit of an inductive systet@Z, G;"), f,..+1) such that, for every in N,
the mapf, n+1:(Z, G;}) — (Z, G,J{H) is an order-embedding given by multiplication by
a non-negative integer, (whereA = (a,),>1). Thus, in view of Proposition 1.1, we can
strengthen [15, Theorem 2.11] as follows:

Theorem 1.2. Let (G, G1) be a simple ordered group of rank one, andidbe the gen-
eralised integer associated . Given any infinite generalised integercoprime withn,
there exist a simple Riesz group of rank c(rﬁa(m), 5+(m)) and a positive morphism
.G —> é(m) such that

(i) the groupG (m) is isomorphic t&Z.. (as abelian groups
(iiy the mapr is an order-embedding.

The next result was also pointed out by G. Bergman.

Lemma 1.3. Let G1 = (Q, Gi“) and Gy = (Q, G;) be partially ordered abelian groups,
and let f : G1 — G2 be a positive map. Thefi is an order-embedding if and only if it is
an isomorphism of ordered groups.

Proof. Clearly, sincef is a group morphism fron) to Q, it is identically zero or an
isomorphism of abelian groups.

Suppose thaf is an order-embedding, so that in particular it is one-to-one. Hence the
previous observation implies thgtis an isomorphism. But then we also have

f(G) =GN f(G)=65nNQ=0G7,
so that it is an order-isomorphism. The converse is obvious.

A first consequence of Theorem 1.2 and Lemma 1.3 is the following characterisation of
embeddability of simple ordedeggroups into simple Riesz groups. This will be an important
result in the sequel.

Theorem 1.4. An ordered simple group of rank or{&, G*) which is not a Riesz group
can be embedded into a simple Riesz group of rank one if and aGIif.

Proof. First, assume thaiG, G1) is a simple ordered group of rank one which is not a
Riesz group, and suppose that= Q. Assume that H, H*) is a simple Riesz group of
rank one and thaf : G — H is an order-embedding. The&®/, H) is order-isomorphic
to a subgroup ofQ, Q) and the composition of the isomorphi€re G with £ and the
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embedding off into Q provides a non-zero morphism frofto Q. Evidently, this must
be an isomorphism, which implies thtis surjective. But then

f(GH=fGNH "=HNHY=HT,

thatis, f is an order-isomorphism. This implies thatis a Riesz group, a contradiction.
Conversely, suppose th& 2 Q. Since the generaliseiiteger associated t is

n(Q) = ]—[piep pi°, whereP is the set of all non-negative prime numbers, we conclude

that for the generalised integer associatedstosay n(G) = ]'[pl_ep p?i, there exists at

least one prime numbep; such thatn; < co. Now, multiplication by p;* defines an

order-isomorphism fromiG, GT) onto(p;* G, p;* GT). Notice that(p;* G) =n(G)/p;*,

so thatn(p;*G) is coprime with p;. Hence, applying Theorem 1.2, we get an order-

embedding from(p,* G, p;* G*) into a simple Riesz group of rank or&, H*). Thus,

the composition of both maps gives us an order-embedding fenG ") into (H, H™),

as desired. O

2. Intervalsin basic building blocks

This section, technical in nature, aims at the study of certain simple groups of rank one.
These will be used as our basic building blocks in the subsequent sections, by connecting
them through order-embeddings and forming various inductive limits. We shall focus on
the construction of proper intervals in thesegps such that a certain multiple (that can be
controlled) equals the positive cone.

Let G be a partially ordered abelian group with positive ca@rie. A non-empty sub-
setX of G is called aninterval in G* if X is upward directed and order-hereditary.
We denote byA(G™) the set of intervals irG*. Note thatA(G™*) becomes an abelian
monoid with operation defined by + ¥ ={z € G | z < x + y for somex in X, y in Y}.
Aninterval X in G is said to begeneratingf every element oG is a sum of elements
from X. We say thatX in A(G™) is countably generatedrovided thatX has a countable
cofinal subset (i.e. there is a sequengg of elements inX such that for any in X there
existsn in N with x <¢ x,). Notice that, since any interval is upward directedxjf) is a
countable cofinal subset generating an inteiathen we can choose a countable cofinal
subset(y,) generatingX with the property thay, <¢ y,+1 for all n > 1. We shall in this
case use the notatio%i = (y,). We denote byA, (G™) the set of all countably generated
intervals inG™.

Definition 2.1. Let p andg be positive integers such thaklg < p —g and gcdg, p) = 1.
Denote byA = (g, p — g) the submonoid oZ* generated by andp —g. Lets € A\ {0}
and taker in ZT such that 1< r < s — r and gcdr, s) = 1. Denote byB = (r, s — r).

Next, defineM to be the submonoid @+ whose generators are fractions of the form

k K (s\" ,
— and —(-), wherekeA, kK eB, andn > 1.
r r r
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Define (G, G) to be the grougG = M + (—M) with positive coneG™ = M. SinceG
is also directed, it follows tha®r is a simple partially ordered abelian group. Notice that
(G, G™) is not a Riesz group.

For allz in N, denote, = (3)".

Lemma 2.2. The setD = {x € G | x <¢ e, for somen} is a proper interval inG* such
thatrD =G™.

Proof. We first show that the sequen¢s,) is increasing. By constructior,, € M for
all n. Also, if n > 1, we have

() C-2-0) ()
ent+l —€p = | — --1)=(- ,
r r r r
which is an element of/ sinces — r € B. This proves thaD is an interval inG ™.

We now prove that ¢ D, while it is clear that = sr/r € M. This will entail thatD is
proper. In order to achieve this, we proceed by induction. We evidently haveythat =
s(1—r)/r ¢ M (because % r < 0). Assume, by way of contradiction, tha® ; e,,—1 for

somen > 2, and thak <g e¢,,. This means that we can find a natural numha&lements;
inBforl=1,...,n,and an elemeritin A such that

m n l
) ki (s k
) —s=em—s=Y () += 2.1

=1

We can obviously choose above so thak, # 0. Sincek, € B, we obtain that, > r.
Therefore, substituting, by r in (2.1) we get the following bound:

s m s m s n
() -C) =)
r r r
This implies that: < m.

Now, the right-hand side of (2.1) belongsito”*+VZ*. Hence, after multiplying by

r"+1 we get that
s m
sMprtem gt — r"+l<<—> — s> eZt.
r

Since gcdr, s) = 1, the above implies that <n + 1. Thusm =n + 1.
We now claim that t k, andk, < s. Assume first that | k,,. Then the right-hand side
of (2.1) would belong te—"Z*. Hence

sn—i—l s n+1
—r"s:r”((—) —s> e 7",
r r

contradicting the fact thatands have no common factors.
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Also, if k, > s, then substituting,, by s in (2.1), we get the following bound:

s n+1 s n+1
- - s 2 - 9
r r

which is impossible. The claim is therefore established.

From our claim and the fact tha@ = (r, s — r), it follows thatk,, =s — r. Indeed, if
we writek, = ar + b(s — r) for some positive integers andb, we know that> # 0 since
rtk,. If a#0,thens > k, > r +s —r = s, which is impossible. Hence = 0. If now
b>2,thens > k, > 2(s —r), sos — 2r < 0, in contradiction to our selection efands.

Finally,

(;)Hl—s:’:i

S|
N
S| @
S~
+
N
I
S|
N
S| v
S~
+
[
S
<
N
S| v
S~

=
+
N

=1
n—1

This implies that

n—1

ki(s\'  k
en—s=27(;>+;€M,

=1

which contradicts our inductive hypothesis since= m — 1. Therefore, by induction,
s %G en forallm and soD # G ™.

