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Abstract

We prove that every partially ordered simple group of rank one which is not Riesz embed
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(t < qn), butqnDn = G+ (where(qn) is a sequence of relatively prime integers); (b) for everyn � 1,
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Introduction

One of the subjects of interest in the theory of partially ordered abelian groups
analysis of intervals, that is, non-empty, upward directed and order-hereditary su
These have been used in instances of quite different flavour. For example, in [9,10], the
proved to be essential in studying extensions of dimension groups. In the papers [1
also [6]), [2,13,17], their usage was directed towards an understanding of the non
K-theory of multipliers ofC∗-algebras with real rank zero and von Neumann regular ri
basically by describing the monoid of equivalence classes of projections. Other ap
tions can be found in [29], where the Riesz refinement property in monoids of interv
studied in detail; in [28], where a complete description of the universal theory of Ta
equidecomposability types semigroups is given, and also in [30], as an instrument to ob
some extensions of Edwards’ Separation Theorem (see, e.g. [8, Theorem 11.13]).

Since, as just mentioned, these monoids appear useful in the context ofK-theory of op-
erator algebras, there is a strong need for constructing explicit examples of such m
that help in providing evidence towards the study of certain conditions in multiplier
bras. In this paper, we present such examples in the form of countable Riesz groups
one whose monoids of intervals enjoy certain relevant properties, thus adding new
ples to the knowledge of Riesz groups. Our motivation for the search of these exa
can also be traced back to the following question, asked by Goodearl in [8, Open
lem 30]:Can every partially ordered simple abelian group be embedded in a simple
group?This was proved to be the case by Wehrung [31] via a cofinal embedding. How
the fact that part of this construction depends on model-theoretical arguments prom
need of finding more concrete realisationsof these type of embeddings. More concrete
the embedding result just mentioned was used in [31, Example 3.14] to obtain an ex
of a torsion-free simple Riesz groupG containing an intervalD �= G+ such that 2D = G+.
Wehrung then asked whethersuch an example can be realised as a torsion-free Riesz g
of rank one(i.e., with positive cone isomorphic to an additive submonoid ofQ), see [31,
Problem 3.15]. This question was answered by the second author in [15] by constr
a large family of simple groups that can be embedded into simple Riesz groups o
one [15, Theorem 2.11].

We first extend this result, by showing thatan ordered simple group of rank one(G,G+)

– which is not Riesz – can be embedded into a simple Riesz group of rank one if an
if G �∼= Q. This is done in Section 1, and used subsequently to provide wide generalis
of Wehrung’s example. The main tool in [31, Example 3.14] is the construction of a ce
submonoid ofQ+ using the submonoid ofZ+ generated by 2 and 7. We extend this c
struction in Section 2 to combinations of submonoids ofZ+ generated by coprime intege
p andq , but with considerable more extra care needed. This provides us with an exam
of a simple ordered group(G,G+) that contains a proper intervalD, a multiple of which
equals the positive coneG+. However, this is not a Riesz group. An inductive proced
based on taking direct limits of this type of construction, leads in Section 3 to a firs
ample of a Riesz group for which a whole sequence of (proper and unbounded) in
(Dn) can be constructed; every such interval has the property thattDn �= G+ for every
t < qn, andqnDn = G+. Here,(qn) is an increasing sequence of relatively prime integ
The inductive step is based on a suitable amalgamation of groups (of the type con
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in Section 2, which is why we can refer to them as basic building blocks) in a commu
diagram. A further modification of this example, after using the refinement property o
monoid of countably generated intervals, allows us to achieve that the sequence of in
is moreover decreasing.

In Section 4 we state some arithmetic results on simple components (see below)
are used in Section 5 to construct an example of a simple Riesz groupG containing an
unbounded intervalD ⊂ G+ such thatnD �= G+ for everyn � 1. The constructions carrie
out in Sections 3 and 5 are combined in Section 6 to obtain an example of a simple
group that has the properties exhibited in Sections 3 and 5.

An object which is central in this paper is that of asimple component, as our example
are built essentially via direct limit constructions of simple components of various kin
short, a simple component is nothing else but the groupZ together with a partial orderin
that makes it simple. This, for example, includes(Z, 〈k, l〉), where〈k, l〉 is the submonoid
of Z generated by two relatively prime integers. Simple components have been s
in different contexts, notably with relation toK-theoretical aspects ofC∗-algebras (see
e.g. [7,23,25], where it is shown that there exist simpleC∗-algebras with stable rank on
whoseK0 groups are simple components). Consider also the following question:

Question 1 [24]. Let N ∈ N. For every 1� i � N takeqi andmi in N to be relatively
prime, whereqi is prime. Take moreover a positive integerL that is coprime with eachqi

andmi . Consider the following subsemigroup of the positive integers:

S = 1

L

(
N⋂

i=1

〈qi,mi〉
)

∩ Z.

Can every positive cone of a simple component be expressed asS for suitable choices o
N , (qi), (mi) andL?

The construction technique developed by Toms in [24] produces, for every suchS as
above, a simpleC∗-algebra with whoseK0 group is isomorphic toZ with positive coneS.
The real rank of these examples is not zero, because otherwise they would be
divisible in the sense of [18, Section 5] (see also [21,22]) and their stable rank is be
to be one. Hence, these results suggest the problem of constructing simpleC∗-algebras
A with real rank zero and stable rank one such that(K0(A),K0(A)+) is isomorphic to
one of the groups we construct in this paper (as well as those constructed in [14,1
lifting connecting maps in the direct limit expression of these groups (as limits of si
components and order-embeddings), toC∗-algebra maps betweenC∗-algebras of the type
constructed in [24]. Other relevant aspects of this discussion are outlined in Section