Next, we prove that D = M. First, we claim that %, < re,,x_1 for all n and allk.
Indeed, ifk = 1, then 2,, <¢ re, for all n (sincer > 2). Now assume that, for some> 2,
we have 2, <¢ rep4i_1 forall n. Then

r(s —2r) s\t 1
ente-1—— —— =r|~ o 2) =reptk — 2reniik-1<G reptk — 27 ey,

Notice that by our choice ofands, we haves — 2r = s —r —r > 0. Therefore the element
enti—1(r(s — 2r)/r) belongs toM, and hencee, 1, — 2*t1e, € G*. By induction, the
claim is proved.

Now takees, which belongs t@ and is non-zero. Sina@ is simple,e; is an order-unit.
Givenx in G1, there is then a natural numbeisuch thatr <g ne;. Choosek such that
n < 2%, Hence, using the previous claim we conclude thatg ne1 <g 2¥e1 <¢ rex. This
shows thatG* C r D. Since the inclusionD € G is obvious, we get equality. O

Proposition 2.3. Let D be the interval defined in Lemma 2.2. Then, for aryr — 1, we
haverD # G*,andrD =G™.
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Proof. We have already checked in Lemma 2.2 thAt= G*. We proceed by induction
ont to prove that ¢ rD for any 1<t <r — 1. The case = 1 is covered in the proof of
Lemma 2.2. Next, assume that,ik 7, we haves £¢ ie,, for all m. We will prove that
s &g ten for all m, using induction omn.

Sincere; —s =13 —s=s(t —r)/r ¢ M, we see that £¢ re;.

Now, assume tha: > 2 and thats £¢ re; for all j < m. By way of contradiction,
assume thate,, — s € M. This means that we can find a natural numbeand elements
kiinBforl=1,...,n,kin A, such that

m n 1
k k
t< ) —s= _l(f> +-. (2.2)
=1 r r r

Sincek, € B, we have thak, > r. The right-hand side of (2.2) belongs to®+Dz+.

Hence
m
— N
trn—i—l mem _ rn+ls — rn—i—l <t<—) _ S) c 7+
r

This, coupled with the assumptions that » and gcdr, s) = 1, implies thatn < n + 1.
We first deal with the case =n + 1. From (2.2), we get

(2)-( ()50 e e

Since the right-hand side of the above belongstdZ™, we have that"(@) eZ*. As
r{s, we conclude that | s — k,. Write ts — k, = t'r for somer” in Z*. Now we have
t'r +ky, —tr —t(s —r)=0. Adding(s — r)r — (s — r) — r to this equality, we get

N | @

s—rr—(G—r—r=tr+ky—tr—tls—r)+GE—rr—(—r)—r

=r(t —t—D+k,+6—r)r—1-1). (2.4)

By [23, Lemma 2.3] applied to the submondd (s — r)r — (s —r) —r ¢ B. On the other
hand, —1—¢ >0and sos — r)(r —1—1t) € B. Sincer, k, € B, it follows from (2.4)
thatt’ —¢t — 1 < 0; thatis,t’ <+ 1.

We now substitutes — k, = t'r in (2.3). We obtain

n noy n—1 l
s\, s t'r ki(s k
— =\ - — ] = E —| - — s
<r) <r) < r > 1=1 r <r) +r+s

whencer’e, —s =1'(3)" —s € M; an absurdity since =m — 1 andt’ <¢.
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Next we deal with the case=m + a wherea > 0. We rewrite (2.2) as

(B2 B

I=m
that is,
m—1 m m+a —m
ki s ki (s
Z?(‘) rree=(3) (“Z?(?) )
=1 I=m
(s a+l Z?N’r;l klslfmra+lfl+m ”s
“\r ra+l ’ (2:5)

Letu = Y )" kys!—mpat1=l+m_Since the left-hand side in (2.5) belongstd"Z*, we
obtain (after multiplying the right-hand side of the equality#) thatr4+1 | rr¢tt — .
Write 17+t —y = ¢”r%*1 for¢” in Z*, and rearrange a$ *1(t” — ) + u = 0. Sincekn =
km+a # 0, we have that > 0. Therefore” < r. Finally, we substituter®t! —y = ¢”/re+1

in (2.5) and obtain

-1
3 ﬁ il_'_k_ - E s=t"e, —s
r\r r \r ra+l o ’
=1
so thats <g t”e,, andt” < t, a contradiction. O

Proposition 1.1 allows us to write the grog@, G*) as an inductive limit of simple
components and order-embeddings. Below we present this representation in a way more
related to the construction and that will be used in the next section.

Proposition 2.4. The group(G, G*) can be realised as a direct limitm ((Z, Gf), fii+1),
where (Z, G;r) are simple components and the mafis+1:G; — G;4+1 are order-
embeddings given by multiplication by

Proof. Let GJ = A and setG; =rG | +s'B if i > 1. Since gcd, s) = 1, the groups
(Z, G7) are simple components for dlland the mapg; ;11 given by multiplication by
are order-embeddings [15, Lemma 2.3].

Next, defineHo = 17, Hf = 1A, H; = (3)'Z, andH," = H' | + L(&)Bifi > 1
Clearly, we have the following commutative diagram:

(Ho. Hy') —— (H1, Hy') — (Hz, Hy) — -~

fo, f, S
(2.G§) —~ (2.GF) —~ (2.Gf) —= -
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where the maps in the top row are given by inclusions and all columns are order-
isomorphisms. The limit of the top row i3, G*) and it follows that the natural induced
map to the limit of the bottom row is an order-isomorphism, as desired.

Remark 2.5. Following [15, Section 2], it is easy to see th@t, GT) is order-isomorphic
to the group(G(A’, B', H'), G (A’, B’, H')) associated to the data triple

(A, B H) = ((ni>1, (s")i>1, {A} U {B}i>2).

3. Afirst wild example

In this section we construct our first example of a simple Riesz gteuz ) that
contains an (even) decreasing sequence of (unbounded) intébyalsuch that, the larger
n is, the more copies ab, we have to add in order to g&t*. The main ingredient is the
construction carried out in the previous section, which is exploited with a certain recurrence
using (infinite) commutative diagrams.

Lemma 3.1. Let f:(G,G") — (H, HT) be a positive morphism. Ldd € G be an
interval, and defin@ s = {x e H' | x <y f(y) for somey € D}. Then

(i) Dy isaninterval.
(i) If D is countably generated by a sequeiigg), thenD s is also countably generated,
by (f (en))-
(iii) If f is an order-embedding ant # G* for somer in N, thentD; # H™.
(iv) Letr € N. Assume thaD is non-zeroH is simple andf is an order-embedding. If
rD=G*"thenrDy=H"Y.

Proof. (i) Evidently D s is non-empty. Lex € Dy and assume § y < x. By construction,
there is an elementin D such thatr < f(z), hencey < f(z) andy € Dy. This proves
that D is order-hereditary. Next, take, y in Dy. There are thens, z2 in D such that
x < f(z1) andy < f(z2). SinceD is an interval, there is ain D such that; < z. Hence
x,y< f(z)andf(z) € Dy.

(i) This is trivial.

(iii) Assume thatf is an order-embedding. Takein G*\zD. Thenf (x) € H* \1Dy.
For, if f(x) € Dy there would be an elementin D¢ such thatf (x) < ty. But then we
could find an elemerd in D such thaty < f(d), hencef(x) < f(td). Since f is an
order-embedding, this yields< ¢d, a contradiction.

(iv) Letx € D¢\ {0} and takezg in D such thatr < f(zo). SinceH is simple, we know
thatx is an order-unit. If nowy € H™, there isn in N such thaty <y nx <y nf(zo) =
f(nzo). Now, nzg € GT = rD, so that we can find in D for which nzo < rz. Thus
y <y f(nzo) <y f(rz)=rf(z). Hencey erDy. O

Definition and Discussion 3.2. Let p andgq be positive integers such thatdlg < p — ¢
and that gcdy, p) = 1. SetA = (g, p — q) as in Definition 2.1. Suppose thatl, H)
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is a simple ordered group of rank one such that there is an order-embe@ddiny —
(H, H"). By Proposition 1.1(H, H) = lim((Z, ng) fo.j) with (Z, G+O) =(Z,A)in
such a way thatZ, GJr ) is a simple component an ; : (Z, GJr )—> (Z, G +1) is an
order-embedding glven by multiplication by a non-negative |ntege|for aII 7 >0. Let
n=[];>on; be the generalised integer associated to the sequenrand assume there
exist a positive integer > ¢ such that- is coprime withn, and a positive integerin A
such thatgct, s) =1 andr <s — r.PutB =(r,s —r).

Next, defineG;fy =rG; o+ s'B fori >0, andGJr =rG; 1 - 1G” , for

i,j>0.Letf;;:(Z, GJr ) — (Z, G l) be the morphlsm given by multiplication lay,
and letg; ; : (Z, GJr ) — (Z, G:+1/) be given by multiplication by-. Denote byG;" =
G,+, and f; = g;, l+lf1 i = fi+1i&ii-

Define (K, K*) = lim(Z, G/, and notice that, by Remark 2.6k, K ) belongs to
the class introduced in [15, Iﬁaltlon 2.1]. It follows thenby [15, Proposition 2.5] that

(K, K1) is a simple group of rank one. Observe that this construction yields the following
commutative diagram of groups and group morphisms:

(Z,Ga) foo (ZG ) foa (ZG ) foz2
80,0 l l 801 l 802

f10 f11 f1,2
(2,G{o) — (2,.G{;) — (Z,G{,) — -+

81,0 l lgl,l lgll

Proposition 3.3. For the construction ir8.2, the following conditions hotd

() (z, GJr ) is a simple component for all choicesicdnd ;.
(i) The morphlsmsf, andg; ; are order-embeddings for all choicesioénd ;.
(i) Let(G,GT) be the direct limit of the inductive systeitZ, G;"), fi). Then(G, G™)
is a simple group of rank one and there are order-embeddings flmd ™) into
(G, GT) and from(K, K1) into (G, GT).
(iv) There exists an intervdd, € Gt such thatD, # GT fort <r —1andrD, = G™.

Proof. (i) Since gedr, s) = 1, [15, Lemma 2.3 (1)] ensures théZ, G 10 With G10 =
rA+sBisa S|mple component. Assume now tl(ﬁtG o) Is a simple component. Since
G1++l 0= rGl ot+s B, we can use [15, Lemma 2. 3(1)] again to conclude (ﬁaGHrl 0)

is also a simple component. Hence, by inducti@h, G o) is a simple component for all
choices of.
Next, assume that for all < j, we have tha{Z, G ;) is a simple component for ail

We want to prove thatZ, G:“j) is a simple component for all By the discussion in 3.2,



124 F. Ortus et al. / Journal of Algebra 284 (2005) 111-140

we know that(Z, GJr i) is a simple component. Now, suppose ttﬁIGJr )is a simple
componentforsome Then, smceGlHj =rG; ;- 1Gl+1, ,and gcojr nj_1) =

another application of [15, Lemma 2.3(1)] aIIows usto conclude(%aﬂl+l ) is also a
simple component. The proof is then complete by induction.

(if) By assumption fp, ; is an order-embedding for ajl. Notice also thag; o is also an
order-embedding for all, by Proposition 2.4. Assume th#t ; is an order-embedding, and
consider the following diagram:

fij=nj- (

(2.G6) ——— (2.G];11)

gi,j=r~l lgi,]‘+1=r~

Siv1,j=n;-
(Z Gz++1 ]) s (Z G1++l ]+1)

Since G;r+1,j+1 = ﬁ+1,j(GLl)j) + g,-,j+1(G;fj+l), we conclude from [15, Proposi-
tion 2.10] thatf;+1,; andg; ;41 are also order-embeddings. Hence, it follows by induction
that f; ; andg; ; are order-embeddings for all choicesiaind;; .

(iii) That (G, G™) is a simple group follows from [15, Lemma 2.4]. By [14, Lemma
2.4], G is isomorphic tdZ,,~, and so it is a group of rank one.

For everyj, letg; : (Z, G ; )= (Z, G+) be defined by;; = gj—_1.;---g1,jgo,;- Then
gj is an order-embedding argq+1foj = f]g] for all j. It follows then from [15, Lemma
2.9] that the naturally induced map: (H, H+) — (G, G*) is an order-embedding. In a
similar fashion, there is an order-embedding(K, K ) — (G, G™).

(iv) By Proposition 2.4 together with Lemma 2.2 and Proposition &.8,contains an
interval D such that D # K fort <r — 1 andrD = K. Therefore, if we letD, = Dy,
then conditions (iii) and (iv) in Lemma 3.1 ensure tliztwill do the job. O

Theorem 3.4. LetJ = (¢;);>1 be a sequence of non-negative, relatively prime integers. Let
I = (a;)j>1 be a sequence such that everye J, while eachy; in J appears infinitely
many times in/. Letn = ]_[k>1qk°° be the generalised integer associated/toThen, for

any infinite generalised integet that is coprime withi, there exists a simple Riesz group
of rank oneG (m) such that

(i) for everyg; € J, there is a countably generated interv} satisfyingsD; # G(m)™
fort <g; —landg;D; =Gm)™;
(ii) the groupG (m) is isomorphic tdZ, ., (as abelian groups

Proof. We first construct a simple ordered group of rank 6GeG ™) satisfying condition
(i) and such thaG = Z,,. To do so, we proceed inductively.

Take p1 such thatp1 > 2¢g1 and gcdp1,q1) = 1. Let A = (g1, p1 — q1). Takepz in A
suchthap, > 292 and gcdpa, g2) = 1. Let B1 = (g2, p2 —¢2). We construct the following
commutative diagram of groups and group morphisms:



F. Ortus et al. / Journal of Algebra 284 (2005) 111-140 125

D+ L+ D+
(2.64%") = (2.6)") — (Z.6Gy") —~
D+ v D+ v D+ 3.1
(Z’Gl,o ) (Z’Gl,l ) - (Z’Gl,z ) o (31)
lqz lqz» lqz»
whereGyyt = A, G = 1G5t + piA, 19T = 42G V), + phB1. By [15, Lemma

2.3, (Z, G(l)+) is a simple component for everyand the maps in the top row are order-
embeddings. By Proposition 3.3, all groufs Gf)lj”) are simple components and all maps
in the diagram are order-embeddings.

Let(Go, G§) be the direct limit of the top row,Ho, H") be the limit of the first column,
and let(G1, Gir) be the limit of the diagonal terms (under the natural maps, obtained by
composition). By [15, Proposition 2.5}G o, Gar) and(Ho, Har) are simple groups of rank
one. By condition (iii) in Proposition 3.3G1, G7) is also a simple group of rank one and
there are order-embeddings

10:(Go, G§) — (G1.Gf) and vo:(Ho, Hy ) — (G1, GY).

By Lemma 2.2, Propositions 2.3 and 2.4, there countably generated intervd in
Gg andDCin H{ suchthatD] # G{ if t < q1—1andgq1D] = G§; also,tD® # Hy if
t <q2—1,andg2D° = Hy .

Let D, = (D%y,. Then, Lemma 3.1 ensures that is a countably generated interval
in G such that D), # G| fort < g»> — 1, andg2D), = G7.

Next, relabel the diagonal as the top row (i.e. dqf” =G\ fori > 0) and take
p3in A such thatps > 2¢3 and gcdps, ¢g3) = 1. Let Bo = (g3, p3 —q3) and construct a
commutative diagram as before:

q192° q192° q192°

(2,665 (Z.651") (Z.653")

L

263" "~ (2,637 "~ (2,63 ... B2
\L‘B' \qu. lq?