Throughout the paper we will refer to [8] for notations and definitions on partial
ordered abelian groups. We recall here some basic notions that we shall use freq
A coneof an abelian groupG is an additive submonoidP of G containing zero. We sa
that the coneP is strict if P ∩ (−P) = {0}. A partially ordered abelian groupis an abelian
groupG endowed with a strict coneG+, called thepositive coneof G. The usual notation
for a partially ordered group is(G,G+), and the elements ofG+ are referred to as th
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positive elementsof G. The order induced byG+ is denoted in this paper by�G. We say
that (G,G+) is directedprovided that any element can be written as a difference of
positive elements. An elementu in G is said to be anorder-unitprovided that 0�= u ∈ G+
and for each elementx in G, there existsn in N such that−nu �G x �G nu (note that
G will then be directed). A partially ordered abelian group is said to besimplewhen it is
non-zero and every non-zero positive element is an order-unit. A partially ordered a
group(G,G+) satisfies theRiesz decomposition property(or is aRiesz group, for short) if
the following condition is met inG+: wheneverx �G y1 + y2 in G+, there existx1 andx2
in G+ such thatx = x1 + x2 andxj �G yj for all j . It is well known that this is equivalen
to the Riesz refinement and interpolation properties (see, e.g., [8, Proposition 2.1]).

If (G,G+) and (H,H+) are partially ordered abelian groups, apositive morphism
is a group homomorphismf :G → H such thatf (G+) ⊆ H+. A positive morphism
f :G → H is anorder-embeddingif f is one-to-one andx ∈ G+ wheneverf (x) ∈ H+
(in other words,f (G+) = f (G) ∩ H+).

1. Embedding results

In this section, we will establish some results about embedding simple groups int
ple Riesz groups, that improve those appearing in [15]. The first one was shown
second author in a rather complicated way [unpublished]. The proof we present he
pointed out by G. Bergman.

We start by recalling some basic facts related to generalised integers (see, e.g. [1
P be the set of the natural prime numbers. Ageneralised integern is a map

n :P → {0,1,2, . . . ,∞}.

Usually we write

n =
∏
p∈P

pn(p). (1.1)

When n is finite (i.e. it never takes the value∞ and it is zero except at finitely man
primes), we identifyn with the integer appearing on the right-hand side of (1.1). Multi
cation extends naturally to generalised integers, namely, the productn · m of n andm is
defined as(n · m)(p) = n(p) + m(p) for everyp in P. Thus we say thatn dividesm, in
symbolsn | m, if there isn′ such thatm = n · n′. We say thatn andm are coprime if for
everyp in P we have 0∈ {n(p),m(p)}.

Given a generalised integern, we associate to it an additive subgroup ofQ containing
1 by settingZn = {a/b ∈ Q | a ∈ Z andb | n}. Conversely, one can associate a general
integer to any subgroup ofQ that contains 1, and these assignments are mutually inv
(see [14, Lemma 2.3]).

Given a sequenceA = (an)n�1, we definen(A) = ∏
n�1 an, and we say that the se

quenceA is the sequence associated ton(A). A sequenceA = (an) is associated to
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generalised integern whenn = n(A). We can always associate a sequence to a genera
integer, as shown in [14, Lemma 3.10].

One notion that will become relevant in this paper is that of asimple component[14].
This is, by definition, the groupZ with a positive coneG+ such thatG = (Z,G+) is
partially ordered and simple. It was proved in [23, Proposition 2.4(ii)] and [23, Propos
2.5] that, if(Z,G+) is a simple component, thenG+ is the submonoid ofZ+ generated by
a (unique and minimal) finite set of elementsn1, . . . , nk in Z+ (so thatG+ = 〈n1, . . . , nk〉,
and in fact gcd(n1, . . . , nk) = 1). In the particular caseG+ = 〈k, l〉 (and thusk andl are
coprime integers), one can determine the smallest non-negative integerN for which N +
p ∈ G+ for all p � 0, butN − 1 /∈ G+ (see [23, Lemma 2.3]); namely,N = kl − k − l.

Proposition 1.1. Every simple ordered group of rank one(G,G+) is isomorphic(as an
ordered group) to a direct limit of a directed system(Gn,fn,n+1), such thatGn = (Z,G+

n )

is a simple component for everyn in N andfn,n+1 :Gn → Gn+1 is an order-embedding.

Proof. SinceG is an abelian group of rank one, we can assume without loss of gene
that 1∈ G. Thus, by [14, Lemma 2.4], there exists a (unique) generalised integen =∏

k�1 ak such thatG ∼= Zn. For eachn � 1, letbn = ∏n
k=1 ak , and defineHn = (1/bn)Z.

Notice thatHn ⊂ Hn+1 for eachn � 1, and also thatG = ⋃
n�1 Hn. Now, for everyn � 1,

let gn,n+1 :Hn → Hn+1 denote the natural inclusion map, and defineH+
n = G+ ∩ Hn.

We claim that(Hn,H
+
n ) is a simple group for eachn � 1. To check this, pick a non-zer

elementx in H+
n , and lety ∈ Hn be any element. Since(G,G+) is a simple group, ther

existsm in N such that−mx �G y �G mx. Thus,mx − y, y + mx ∈ G+ ∩ Hn = H+
n , so

that the previous inequality also holds inHn, as desired.
We claim now that the mapgn,n+1 :Hn → Hn+1 is an order-embedding for everyn � 1.

By definition, it is a positive one-to-one map. Now, letx ∈ Hn be an element such th
gn,n+1(x) ∈ H+

n+1 = G+ ∩ Hn+1. Sincex = gn,n+1(x) ∈ G+ andx ∈ Hn, we conclude
thatx ∈ H+

n .
Finally, for eachn � 1, let fn :Z → Hn, given by multiplication by(1/bn). Define

G+
n = bnH

+
n ⊆ Z andGn = (Z,G+

n ). Thenfn :Gn → Hn is an order-isomorphism an
hence the groupGn is a simple component. Moreover, for eachn � 1, the map

fn,n+1 = f −1
n+1 ◦ gn,n+1 ◦ fn :Gn → Gn+1

is an order-embedding. Hence, for eachn � 1 we get a commutative diagram

Gn

fn

fn,n+1
Gn+1

fn+1

Hn

gn,n+1
Hn+1

whence the mapsfn induce an order-isomorphismf from lim−→((Z,G+
n ), fn,n+1) onto

(G,G+), as wanted. �
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As mentioned in the introduction, one of the main objectives in [15] was to stud
embedding of a certain class of simple partially ordered groups of rank one into s
Riesz groups of rank one. Such groups are parametrised by a triple(A,B,H), whereH is
a sequence of simple groups (basicallyZ with different positive cones) andA andB se-
quences of positive integers, all subject to certain axioms. The proof of the key embe
result, established in [15, Theorem 2.11], is based on the fact that these groups are
phic to a direct limit of an inductive system((Z,G+

n ), fn,n+1) such that, for everyn in N,
the mapfn,n+1 : (Z,G+

n ) → (Z,G+
n+1) is an order-embedding given by multiplication

a non-negative integeran (whereA = (an)n�1). Thus, in view of Proposition 1.1, we ca
strengthen [15, Theorem 2.11] as follows:

Theorem 1.2. Let (G,G+) be a simple ordered group of rank one, and letn be the gen-
eralised integer associated toG. Given any infinite generalised integerm coprime withn,
there exist a simple Riesz group of rank one(G̃(m), G̃+(m)) and a positive morphism
τ :G → G̃(m) such that:

(i) the groupG̃(m) is isomorphic toZn·m (as abelian groups);
(ii) the mapτ is an order-embedding.

The next result was also pointed out by G. Bergman.

Lemma 1.3. Let G1 = (Q,G+
1 ) andG2 = (Q,G+

2 ) be partially ordered abelian groups
and letf :G1 → G2 be a positive map. Thenf is an order-embedding if and only if it i
an isomorphism of ordered groups.

Proof. Clearly, sincef is a group morphism fromQ to Q, it is identically zero or an
isomorphism of abelian groups.

Suppose thatf is an order-embedding, so that in particular it is one-to-one. Henc
previous observation implies thatf is an isomorphism. But then we also have

f
(
G+

1

) = G+
2 ∩ f (G1) = G+

2 ∩ Q = G+
2 ,

so that it is an order-isomorphism. The converse is obvious.�
A first consequence of Theorem 1.2 and Lemma 1.3 is the following characterisa

embeddability of simple ordered groups into simple Riesz groups. This will be an import
result in the sequel.

Theorem 1.4. An ordered simple group of rank one(G,G+) which is not a Riesz grou
can be embedded into a simple Riesz group of rank one if and only ifG �∼= Q.

Proof. First, assume that(G,G+) is a simple ordered group of rank one which is no
Riesz group, and suppose thatG ∼= Q. Assume that(H,H+) is a simple Riesz group o
rank one and thatf :G → H is an order-embedding. Then(H,H+) is order-isomorphic
to a subgroup of(Q,Q+) and the composition of the isomorphismQ ∼= G with f and the
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embedding ofH into Q provides a non-zero morphism fromQ to Q. Evidently, this must
be an isomorphism, which implies thatf is surjective. But then

f
(
G+) = f (G) ∩ H+ = H ∩ H+ = H+,

that is,f is an order-isomorphism. This implies thatG is a Riesz group, a contradiction
Conversely, suppose thatG � Q. Since the generalisedinteger associated toQ is

n(Q) = ∏
pi∈P

p∞
i , whereP is the set of all non-negative prime numbers, we concl

that for the generalised integer associated toG, sayn(G) = ∏
pi∈P

p
ni

i , there exists a
least one prime numberpk such thatnk < ∞. Now, multiplication byp

nk

k defines an
order-isomorphism from(G,G+) onto(p

nk

k G,p
nk

k G+). Notice thatn(p
nk

k G) = n(G)/p
nk

k ,
so thatn(p

nk

k G) is coprime withpk . Hence, applying Theorem 1.2, we get an ord
embedding from(p

nk

k G,p
nk

k G+) into a simple Riesz group of rank one(H,H+). Thus,
the composition of both maps gives us an order-embedding from(G,G+) into (H,H+),
as desired. �

2. Intervals in basic building blocks

This section, technical in nature, aims at the study of certain simple groups of ran
These will be used as our basic building blocks in the subsequent sections, by con
them through order-embeddings and forming various inductive limits. We shall foc
the construction of proper intervals in these groups such that a certain multiple (that can
controlled) equals the positive cone.

Let G be a partially ordered abelian group with positive coneG+. A non-empty sub-
set X of G+ is called aninterval in G+ if X is upward directed and order-heredita
We denote byΛ(G+) the set of intervals inG+. Note thatΛ(G+) becomes an abelia
monoid with operation defined byX + Y = {z ∈ G+ | z � x + y for somex in X,y in Y }.
An intervalX in G+ is said to begeneratingif every element ofG+ is a sum of element
from X. We say thatX in Λ(G+) is countably generatedprovided thatX has a countabl
cofinal subset (i.e. there is a sequence(xn) of elements inX such that for anyx in X there
existsn in N with x �G xn). Notice that, since any interval is upward directed, if(xn) is a
countable cofinal subset generating an intervalX, then we can choose a countable cofi
subset(yn) generatingX with the property thatyn �G yn+1 for all n � 1. We shall in this
case use the notationX = 〈yn〉. We denote byΛσ (G+) the set of all countably generate
intervals inG+.

Definition 2.1. Let p andq be positive integers such that 1< q < p−q and gcd(q,p) = 1.
Denote byA = 〈q,p − q〉 the submonoid ofZ+ generated byq andp − q . Let s ∈ A \ {0}
and taker in Z+ such that 1< r < s − r and gcd(r, s) = 1. Denote byB = 〈r, s − r〉.

Next, defineM to be the submonoid ofQ+ whose generators are fractions of the for

k
and

k′ ( s
)n

, wherek ∈ A, k′ ∈ B, andn � 1.

r r r
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Define(G,G+) to be the groupG = M + (−M) with positive coneG+ = M. SinceG

is also directed, it follows thatG is a simple partially ordered abelian group. Notice t
(G,G+) is not a Riesz group.