Observe that, by constructiofG1, G7 ) is the inductive limit of the first row. LetH1, H;)
be the inductive limit of the first column an@r», Gg) the inductive limit of the diagonal
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terms. The same line of argument as before shows(Pd@tHf) and(Go, Gé“) are simple
groups of rank one and that there are order-embeddings

11:(G1,G{) = (G2.GJ) and yi:(Hi, H') — (G2, G3).

Another application of Lemma 2.2, Propositis 2.3 and 2.4 provides us with a countably
generated intervaD! in Hj" such thatr D! # H;" if t < g3 — 1 andgsD! = H". Let
Dy = (Dl)wl. ThenDj is also a countably generated interval Grj) by Lemma 3.1, that
satisfies D # GJ for t < g3 — 1 andgsDy = G .

Continuing in this way, we get a sequence of simple groups of rank one and order-
embeddings

(Go, G¢) = (G1, GT) =5 (G2, G) = -

such that for each, G;r contains a countably generated inten{'l)ngrl such thaltleJrl #*
G for1 <giy1—1andgi11D), =G}

Let (G, GT) be the limit of this inductive system. Denote by: (G;, G;") — (G, G™)
the natural maps. Now defirié{ﬁrl = (D;+1)f,. By Lemma 3.1, all the intervaIE;.’ will
satisfyD] # G* for all 1 < ¢;, andg; D} = G*. By [15, Lemma 2.4](G,G") is a
simple group, and sinc@ = Z,, by construction, it is a group of rank one.

Now, given any infinite generalised integercoprime withn, Theorem 1.2 ensures the
existence of a simple Riesz group of rank qid&m), G(m)*) and an order-embedding
7:(G,GT) — (G(m), G(m)™) such thaiG (m) is isomorphic tdZ,.., (as abelian groups),
thus proving condition (ii). For each> 1 defineD; = (D}).. Then, by Lemma 3.1, for
everyg; in I, D; satisfies thatD; # G(m)T fort < g; —1andg;D; =G(m)™. O

Let (G, u) be a partially ordered abelian group with order-unit. We denot&(y, )
(or by S, if no confusion may arise) the compact convex spacetafeson (G, u),
that is, the set of group morphismes G — R such thats(u) = 1. We use AffS,)*
to refer to the monoid of positive, affine and continuous functions fynto R+, and
¢ .Gt — Aff(S,)" stands for the natural evaluation map. Let LA®,) ™ be the
monoid of strictly positive, affine, lower semicontinuous functions frér to R that
are point-wise suprema of increasing sequences of functions fro¢si,Aff.

If D is afixed intervalinA, (GT), we denote by, p(G™) the submonoid oft, (G™)
whose elements are intervals in A,(GT) such thatX € nD for somern in N, and
we denote byW(P(GJF) the submonoid ofA, p(G*) whose elements are intervalsin
Ags, p(GT) such that there existg in A, p(G™) with X + Y =nD for somen in N. If
now D is a countably generated interval@* that is also generating, sét= supg, (D)
and define (see [17])

W2(S.) ={f € LA o (S)TT | f + g = nd for someg in LAff , (S,)™" andn in NJ.

The disjoint unionG™* L W;’(Su) can be endowed with a monoid structure by extending
the natural operations and setting- f = ¢, (x) + f wheneverx € G* and f € W, (S,).
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Recall that an intervak in GV is said to besoft (see, e.g. [9]) provided that for each
x in X, there are an elementin X and a natural number such that(n + 1)x <g ny.
Observe thak is softin case X = G™. Indeed, ifx € X \ {0}, then(r + Dx e GT =rX,
hence there is an elemenin X such thatr + L)x <g ry.

Itwas provedin [17, Theorem 3.8] that(if7, u) is a simple Riesz group with order-unit
andD is a non-zero, soft, countably generated intervaFin, then the map

o W2(GY) - GTuwWi (S (3.3)

given by the rulep([0, x]) = x for anyx in G, and by (X) = supg, (X) for any soft in-
terval X in WP (G™), is a normalised monoid morphism. It becomes an isomorphigin if
satisfies some additional assumptions, namelyig non-atomic and strictly unperforated.
Recently, the first and second authors have shibxnhinjectivity is equivalent to strict un-
perforation [13, Theorem 3.2], and surjectivity corresponds to a special property satisfied
by the generating intervdb [13, Theorem 3.5]. IfD is a soft generating interval such that
@(D) is identically infinite, then we say that a soft intervalin W2 (G™) is unbounded
provided thaip(X) = supg, (X) = co. Notice that this does not depend on the choice of
the order-unit. Ifv is another order-unit foG, then it follows from [8, Proposition 6.17]
that the state spac&y andsS, are homeomorphic.

For the proof in the result below, we recdiktfollowing definition: An abelian monoid
M is arefinement monoid, for all x1, x2, y1, y2 in M satisfyingx1 + x2 = y1 + y2, there
exist elements;; in M, fori, j =1, 2, such thatZ?zlz,-j =x; and Ziz:lZ[j =y; (see,
e.g. [27]).

Proposition 3.5. Let (G, G™) be a simple Riesz group and= (¢;);>1 an increasing
sequence of non-negative integers such gwaky;, ¢;) = 1 for all differenti and j. For
everyg; in I, assume thaD; is a countably generated interval iw?(G*) satisfying

tD; # G* for 1 < g; — 1 andg¢;D; = G*. Then there exists a descending sequence of
intervals(X;) such thatX; £ G* fort <g; — 1, and(]‘[’j=l g)Xi=G™.

Proof. Let M = A,(G*) be the monoid of countably generated intervalsGifi with
the algebraic ordering that we shall denotegy;. By [11, Proposition 2.5]4,(G™)

is a refinement monoid. LeX; = D1. Sinceg,D2 = G1, we haveX1 + GT = g2D5.
Hence, by [27, Lemma 1.9], there exist intervalsy, X1», ..., X14, <y D2 such that
X1=Xu1+ X2+ -+ X, andX11 <y X12 <y -+ < X1g, S X1 Let Xo = Xyg,.
Notice that, ift X2 = GT for anyt < g2 — 1, thenr D, = G, contradicting our assumption
on D,. Thust X, # G* for t < g2 — 1. Observe that

X1=X11+-+ X1g, <y X1gp + - + X149, = q2X2.

Sinceq1X1 = q1D1 = GT, we have tha(gi1g2)X2 = GT. Now we can apply the same
argument to the equalit¥X, + Gt = g3D3, so that we get an intervalz <, X2 such
that X3 # G for t < g3 — 1 and(q1g2¢93)X3 = GT. Continuing in this way, we get
a descending sequence of interval§;);>1 such thatrX; # Gt fort <g; —1 and

(H;:1Q./)Xi =G*. O
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Remark 3.6. Notice that, if (G, G, u) is a partially ordered abelian group with order-
unit and D € G7 is an interval such thatD = GT for some natural number, then
¢(D) = 00, i.e. D is an unbounded interval. To see this, notice that, given any non-zero
elementx in GT, there exists an elementin D such thate <g ny. Hence, for any state

s on G we have 0< s(x) < ns(y), i.e. 0< ¢, (x)/n < ¢, (y). Thus, in order to see that
(D) = oo, it is enough to show that(G*) = co. But now, for everym in N, we have
thatmu € G*, and then O< m = ¢, (mu), whencep(G™) = co. In particular, this fact
applies to the interval®;, X ; in Proposition 3.5.

The construction just carried out in Theorem 3.4 guarantees that we are in position to
apply Proposition 3.5 and obtain a somawmore refined example as follows.