For alln in N, denoteen = ( s
r
)n.

Lemma 2.2. The setD = {x ∈ G+ | x �G en for somen} is a proper interval inG+ such
that rD = G+.

Proof. We first show that the sequence(en) is increasing. By construction,en ∈ M for
all n. Also, if n � 1, we have

en+1 − en =
(

s

r

)n(
s

r
− 1

)
=

(
s

r

)n(
s − r

r

)
,

which is an element ofM sinces − r ∈ B. This proves thatD is an interval inG+.
We now prove thats /∈ D, while it is clear thats = sr/r ∈ M. This will entail thatD is

proper. In order to achieve this, we proceed by induction. We evidently have thate1 − s =
s(1− r)/r /∈ M (because 1− r < 0). Assume, by way of contradiction, thats �G em−1 for
somem � 2, and thats �G em. This means that we can find a natural numbern, elementskl

in B for l = 1, . . . , n, and an elementk in A such that(
s

r

)m

− s = em − s =
n∑

l=1

kl

r

(
s

r

)l

+ k

r
. (2.1)

We can obviously choosen above so thatkn �= 0. Sincekn ∈ B, we obtain thatkn � r.
Therefore, substitutingkn by r in (2.1) we get the following bound:(

s

r

)m

>

(
s

r

)m

− s �
(

s

r

)n

.

This implies thatn < m.
Now, the right-hand side of (2.1) belongs tor−(n+1)Z+. Hence, after multiplying by

rn+1, we get that

smrn+1−m − srn+1 = rn+1
((

s

r

)m

− s

)
∈ Z+.

Since gcd(r, s) = 1, the above implies thatm � n + 1. Thusm = n + 1.
We now claim thatr � kn andkn < s. Assume first thatr | kn. Then the right-hand sid

of (2.1) would belong tor−nZ+. Hence

sn+1

r
− rns = rn

((
s

r

)n+1

− s

)
∈ Z+,

contradicting the fact thatr ands have no common factors.
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Also, if kn � s, then substitutingkn by s in (2.1), we get the following bound:

(
s

r

)n+1

− s �
(

s

r

)n+1

,

which is impossible. The claim is therefore established.
From our claim and the fact thatB = 〈r, s − r〉, it follows thatkn = s − r. Indeed, if

we writekn = ar + b(s − r) for some positive integersa andb, we know thatb �= 0 since
r � kn. If a �= 0, thens > kn � r + s − r = s, which is impossible. Hencea = 0. If now
b � 2, thens > kn � 2(s − r), sos − 2r < 0, in contradiction to our selection ofr ands.

Finally,

(
s

r

)n+1

− s =
n∑

l=1

kl

r

(
s

r

)l

+ k

r
=

n−1∑
l=1

kl

r

(
s

r

)l

+ s − r

r

(
s

r

)n

+ k

r

=
n−1∑
l=1

kl

r

(
s

r

)l(
s

r

)n+1

−
(

s

r

)n

+ k

r
.

This implies that

en − s =
n−1∑
l=1

kl

r

(
s

r

)l

+ k

r
∈ M,

which contradicts our inductive hypothesis sincen = m − 1. Therefore, by induction
s �G em for all m and soD �= G+.

Next, we prove thatrD = M. First, we claim that 2ken �G ren+k−1 for all n and allk.
Indeed, ifk = 1, then 2en �G ren for all n (sincer � 2). Now assume that, for somek � 2,
we have 2ken �G ren+k−1 for all n. Then

en+k−1
r(s − 2r)

r
= r

(
s

r

)n+k−1(
s

r
− 2

)
= ren+k − 2ren+k−1 �G ren+k − 2k+1en.

Notice that by our choice ofr ands, we haves −2r = s − r − r > 0. Therefore the elemen
en+k−1(r(s − 2r)/r) belongs toM, and henceren+k − 2k+1en ∈ G+. By induction, the
claim is proved.

Now takee1, which belongs toD and is non-zero. SinceG is simple,e1 is an order-unit.
Givenx in G+, there is then a natural numbern such thatx �G ne1. Choosek such that
n < 2k. Hence, using the previous claim we conclude thatx �G ne1 �G 2ke1 �G rek . This
shows thatG+ ⊆ rD. Since the inclusionrD ⊆ G+ is obvious, we get equality.�
Proposition 2.3. Let D be the interval defined in Lemma 2.2. Then, for anyt � r − 1, we
havetD �= G+, andrD = G+.
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Proof. We have already checked in Lemma 2.2 thatrD = G+. We proceed by inductio
on t to prove thats /∈ tD for any 1� t � r − 1. The caset = 1 is covered in the proof o
Lemma 2.2. Next, assume that, ifi < t , we haves �G iem for all m. We will prove that
s �G tem for all m, using induction onm.

Sincete1 − s = t s
r

− s = s(t − r)/r /∈ M, we see thats �G te1.
Now, assume thatm � 2 and thats �G tej for all j < m. By way of contradiction

assume thattem − s ∈ M. This means that we can find a natural numbern, and elements
kl in B for l = 1, . . . , n, k in A, such that

t

(
s

r

)m

− s =
n∑

l=1

kl

r

(
s

r

)l

+ k

r
. (2.2)

Sincekn ∈ B, we have thatkn � r. The right-hand side of (2.2) belongs tor−(n+1)Z+.
Hence

trn+1−msm − rn+1s = rn+1
(

t

(
s

r

)m

− s

)
∈ Z+.

This, coupled with the assumptions thatt < r and gcd(r, s) = 1, implies thatm � n + 1.
We first deal with the casem = n + 1. From (2.2), we get

(
s

r

)n(
ts − kn

r

)
=

(
s

r

)n(
t
s

r
− kn

r

)
=

n−1∑
l=1

kl

r

(
s

r

)l

+ k

r
+ s. (2.3)

Since the right-hand side of the above belongs tor−nZ+, we have thatsn( ts−kn

r
) ∈ Z+. As

r � s, we conclude thatr | ts − kn. Write ts − kn = t ′r for somet ′ in Z+. Now we have
t ′r + kn − tr − t (s − r) = 0. Adding(s − r)r − (s − r) − r to this equality, we get

(s − r)r − (s − r) − r = t ′r + kn − tr − t (s − r) + (s − r)r − (s − r) − r

= r(t ′ − t − 1) + kn + (s − r)(r − 1− t). (2.4)

By [23, Lemma 2.3] applied to the submonoidB, (s − r)r − (s − r) − r /∈ B. On the other
hand,r − 1 − t � 0 and so(s − r)(r − 1 − t) ∈ B. Sincer, kn ∈ B, it follows from (2.4)
that t ′ − t − 1 < 0; that is,t ′ < t + 1.

We now substitutets − kn = t ′r in (2.3). We obtain

(
s

r

)n

t ′ =
(

s

r

)n(
t ′r
r

)
=

n−1∑
l=1

kl

r

(
s

r

)l

+ k

r
+ s,

whencet ′en − s = t ′( s )n − s ∈ M; an absurdity sincen = m − 1 andt ′ < t .

r
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Next we deal with the casen = m + a wherea � 0. We rewrite (2.2) as

t

(
s

r

)m

− s =
m−1∑
l=1

kl

r

(
s

r

)l

+
m+a∑
l=m

kl

r

(
s

r

)l

+ k

r
;

that is,

m−1∑
l=1

kl

r

(
s

r

)l

+ k

r
+ s =

(
s

r

)m
(

t −
m+a∑
l=m

kl

r

(
s

r

)l−m
)

=
(

s

r

)m(
tra+1 − ∑m+a

l=m kls
l−mra+1−l+m

ra+1

)
. (2.5)

Let u = ∑m+a
l=m kls

l−mra+1−l+m. Since the left-hand side in (2.5) belongs tor−mZ+, we
obtain (after multiplying the right-hand side of the equality byrm) that ra+1 | tra+1 − u.
Write tra+1 −u = t ′′ra+1, for t ′′ in Z+, and rearrange asra+1(t ′′ − t)+u = 0. Sincekn =
km+a �= 0, we have thatu > 0. Thereforet ′′ < t . Finally, we substitutetra+1 − u = t ′′ra+1

in (2.5) and obtain

m−1∑
l=1

kl

r

(
s

r

)l

+ k

r
=

(
s

r

)m
t ′′ra+1

ra+1 − s = t ′′em − s,

so thats �G t ′′em andt ′′ < t , a contradiction. �
Proposition 1.1 allows us to write the group(G,G+) as an inductive limit of simple

components and order-embeddings. Below we present this representation in a wa
related to the construction and that will be used in the next section.

Proposition 2.4. The group(G,G+) can be realised as a direct limitlim−→((Z,G+
i ), fi,i+1),

where (Z,G+
i ) are simple components and the mapsfi,i+1 :Gi → Gi+1 are order-

embeddings given by multiplication byr.

Proof. Let G+
0 = A and setG+

i = rG+
i−1 + siB if i � 1. Since gcd(r, s) = 1, the groups

(Z,G+
i ) are simple components for alli, and the mapsfi,i+1 given by multiplication byr

are order-embeddings [15, Lemma 2.3].
Next, defineH0 = 1

r
Z, H+

0 = 1
r
A, Hi = (1

r
)iZ, andH+

i = H+
i−1 + 1

r
( s
r
)iB if i � 1.

Clearly, we have the following commutative diagram:

(
H0,H

+
0

)
r ·

(
H1,H

+
1

)
r2·

(
H2,H

+
2

)
r3·

· · ·

(
Z,G+

0

) f0,1 (
Z,G+

1

) f1,2 (
Z,G+

2

) f2,3 · · ·
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where the maps in the top row are given by inclusions and all columns are o
isomorphisms. The limit of the top row is(G,G+) and it follows that the natural induce
map to the limit of the bottom row is an order-isomorphism, as desired.�
Remark 2.5. Following [15, Section 2], it is easy to see that(G,G+) is order-isomorphic
to the group(G(A′,B ′,H′),G+(A′,B ′,H′)) associated to the data triple

(A′,B ′,H′) = (
(r)i�1, (s

i )i�1, {A} ∪ {B}i�2
)
.

3. A first wild example

In this section we construct our first example of a simple Riesz group(G,G+) that
contains an (even) decreasing sequence of (unbounded) intervals(Dn) such that, the large
n is, the more copies ofDn we have to add in order to getG+. The main ingredient is th
construction carried out in the previous section, which is exploited with a certain recur
using (infinite) commutative diagrams.

Lemma 3.1. Let f : (G,G+) → (H,H+) be a positive morphism. LetD ⊆ G+ be an
interval, and defineDf = {x ∈ H+ | x �H f (y) for somey ∈ D}. Then:

(i) Df is an interval.
(ii) If D is countably generated by a sequence(en), thenDf is also countably generated

by (f (en)).
(iii) If f is an order-embedding andtD �= G+ for somet in N, thentDf �= H+.
(iv) Let r ∈ N. Assume thatD is non-zero,H is simple andf is an order-embedding. I

rD = G+ thenrDf = H+.

Proof. (i) EvidentlyDf is non-empty. Letx ∈ Df and assume 0� y � x. By construction,
there is an elementz in D such thatx � f (z), hencey � f (z) andy ∈ Df . This proves
that Df is order-hereditary. Next, takex, y in Df . There are thenz1, z2 in D such that
x � f (z1) andy � f (z2). SinceD is an interval, there is az in D such thatzi � z. Hence
x, y � f (z) andf (z) ∈ Df .

(ii) This is trivial.
(iii) Assume thatf is an order-embedding. Takex in G+ \ tD. Thenf (x) ∈ H+ \ tDf .

For, if f (x) ∈ tDf there would be an elementy in Df such thatf (x) � ty. But then we
could find an elementd in D such thaty � f (d), hencef (x) � f (td). Sincef is an
order-embedding, this yieldsx � td , a contradiction.