Theorem 3.7. Let J = (¢i)i>1 be a sequence of non-negative integers such that
gcd(g;, qj) =1forall i, j > 1 (such thati # j), and let/ = (a;),;>1 be a sequence such
that everya; € J, while eachy; € J appears an infinite number of timesinLetm be a
generalised integer coprime with(1). Let(G, G*) = (G(m), G (m)) be the simple Riesz
group of rank one constructed in Theoré. ThenG contains a descending sequence
of unbounded intervalgD;) such that(I];_,¢;)Di = Gt for all i, while tD; # G™
whenever < ¢; — 1.

Proof. We only need to check th&G, G™) fulfils the hypotheses of Proposition 3.5. The
sequence of intervals obtained in the conclusion of Theorem 3.4(33y satisfies that
1D # G* forallt <¢; — 1, andg; D! = G* for all i. Thus, the result holds by Proposi-
tion3.5. O

The examples we have just obtained could be considered as an intermediate step to-
wards constructing a simple Riesz group, G™) together with an unbounded interval
in G* such thak D # G™ for everyn in N. In fact, a natural candidate for such an interval
could the intersection of the descending chain of intervals appearing in Theorem 3.7. Un-
fortunately, even under the hypotheses of Theorem 3.7, we are not able to prove whether or
not the intersectio® = (),,; D; is an interval or even an unbounded subset 6f where
(D;) is a descending sequence of countajeiperated, unbounded soft interval ) such
that:D; # G* fort < g; — 1 and([]}_¢;)Di = G* (foreveryi > 1).

4. Taylor-made gapsin simple componentsunder order-embeddings

In order to obtain our desired example (announced in the introduction) of a simple Riesz
group of rank on€G, G™) together with an unbounded (countably generated) intgbval
in G such that D # G for all n, we adopt the basic philosophy of [14, Section 3]. This
consists of reducing the essential properties that an interval should have to a finite set of
properties occurring in simple components. For this, we need to have some control over
those non-negative integers in a simple component that its positive cone may contain, and
we also need to construct order-embeddings among simple components under which this
control is preserved.
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In view of the considerations made at the beginning of Section 1 and related to results
on simple components (see [14,23]), a pbksiway of getting the desired control is to
consider submonoids of the non-negative integgenerated by coprime positive integers,
and order-embeddings among simple components whose positive cones have this particular
form, using [15, Lemma 2.3 (2)]. The basic idea consists of strengthening some arithmetic
properties in order to force the expression of non-negative integers to become positive
elements in a certain simple component.

Lemma4.1. Let N € N. Givena in N, there existp, ¢ andd in N such thatgcda, p) =
gcda, c) =gcde,d) =1, pc= pd =1 (moda), d > max{(a — ) pc +a(N — 1), ac},
p> N,andpc >aN.

Proof. Throughout the proof, denote hythe class of an element i/ nZ for anyn. For
p andc in N, it is clear that gct, a) = gcd(c, a) = 1 is equivalent to the fact thatandc
are invertible inZ/aZ. Therefore, if we selegt andc in such away thap =c¢~1 € Z/aZ,
we will have pc =1 (moda). It is clear that there exist infinitely many numbersaand
¢ satisfying the above. We can then tagkec > N and alsopc > aN. By a similar line
of argument, once is fixed, there are infinitely many in N such thatpd = 1 (moda).
For any of these choices we have thiat: p~1 = ¢ in Z/aZ, whenced — ¢ is divisible
by a, that isd = ¢ + ak for somek in N. Now, in Z/cZ, this saysd = ¢ + ak = ak. We
can choosé big enough such that > maxX(a — 1) pc + a(N — 1), ac} and gcdc, k) = 1.
This will also guarantee that s invertible inZ/cZ, that is, gcdc,d) =1. O

Notation. Let (Z, H*) be a simple component. There is then a (uniquely determined)
elementV in H* suchthatv —1¢ H™,andN +k € H™ for all k in Z*. We shall denote
this element bywy.

For the rest of this section, let us fix a simple compon@&ntH ™). Givena in N, we
can choose by Lemma 4.1 elemeptsc andd in N such that gcth, p) = gcda, ¢) =
gcde,d) =1, pc= pd =1 (moda), p e H', pc > aNy andd > max{(a — 1)pc +
a(Ng —1),ac}.

Let Gt =aH™ + p(c,d). Since gcde, d) = 1, we have thatZ, (c,d)) is a simple
component. Since ge¢d, p) = 1, we can use [15, Lemma 2.3] to conclude ##&tG™) is
a simple component and that the m@ H*) — (Z, G*) defined by multiplication by:
is an order-embedding.

We shall use these notations in th@pwsition below and in the next section.

Proposition 4.2. Leti in Z be suchtha® <i <a—1landletx ¢ H'. Thenipc+ax ¢ G*.

In particular, if we denotd. gy = {lg, 1, ..., l,—1} Wherel; = ipc + a(Ny — 1), it follows
that Ly N G = @. Moreover, all integers that are congruentitgmoda) and bigger than
I; belong toG*.

Proof. Since multiplication byz is an order-embedding, we see that G if and only
if + ¢ HT. In particular,a(Ny — 1) ¢ G*. Moreover, any multiple of: which is bigger
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thana(Ny — 1) will belong toG ™, as it will have the fornur with ¢t = Ny + k (k in Z1),
andsor e Ht.

Assume now &< i < a — 1 andx ¢ H™. We have to prove thdpc +ax ¢ G*. By way
of contradiction, ifipc + ax € G*, we would then have thdpc + ax = ay + pz where
y € H' andz € (¢, d), thatis,z = cz1 + dz for some positive integets, z». We therefore
have

ipc+ax =ay + pczy + pdzo. (4.1)

We now claim thaty < x. We already know that # x becausey € HT. Assume that
y > x +1, so thaty = x + k with £ > 1. We would then have thébc + ax = ay + pcz1 +
pdz2 = ax+ak+ pcz1+ pdzz, whencepc = ak + pcz1+ pdzz. Thus (since alse < d),

O<a<ak=ipc— pcz1— pdza <ipc— pcz1 — pczo = Pc(i —(z1 +Z2)),
and sa — (z1 + z2) > 0. Notice that also
O=ak=ipc— (pcz1+ pdz2) =i — (z1+z2) (Moda).

This implies that — (z1 + z2) = ar for some positive integet. But sincei < a — 1 by
assumption we conclude that= 0, hence = z1 + z2 <a — 1. Thenipc = ak + pcz1 +
pdzo > ak + pc(z1 + z2) = ak + pci, and so G ak > 0. This contradiction establishes
the claim.

Going backto Eq. (4.1), we find thatQa (x — y) = pcz1+ pdz2 —ipc. Sincex ¢ H,
we have thaty < x < Ny — 1. If z # 0, thenazz — (e — 1) > 1 and (usingl > ac and
pc >aNpg), we get

a((Ng —1) —y) > a(x — y) = pcz1+ pdza —ipc > pdzz2 — ipc > pacza — ipc
> pacza — (a— D pc= pc(azg —(a— 1)) >aNyg (azg —(a— 1))

>aNpy,

which is clearly not possible.

It follows then that> = 0. This means that(x — y) = pcz1—ipc = pc(z1—i), whence
z1 > i (becauser > y). But thena(x — y) = pc(z1 — i) > pc > aNg. This implies that
x —y e HT and sincey € H™, it follows thatx € H+, contrary to our assumption.

We have proved thdpc +ax ¢ G+ whenever 6<i <a —1andx ¢ H™. In particular,
sinceNy —1¢ HT, we have thal; =ipc +a(Nyg — 1) ¢ G*, henceLy NG = 0.

Letnowt in Z* be suchthat=i (moda) andt > ipc+a(Ny —1). Then, sincepc =1
(moda), we have that — ipc =0 (moda) and soa(Nyg — 1) <t —ipc = as for somes
in Z*. ThenNy — 1 < s, and therefore ¢ HT andt =as +ipccaHT + plc,d) =G™.
It follows from this that any integer congruent to(mod a) and bigger thar; can be
written asipc + as wheres > Ny — 1, and so belongst6+. O

Corollary 4.3. Under the hypotheses and notation of Proposittb8 we haveNg =
lo—1+ 1.
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Proof. Itis clear that,_1 is the largest element of the sef; defined in Proposition 4.2.
Let x > I,_1. We obviously have that = k (mod a) for some 0< k < a — 1. Since
x >1,_1> I, we obtain (using Proposition 4.2) that G*. O

5. A new wild example

The main objective of this section is to construct a simple Riesz gf6u+) of rank
one such that its positive cone contains an unbounded intBrilzt satisfiea D # G for
all n in N. This will be done inductively by constcting a sequence of simple components
connected by order-embeddings. We first establish a lemma that will provide the inductive
step in the theorem below. Given a simple compor@&nt ™), retain from the previous
section the notatiovVy for the (unique) element i/ ™ such thatNy — 1 ¢ H™ but
Ny +k € HY for all positive integerg.

Lemmab.1. Let(Z, H') be asimple component, let, y; € H be such thay; = x1+ 1,
and leta > Ny. There exists then a simple compongitG ™) satisfying

() a-:(Z, HY) — (Z,G") is an order-embedding antP Ny < Ng;
(i) there is an element in G* such that

(@ yo—1eG™,

(b) ay1 <G y2 andyz —ay1 > aNu,

(€) (Ng —Dax1 £6 (Nu — Dyo.

Proof. Notice that(Ny —1)y1 — (Ny —1)x1= (Ny —1) ¢ H; whence(Ny —1)x1 €y
(N — Dy1.

Choosep, ¢ andd as in Lemma 4.1. LettingG* = aH™ 4 p(c,d), we have that
(Z,G*) is a simple component and multiplication bys an order-embedding.

Write Ly = {lp, 1, ...,l,—1} as in Proposition 4.2, so we have that any integer con-
gruent toi (moda) and larger thai; belongs toG*. Note also thatVg =1,_1 + 1 by
Corollary 4.3. This equals tdg = (a — 1) pc +a(Ny — 1) + 1, and hence we have

N =(a—1Dpc+a(Ny —1)+1> (a—1)(pc+ (Nu — 1))
> (@ —1)(aNy + (N — 1) > (a—D(a+D(Ny — 1) = (a® -~ 1)(Ng — 1)
> aZNH,
proving condition (i).
Let y2 = pc +ay1, and observe that, e G, because; € H™ by assumption. Notice
also thaty, — ay1 = pc > aNg, by the selection op andc. Sincepc € GT, we see that

ay1 <¢ y2, thus verifying condition (ii)(b).
Sincea > Ny, it follows from Proposition 4.2 thdly,,—1 ¢ GT. Therefore, the fact that

(Ng — D)y2 — (Ny — Daxy1=(Ng —Dpc+a(Ny —1) =1y, -1 ¢ G
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implies that(tNy — Dax1 £ (Ng — 1)y2. Hence condition (ii)(c) also holds.

It remains to verify condition (ii)(a). Sincg; — 1= pc +ay; — 1= 0 (moda) and
y2—1=pc+ay1—1> pc>aNy >a(Ny — 1) =lo, Proposition 4.2 ensures that —
1le G, as desired.

Theorem 5.2. Let A be a strictly ascending sequence of non-negative integers. Then, for
any generalised integen coprime withn(A), there exists a simple Riesz group of rank one
G (m) such that

() there is an unbounded countably generated inte®aatisfyingn D # G (m)* for all
ninN;

(iiy for some generalised integerdividingn(A), the groupG (m) is isomorphic taZm,
(as abelian groups

Proof. First, we will inductively construct @equence of simple components and order-
embeddings

@i (2 HY) — (@ H ).

together with a sequencg;) in Z* (i > 1) such that

(@) foralli >1,a; € A;

(b) foralli >1,a; > Ny, > a? ;Np,_, > (a®)'"INp,; alsoy; € H;", and the element
x;=yi —1le H* foralli;

(€) (Ny; — Dxi £u; (Ny; — Dyis

(d) aiyi <H;q Yit1s

(€) (Nu; —Dai—1ai—2---ajx; £u, (Nu; — Dy; forall j <i—1.

Let (Z, H{") be any simple component such that 1H,". Let y; in H," be such that
x1=y1—1€ HlJr (for exampley; = Ny, + 1). Chooser; in A with a; > maXNg,, 3}.
Then Lemma 5.1 provides us with a simple compor(@)tH{) (whereNp, > afNHl)
and an element, € H, such that the element; = y» — 1 € Hy, aiy1 <n, y2,
(Ng, — Dayxy £a, (Ngy — Dy2 andai Ny, < y2 — apy1. Moreover, multiplication by
a1 is an order-embedding frodZ, H;") into (Z, H,").

Suppose thaty, ..., a,—1, Hf, ..., H andy1, ..., y, have been constructed satisfy-
ing conditions (a)—(e) above.

Choosez, in A with a, > Ny, and apply Lemma 5.1 to obtain an order-embedding

an- (2, HY) - (Z, H} ),
where(Z, H, ,) is a simple component such th;,

A .1 > a2Np,. Moreover, there is an

elementy, 1 in H," ; such that the element, 11 = y,11 — 1€ H, 1, anyn <H,,1 Ynt1,
Yn+1—anYn > anNp, and(Ny, — Dapx, £, (Ng, —1) ya+1. Hence conditions (a)—(d)
are satisfied (as well as condition (e) wite-n + 1 andj = n).
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Thus, in order to see that condition (e) also holds with n + 1, we only need to
consider the cases wheje< n — 1.

Notice thaty,+1 = pncn + anyn (by the proof of Lemma 5.1) wherg,, ¢, are chosen
as in Lemma 4.1. By our induction hypothesis,

n—1
(Nit; = Dyn — (Nu; = ) [ [anx; ¢ H
k=j

wheneverj <n —1.
SinceNy; —1<ay, —1if j <n— 1, Proposition 4.2 applies and so

n—1
(NHj —Dpucn +an|:(NHj —Dyn — (NH]- -1 l_[akxj] ¢ H,;:,]_;
k=j

that is,

n
(Nu; = Dynpr — Ny = D [ Janxj ¢ H
k=j

foreveryj <n — 1, as desired.

Next, let (G,G1) = lim((Z, H),a; - ), and denote byf,:(Z, H,) - (G,G")
the natural (order-embedding) maps. By condition ¢d)., — a;y; € H;" \ {0}, hence
fir1(it1) — fi(yi) = fir1(vita — aiyi) € G\ {0}. This shows that the intervall =
(fi (v;)) is soft and countably generated (see, e.g. [17, Lemma 3.4]).

Letu = f1(y1) in GT, and take this as an order-unit. Denotestijie (unique) state on
(G, u); for i in N, lets; denote the unique state on the simple compo@nﬂfr) with
respect to the order-unit = a;_1a;_2- - -a1y1. We now check thakt is unbounded, that
is, supp, (E) = co. By the first part of the proofy; 11 = pici + a;y; wherep; andc; are
chosen in such a way thatc; > a; Ng.. Then, by using condition (b) recurrently, we get

PiCi aiyi PiCi
s(fir1(ivn) = sita(yit) = + >
ajaj—1---aiyi ajaj—1---aiyi ajaj—1---4aiy1i
2
- aiNHi _ NHi ai,]_NH,'_l _ a[—lNH,-_l
aja;_1---aiyr  Gj—1---4iy1r Gi—1---diy1r  Gi—2---daiy1
2
aj—1a;_5Ng,_, ai—1...a2a1Ng, (i-2)i-1) NH;
>———>..> ——————>aqa —,
aj—2---aiyi y1 yi

and so clearly su, (E) = oco.