(iv) Let x ∈ Df \ {0} and takez0 in D such thatx � f (z0). SinceH is simple, we know
thatx is an order-unit. If nowy ∈ H+, there isn in N such thaty �H nx �H nf (z0) =
f (nz0). Now, nz0 ∈ G+ = rD, so that we can findz in D for which nz0 � rz. Thus
y �H f (nz0) �H f (rz) = rf (z). Hencey ∈ rDf . �
Definition and Discussion 3.2. Let p andq be positive integers such that 1< q < p − q

and that gcd(q,p) = 1. SetA = 〈q,p − q〉 as in Definition 2.1. Suppose that(H,H+)
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is a simple ordered group of rank one such that there is an order-embedding(Z,A) ↪→
(H,H+). By Proposition 1.1,(H,H+) = lim−→((Z,G+

0,j ), f0,j ) with (Z,G+
0,0) = (Z,A) in

such a way that(Z,G+
0,j ) is a simple component andf0,j : (Z,G+

0,j ) → (Z,G+
0,j+1) is an

order-embedding given by multiplication by a non-negative integernj , for all j � 0. Let
n = ∏

j�0 nj be the generalised integer associated to the sequence(nj ) and assume ther
exist a positive integerr > q such thatr is coprime withn, and a positive integers in A

such that gcd(r, s) = 1 andr < s − r. PutB = 〈r, s − r〉.
Next, defineG+

i,0 = rG+
i−1,0 + siB for i > 0, andG+

i,j = rG+
i−1,j + nj−1G

+
i,j−1 for

i, j > 0. Letfi,j : (Z,G+
i,j ) → (Z,G+

i,j+1) be the morphism given by multiplication bynj ,

and letgi,j : (Z,G+
i,j ) → (Z,G+

i+1,j ) be given by multiplication byr. Denote byG+
i =

G+
i,i andfi = gi,i+1fi,i = fi+1,igi,i .

Define (K,K+) = lim−→(Z,G+
i,0) and notice that, by Remark 2.5,(K,K+) belongs to

the class introduced in [15, Definition 2.1]. It follows thenby [15, Proposition 2.5] tha
(K,K+) is a simple group of rank one. Observe that this construction yields the follo
commutative diagram of groups and group morphisms:

(
Z,G+

0,0

)
g0,0

f0,0 (
Z,G+

0,1

) f0,1

g0,1

(
Z,G+

0,2

) f0,2

g0,2

· · ·

(
Z,G+

1,0

) f1,0

g1,0

(
Z,G+

1,1

) f1,1

g1,1

(
Z,G+

1,2

) f1,2

g1,2

· · ·

...
...

...

Proposition 3.3. For the construction in3.2, the following conditions hold:

(i) (Z,G+
i,j ) is a simple component for all choices ofi andj .

(ii) The morphismsfi,j andgi,j are order-embeddings for all choices ofi andj .
(iii) Let (G,G+) be the direct limit of the inductive system((Z,G+

i ), fi). Then(G,G+)

is a simple group of rank one and there are order-embeddings from(H,H+) into
(G,G+) and from(K,K+) into (G,G+).

(iv) There exists an intervalDr ⊆ G+ such thattDr �= G+ for t � r − 1 andrDr = G+.

Proof. (i) Since gcd(r, s) = 1, [15, Lemma 2.3 (1)] ensures that(Z,G+
1,0) with G+

1,0 =
rA + sB is a simple component. Assume now that(Z,G+

i,0) is a simple component. Sinc

G+
i+1,0 = rG+

i,0 + siB, we can use [15, Lemma 2.3(1)] again to conclude that(Z,G+
i+1,0)

is also a simple component. Hence, by induction,(Z,G+
i,0) is a simple component for a

choices ofi.
Next, assume that for allk < j , we have that(Z,G+

i,k) is a simple component for alli.

We want to prove that(Z,G+ ) is a simple component for alli. By the discussion in 3.2
i,j
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we know that(Z,G+
0,j ) is a simple component. Now, suppose that(Z,G+

i,j ) is a simple

component for somei. Then, sinceG+
i+1,j = rG+

i,j +nj−1G
+
i+1,j−1 and gcd(r, nj−1) = 1,

another application of [15, Lemma 2.3(1)] allows us to conclude that(Z,G+
i+1,j ) is also a

simple component. The proof is then complete by induction.
(ii) By assumption,f0,j is an order-embedding for allj . Notice also thatgi,0 is also an

order-embedding for alli, by Proposition 2.4. Assume thatfi,j is an order-embedding, an
consider the following diagram:

(
Z,G+

i,j

) fi,j =nj ·

gi,j =r ·

(
Z,G+

i,j+1

)
gi,j+1=r ·(

Z,G+
i+1,j

) fi+1,j =nj · (
Z,G+

i+1,j+1

)
SinceG+

i+1,j+1 = fi+1,j (G
+
i+1,j ) + gi,j+1(G

+
i,j+1), we conclude from [15, Propos

tion 2.10] thatfi+1,j andgi,j+1 are also order-embeddings. Hence, it follows by induc
thatfi,j andgi,j are order-embeddings for all choices ofi andj .

(iii) That (G,G+) is a simple group follows from [15, Lemma 2.4]. By [14, Lemm
2.4],G is isomorphic toZnr∞ , and so it is a group of rank one.

For everyj , let gj : (Z,G+
0,j ) → (Z,G+

j ) be defined bygj = gj−1,j · · ·g1,j g0,j . Then
gj is an order-embedding andgj+1f0,j = fjgj for all j . It follows then from [15, Lemma
2.9] that the naturally induced mapϕ : (H,H+) → (G,G+) is an order-embedding. In
similar fashion, there is an order-embeddingψ : (K,K+) → (G,G+).