Now, suppose thatE = G* for somen. Choosej in N such that(Ny; — 1) > n. We
have thatf; (Nu, — Dx;) <¢ (Nu; — 1) fi (y;) for all (suitably) large’. This will happen
in particular for som& > j, which translates intq”i((NHj —Daij_1ai—2---a;xj) <G
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Ji((Nu; — 1)yi). Sincef; is an order-embedding, we ge¥y; — Da;—1a;—2---ajx; <m,
(Nu; — 1)y; for somei > j, in contradiction with condition (e).

Hence, we have constructed a simple group of rank6h& ), containing an interval
E C G* such thatp(E) = co andnE # G* for everyn in N. Notice thatd’ = (a;);>1 is
an infinite subsequence af, so thatn = n(A’) is a generalised integer dividing A).
Moreover, by construction; = Z,, (as abelian groups). Thus, for any generalised in-
tegerm coprime withn, there exists by Theorem 1.2 a simple Riesz group of rank
one (G(m), GT(m)) such thatG(m) = Z,m, and an order-embedding: G — G(m).
Then, by condition (iii) in Lemma 3.1, the intervaél = E; = ((tf;)(y;)) satisfies that
nD # Gt(m) for everyn in N. Let u be an order-unit inG. Since bothS(G, «) and
S(G(m), T(u)) are singletons with (unique) stateands’ respectively, the affine continu-
ous mapS(z) : S(G, u) — S(G(m), T(u)) is an homeomorphism witl(z7)(s’) = s't = s.
Hence, sup’((tf;)(yi)) = supis’t) (f; (vi)) = sups(f; (y;)) = oo, whenceD is also un-
bounded. This completes the proofi

6. Themonster example

In this section, we will use the constructions carried out in Theorems 3.4 and 5.2 in
order to construct an example of a simtiesz group of rank one containing unbounded
intervals that (simultaneously) enjoy the properties exhibited in those theorems.

Theorem 6.1. LetL = (¢;);>1 be a sequence of non-negative, relatively prime integers. Let
I = (aj);>1 be a sequence such that evarye L, while eachg; in L appears infinitely
many times irf. LetJ = (;);>1 be a strictly increasing sequence of non-negative integers
such thatgcd(g;, b;) = 1 for all i, j > 1. Letn(/) andn(J) be the generalised integers
associated tal and J, respectively. Then, for any generalised integeicoprime with
n(I) - n(J), there exists a simple Riesz group of rank ¢hen) such that

(i) foreveryg; in L, there is a countably generated interv) satisfyingr D; # G(m)™*
fort <¢; —landg;D; = G(m)™;
(i) thereis an intervalD c G(m)™ such that:D # G(m)™ forall n in N;
(iii) for some generalised integer dividing n(J), the groupG(m) is isomorphic to
Zn(1y-n-m (as abelian groups

Proof. We first use the argument in the proof of Theorem 3.4 with the sequennehis
way we get a simple group of rank oH, H™) such that:

(@) H=Znay;
(b) for everyg; in L, there is a countably generated interiZlsatisfying: E; # H™* for
t<gi—landg;E; = HT.

By Proposition 1.1(H, H*) =lim((Z, H"),1; -), where(Z, H;") is a simple component

andl; - : (Z, Hﬁ) — (Z, Hiil) is an order-embedding for all> 1. Notice thaq'[i>1l,» =
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n(I) =[T;>14{°- Thus, for eacti > 1,1; = ]_[;.’zlq,z’jj
gcdl;, by) =1foralli, j > 1.

Now, fix (Z, Kf) =(Z, Hl+) and apply the argument in the proof of Theorem 5.2 using
the sequencd. Thus, we get an inductive syste(¥, K,*),a,- -), where(Z, Kl.+) is a
simple componeny; € J andg; - : (Z, Kl.+) — (Z, Kj;rl) is an order-embedding for all
i > 1. Moreover, the groupk, K+) = lim((Z, Kl.+), a; ) is a simple group of rank one
such that:

for somer; andn; in N. Therefore

(@) K =Zy for the generalised integer= [, ; a,, which dividesn(J);
(b) there is a countably generated interasuch thatz E # K+ for everyn > 1.

We next define submonoidsﬁ,. of the non-negative integers by recurrence gn> 0,
as follows: '

(@) G§o=Hi =K{;
; + gt
(b) foreveryi >1,G/y=K;

i+1
(c) foreveryj > 1, Gaij = H;jrl;
(d) foreveryi, j >1,G;; =aiG; 1 ; +1;G; ;.

By [15, Lemma 2.3(1)], we have théZ, G:“j) is a simple component for everyj > 0,
and in the following diagram:

(Z.Go) —o (2.Gy) —2> (2.GEp) —2m -

a- ai- ai-

. Ip- I3
(2,G1o) — (2,Giy) —— (2.G1p) —— -

(6.1)

az: az: az:

all squares are commutative and all the mape order-embeddings (see Proposition 3.3
and [15, Proposition 2.10]).

Let (G.G™) =Ilim((Z, G{),ail; -). Then(G,G") is a simple group of rank one,
and G = Zy.n1) by construction. An argument analogous to that in condition (iii) of
Proposition 3.3 guarantees the existence of order-embeddingg, H*) — (G, G™)
andt:(K,KT) — (G,G™"). Thus, for any generalised integarcoprime withn(/) - n,
there exist by Theorem 1.2 a simple Riesz group of rank @en), G(m)™) and an
order-embedding : (G, GT) — (G(m), G(m)™). Clearly, the maps8s):(H, H") —
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(G(m), Gm)™) and(B7): (K, K") — (G(m), G(m)™) are order-embeddings. Thus, by
condition (iii) in Lemma 3.1, the interval® = Eg.) andD; = (E;) g0 in (G(m), Gm)™h)
enjoy the desired properties

The example in Theorem 6.1 above allows us to construct a (stably finite) monoid of
intervalsW? (GT) over a simple Riesz grou@, whereD is an unbounded interval such
that the representation mgpdefined in (3.3) is not injective, even in the case wlieis
not functionally complete (see [13, Remark)]). Other consequences will be outlined
in Section 7.

7. Final commentsand remarks

In this section we explore the possible applications of the results obtained in previous
sections to the context & -theory of multiplier algebras of simplé*-algebras with real
rank zero.

We remind the reader th&t*-algebras are precisely the norm-clogesuibalgebras of
B(H), the algebra of bounded linear operators on a Hilbert spadeecall that a (unital)
C*-algebraA hasreal rank zergprovided that the set of invertible self-adjoint elements of
A is dense in the set of self-adjoint elementsiafsee [4]). In casel does not have a unit,
thenA has real rank zero if, by definition, the minimal unitisatiéias real rank zero. We
say that a (unitall*-algebraA hasstable rank onéf the set of invertible elements of
is dense (see [12,19]). As with the real rank zero casa,dbes not have a unit, thef
has stable rank one £ has. A simple and separahi&-algebra is said to belementary
if it is isomorphic to the algebra of compact speors on a (separable) Hilbert space. This
translates into the requirement that the algebra contains minimal projections. We shall be
concerned with non-elementafy*-algebras.

Problem 7.1. Let (G, G™) be any of the groups obtained in Theorems 3.4,5.2 or 6.1. Does
there exist a simple, separable, non-unitélalgebraA with real rank zero and stable rank
one for which the ordered grouo(A), Ko(A)™) is order-isomorphic t6G, GT)?

We comment below on the relevance of this question for the consequences that would re-
sult given a positive answer. For this, we need to remind the reader of some basic elements
in K-theory that will be needed in our discussion (see, e.g. [3]). Givéri-algebraA,
we denote byM(A) = lim M, (A), under the maps4,(A) — M,1(A) defined by
x — diag(x, 0); that is, M« (A) is the algebra of countably infinite matrices overvith
only finitely many non-zero entries.

We denote by (A) the set of equivalence classes of projectionsfig (A) under the
Murray-von Neumann equivalenee This becomes an abelian monoid with operation

)

This monoid is naturally endowed with tladgebraic preorderdenoted by, induced by
the previous equivalence; namély] < [¢] if p is equivalent to a subprojection gf
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If the C*-algebraA is represented faithfully as*asubalgebra oB () for a separable
Hilbert spaceH and the action is non-degenerate, then we definerthiéiplier algebra
M(A) of A as theC*-algebra

M(A)={xeB(H) |xAC AandAx C A}.

It is well known that this construction is equivalent to the one obtained by using double
centralisers (see, e.g. [26]), and it is of course only relevant in 4al@es not have a unit
itself, since otherwise\(A) coincides withA. The multiplier algebra, together with the
embedding ofd as a two-sided closed ideal, provides the solution to the universal problem
of adjoining a unit to the algebra.

If A is a separable (non-unital)*-algebra with real rank zero anlis a projection in
M(A), then by [11, Lemma 1.3] we have thB# P also has real rank zero and an approx-
imate unit consisting of an increasing sequence of projectiong saylf, moreover,p is
a projection inA, thenp < P if and only if p < p, for somen > 1. In this situation, we
define

O([P]) = {lpl € V(A) | pis a projection inP M. (A) P}
= {[pl € V(A) | [p] <[pa] for somen in N}.

Then ®([P]) is a countably generated interval In(A), which is soft precisely when
P ¢ A. Let D(A) = O([1prq(4)])- In the case wher has moreover stable rank one, the
map

0 : (V(M(A)), [Lpa)]) = WPD(V(A) (7.1)

is a normalised monoid isomorphism (see [17, Theorem 2.4] and also [11, Theorem 1.10]).
For any separable, non-unital, non-elementary sin@plealgebra with real rank zero

and stable rank one, it is well known that the grakig(A) is a countable, non-atomic,

simple Riesz group. Because of the existenf an approximate unit of projectiongg(A)

is naturally isomorphic to the Grothendieck group of the morioid). SinceA has stable

rank one,V(A) has cancellation and can be identified wkia(A4)T. Let p be any non-

zero projection inA and sett = [p] in V(A). If d = supg, (D(A)) (see also the notation

in Section 3), then by composing the maplefined in (3.3) with the map defined in (7.1),

we get a normalised monoid morphism

@ (V(MA)), [Lpmw]) = (VA UWIS,), d), (7.2)

which is an isomorphism i¥/ (A) is furthermore strictly unperforated, see [17, Theorem
3.8]. We now comment on what kind of examples a positive solution to Problem 7.1 would
lead to in connection with the results obtained in previous sections.

7.2.LetI = (g,) be an increasing sequence of non-negative and relatively prime integers,
and letA be a separable, non-unital, non-elementari+algebra with real rank zero and
stable rank one such th&K(A), Ko(A)™) is order-isomorphic to the group constructed
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in Theoren8.4 (with respect to the sequente Then, there exists a sequence of projections
(Ep)n>1 C M(A ®K) such that

(I) D(E,) = ¢(1M(A®K)) =ooforalln>1;
(i) En+1 3 En foreveryn >1 (i.e. E, 11 is not equivalent to a subprojection 6f,);
(iii) foreachn >1,1- E, ~ 1pagk) Whenever < g,, andg, - E,; ~ Lyagk)-

ReplaceA by its stabilisatiord ® K (whereK is theC*-algebra of compact operators
on a separable Hilbert space), and note thatkhgroup remains the same. So, to verify
the above claim, assume thats stable.

By Theorem 3.4, for every, in I, there is a countably generated unbounded interval
D, C K (A) such that D, # K{ (A) for t < g, — 1 andg, D, = Kg (A). Moreover, by
Theorem 3.7, we can choose these intervals in such waythat < D, in the algebraic
ordering of the monoid of intervalg,” " (k& (A)).

Since, as mentioned, we can identi#(A) with Ko(A)*, we can use the isomor-
phism (7.1) to get a sequence of projectionsM(A ® K) by settingE, = ©~1(D,).
Clearly they satisfy properties (i)—(iii).

Notice that, ifA is aC*-algebra satisfying the hypotheses in 7.2 then, for exethe
C*-algebraM (E, (A ® K)E,) is finite. Otherwise, at the level of monoid3, + Y = D,
for a non-zero interval, and thus, by simplicity okKo(A), we would conclude thab,, =
KSF(A), in contradiction with Theorem 3.4. On the other hand,

My, (M(Eq(A®K)E,)) = M(M,, (E,(A®K)E,)) = M(ARK),

which implies thatV,, (M(E,, (A ® K)E,)) is not finite. This kind of behaviour has been
exhibited in concrete examples constructed by Rgrdam (see [20]). There are even simple
examples, but they do not have real rank zero (see [21,22]).

The existence of examples as in 7.2 would provide us with exampl€s -aflgebras
of real rank zero that fail to have weak cancellation in the sense of Brown and Pedersen
(see [5]). They would also give a solution to the Fundamental Separativity Problem (see,

e.g. [1]).

7.3. Let A be a separable, non-unital, non-elementér{+algebra with real rank zero and
stable rank one such thakKo(A), Ko(A)™) is order-isomorphic to the group constructed
in Theorenb.2 There exists then a projectidnin M(A ® K) such that

(i) @(E) =P (Amsx) = o0;
(i) n-E ~1pagk) foreveryn > 1.

To check this, use Theorem 5.2 to find a countably generated unbounded iferval
K (A) such thatiD # K (A) for everyn > 1. Then, using the isomorphism (7.1), we
get a projectiorE = © (D) in M(A ® K) satisfying the required properties.

Notice that if A is a C*-algebra satisfying the hypotheses in 7.3, then we have an an-
swer to an implicit question posed in [13, Remark 3.4(2)]. NamelGifG ™) is a simple
Riesz group containing an intervAl € G* such thatp(D) = ¢(G1) = oo, butnD # G
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for everyn in N, then if Y € WP(G*) andnD + Y = nD, the simplicity of (G, G*)
would imply that(n + 1) D = nD, and thus:D = G, contradicting the hypothesis (i.e.

WP (GT) is a stably finite monoid, see, e.g. [13]). & # m D wheneven # m, but still
¢(nD) = oco. Hence, it might be possible to construct a unital, simptealgebraA with

real rank zero and stable rank one, such that the multiplier algebfa ® K) contains

a non-zero projectio® with M(E(A ® K)E) stably finite, but with identically infinite
scale [17]. Moreover, according to [20, Proposition 3.6] (also see [16, Theorem 2.10]),
E (A ®K)E would not be a stable algebra. The existence of such an example would fix the
exact limits of application of [16, Proposition 2.11].

7.4. Let I = (¢,) be an increasing sequence of relatively prime non-negative integers.
Let A be a separable, non-unital, non-elementaty-algebra with real rank zero and
stable rank one such thakKy(A), Ko(A)™) is order-isomorphic to the group constructed

in Theoren®.1 (with respect to the sequentl There exists then a sequence of projections
(En)n>1 and a projectionE in M(A ® K) such that

(i) @(Ep) =PApask)) = oo foreveryn > 1,
(i) Epy1 3 E, foreveryn >1;
(i) foreveryn > 1,1t E, » Lyagk) Whenever < g,, andg, - E, ~ LayagK);
(IV) D(E) = (p(lM(A@]K)) = 00,
(V) n- E » Ly foreveryn > 1.

Hence, in view of 7.2 and 7.3, the existence @f*aalgebraA satisfying the hypotheses
in 7.4 would imply that the multiplier algebt&!(A ® K) contains projections having the
special behaviours stated in there.
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