(iv) By Proposition 2.4 together with Lemma 2.2 and Proposition 2.3,K+ contains an
intervalD such thattD �= K+ for t � r − 1 andrD = K+. Therefore, if we letDr = Dψ ,
then conditions (iii) and (iv) in Lemma 3.1 ensure thatDr will do the job. �
Theorem 3.4. LetJ = (qi)i�1 be a sequence of non-negative, relatively prime integers
I = (aj )j�1 be a sequence such that everyaj ∈ J , while eachqi in J appears infinitely
many times inI . Let n = ∏

k�1 q∞
k be the generalised integer associated toJ . Then, for

any infinite generalised integerm that is coprime withn, there exists a simple Riesz gro
of rank oneG(m) such that:

(i) for everyqi ∈ J , there is a countably generated intervalDi satisfyingtDi �= G(m)+
for t � qi − 1 andqiDi = G(m)+;

(ii) the groupG(m) is isomorphic toZn·m (as abelian groups).

Proof. We first construct a simple ordered group of rank one(G,G+) satisfying condition
(i) and such thatG ∼= Zn. To do so, we proceed inductively.

Takep1 such thatp1 > 2q1 and gcd(p1, q1) = 1. LetA = 〈q1,p1 − q1〉. Takep2 in A

such thatp2 > 2q2 and gcd(p2, q2) = 1. LetB1 = 〈q2,p2−q2〉. We construct the following
commutative diagram of groups and group morphisms:
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(
Z,G

(1)+
0,0

) q1·

q2·

(
Z,G

(1)+
0,1

) q1·

q2·

(
Z,G

(1)+
0,2

) q1·

q2·

· · ·

(
Z,G

(1)+
1,0

) q1·

q2·

(
Z,G

(1)+
1,1

) q1·

q2·

(
Z,G

(1)+
1,2

) q1·

q2·

· · ·

...
...

...

(3.1)

whereG
(1)+
0,0 = A, G

(1)+
0,i = q1G

(1)+
0,i−1 + pi

1A, G
(1)+
i,0 = q2G

(1)+
i−1,0 + pi

2B1. By [15, Lemma

2.3], (Z,G
(1)+
0,i ) is a simple component for everyi and the maps in the top row are ord

embeddings. By Proposition 3.3, all groups(Z,G
(1)+
i,j ) are simple components and all ma

in the diagram are order-embeddings.
Let (G0,G

+
0 ) be the direct limit of the top row,(H0,H

+
0 ) be the limit of the first column

and let(G1,G
+
1 ) be the limit of the diagonal terms (under the natural maps, obtaine

composition). By [15, Proposition 2.5],(G0,G
+
0 ) and(H0,H

+
0 ) are simple groups of ran

one. By condition (iii) in Proposition 3.3,(G1,G
+
1 ) is also a simple group of rank one a

there are order-embeddings

τ0 :
(
G0,G

+
0

) → (
G1,G

+
1

)
and ψ0 :

(
H0,H

+
0

) → (
G1,G

+
1

)
.

By Lemma 2.2, Propositions 2.3 and 2.4, there are countably generated intervalsD′
1 in

G+
0 andD0 in H+

0 such thattD′
1 �= G+

0 if t � q1 − 1 andq1D
′
1 = G+

0 ; also,tD0 �= H+
0 if

t � q2 − 1, andq2D
0 = H+

0 .
Let D′

2 = (D0)ψ0. Then, Lemma 3.1 ensures thatD′
2 is a countably generated interv

in G+
1 such thattD′

2 �= G+
1 for t � q2 − 1, andq2D

′
2 = G+

1 .

Next, relabel the diagonal as the top row (i.e. letG
(2)+
0,i = G

(1)+
i,i for i � 0) and take

p3 in A such thatp3 > 2q3 and gcd(p3, q3) = 1. Let B2 = 〈q3,p3 − q3〉 and construct a
commutative diagram as before:

(
Z,G

(2)+
0,0

) q1q2·

q3·

(
Z,G

(2)+
0,1

) q1q2·

q3·

(
Z,G

(2)+
0,2

) q1q2·

q3·

· · ·

(
Z,G

(2)+
1,0

) q1q2·

q3·

(
Z,G

(2)+
1,1

) q1q2·

q3·

(
Z,G

(2)+
1,2

) q1q2·

q3·

· · ·

...
...

...

(3.2)

Observe that, by construction,(G1,G
+
1 ) is the inductive limit of the first row. Let(H1,H

+
1 )

be the inductive limit of the first column and(G2,G
+) the inductive limit of the diagona
2
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terms. The same line of argument as before shows that(H1,H
+
1 ) and(G2,G

+
2 ) are simple

groups of rank one and that there are order-embeddings

τ1 :
(
G1,G

+
1

) → (
G2,G

+
2

)
and ψ1 :

(
H1,H

+
1

) → (
G2,G

+
2

)
.

Another application of Lemma 2.2, Propositions 2.3 and 2.4 provides us with a counta
generated intervalD1 in H+

1 such thattD1 �= H+
1 if t � q3 − 1 andq3D

1 = H+
1 . Let

D′
3 = (D1)ψ1. ThenD′

3 is also a countably generated interval (inG+
2 ) by Lemma 3.1, tha

satisfiestD′
3 �= G+

2 for t � q3 − 1 andq3D
′
3 = G+

2 .
Continuing in this way, we get a sequence of simple groups of rank one and

embeddings (
G0,G

+
0

) τ0−→ (
G1,G

+
1

) τ1−→ (
G2,G

+
2

) τ2−→ · · ·

such that for eachi, G+
i contains a countably generated intervalD′

i+1 such thattD′
i+1 �=

G+
i for t � qi+1 − 1 andqi+1D

′
i+1 = G+

i .
Let (G,G+) be the limit of this inductive system. Denote byτ i : (Gi,G

+
i ) → (G,G+)

the natural maps. Now defineD′′
i+1 = (D′

i+1)τ i . By Lemma 3.1, all the intervalsD′′
j will

satisfy tD′′
j �= G+ for all t � qj , andqjD

′′
j = G+. By [15, Lemma 2.4],(G,G+) is a

simple group, and sinceG ∼= Zn by construction, it is a group of rank one.
Now, given any infinite generalised integerm coprime withn, Theorem 1.2 ensures th

existence of a simple Riesz group of rank one(G(m),G(m)+) and an order-embeddin
τ : (G,G+) → (G(m),G(m)+) such thatG(m) is isomorphic toZn·m (as abelian groups
thus proving condition (ii). For eachi � 1 defineDi = (D′′

i )τ . Then, by Lemma 3.1, fo
everyqi in I , Di satisfies thattDi �= G(m)+ for t � qi − 1 andqiDi = G(m)+. �

Let (G,u) be a partially ordered abelian group with order-unit. We denote byS(G,u)

(or by Su if no confusion may arise) the compact convex space ofstateson (G,u),
that is, the set of group morphismss :G → R such thats(u) = 1. We use Aff(Su)

+
to refer to the monoid of positive, affine and continuous functions fromSu to R+, and
φu :G+ → Aff (Su)+ stands for the natural evaluation map. Let LAffσ (Su)

++ be the
monoid of strictly positive, affine, lower semicontinuous functions fromG+ to R+ that
are point-wise suprema of increasing sequences of functions from Aff(Su)+.

If D is a fixed interval inΛσ (G+), we denote byΛσ,D(G+) the submonoid ofΛσ (G+)

whose elements are intervalsX in Λσ (G+) such thatX ⊆ nD for somen in N, and
we denote byWD

σ (G+) the submonoid ofΛσ,D(G+) whose elements are intervalsX in
Λσ,D(G+) such that there existsY in Λσ,D(G+) with X + Y = nD for somen in N. If
now D is a countably generated interval inG+ that is also generating, setd = supφu(D)

and define (see [17])

Wd
σ (Su) = {

f ∈ LAff σ (Su)++ ∣∣ f + g = nd for someg in LAff σ (Su)++ andn in N
}
.

The disjoint unionG+ � Wd
σ (Su) can be endowed with a monoid structure by extend

the natural operations and settingx + f = φu(x) + f wheneverx ∈ G+ andf ∈ Wσ (Su).
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Recall that an intervalX in G+ is said to besoft (see, e.g. [9]) provided that for eac
x in X, there are an elementy in X and a natural numbern such that(n + 1)x �G ny.
Observe thatX is soft in caserX = G+. Indeed, ifx ∈ X \ {0}, then(r + 1)x ∈ G+ = rX,
hence there is an elementy in X such that(r + 1)x �G ry.

It was proved in [17, Theorem 3.8] that, if(G,u) is a simple Riesz group with order-un
andD is a non-zero, soft, countably generated interval inG+, then the map

ϕ :WD
σ

(
G+) → G+ � Wd

σ (Su) (3.3)

given by the ruleϕ([0, x]) = x for anyx in G+, and byϕ(X) = supφu(X) for any soft in-
tervalX in WD

σ (G+), is a normalised monoid morphism. It becomes an isomorphismG
satisfies some additional assumptions, namely ifG is non-atomic and strictly unperforate
Recently, the first and second authors have shownthat injectivity is equivalent to strict un
perforation [13, Theorem 3.2], and surjectivity corresponds to a special property sa
by the generating intervalD [13, Theorem 3.5]. IfD is a soft generating interval such th
ϕ(D) is identically infinite, then we say that a soft intervalX in WD

σ (G+) is unbounded
provided thatϕ(X) = supφu(X) = ∞. Notice that this does not depend on the choice
the order-unit. Ifv is another order-unit forG, then it follows from [8, Proposition 6.17
that the state spacesSu andSv are homeomorphic.

For the proof in the result below, we recall the following definition: An abelian monoi
M is arefinement monoidif, for all x1, x2, y1, y2 in M satisfyingx1 + x2 = y1 + y2, there
exist elementszij in M, for i, j = 1,2, such that

∑2
j=1 zij = xi and

∑2
i=1 zij = yj (see,

e.g. [27]).

Proposition 3.5. Let (G,G+) be a simple Riesz group andI = (qi)i�1 an increasing
sequence of non-negative integers such thatgcd(qi, qj ) = 1 for all different i andj . For
everyqi in I , assume thatDi is a countably generated interval inWD

σ (G+) satisfying
tDi �= G+ for t � qi − 1 and qiDi = G+. Then there exists a descending sequenc
intervals(Xi) such thattXi �= G+ for t � qi − 1, and(

∏i
j=1 qj )Xi = G+.

Proof. Let M = Λσ (G+) be the monoid of countably generated intervals inG+ with
the algebraic ordering that we shall denote by�M . By [11, Proposition 2.5],Λσ (G+)

is a refinement monoid. LetX1 = D1. Sinceq2D2 = G+, we haveX1 + G+ = q2D2.
Hence, by [27, Lemma 1.9], there exist intervalsX11,X12, . . . ,X1q2 �M D2 such that
X1 = X11 + X12 + · · · + X1q2 andX11 �M X12 �M · · · �M X1q2 �M X1. Let X2 = X1q2.
Notice that, iftX2 = G+ for anyt � q2 −1, thentD2 = G+, contradicting our assumptio
onD2. ThustX2 �= G+ for t � q2 − 1. Observe that

X1 = X11 + · · · + X1q2 �M X1q2 + · · · + X1q2 = q2X2.

Sinceq1X1 = q1D1 = G+, we have that(q1q2)X2 = G+. Now we can apply the sam
argument to the equalityX2 + G+ = q3D3, so that we get an intervalX3 �M X2 such
that tX3 �= G+ for t � q3 − 1 and(q1q2q3)X3 = G+. Continuing in this way, we ge
a descending sequence of intervals(Xi)i�1 such thattXi �= G+ for t � qi − 1 and
(
∏i

j=1 qj )Xi = G+. �



128 F. Ortus et al. / Journal of Algebra 284 (2005) 111–140

r-

-zero
e
t

tion to

that
h

z
ce

he
t
i-

tep to-

val
7. Un-
ther or

Riesz
al
his
set of

ol over
in, and
ich this
Remark 3.6. Notice that, if (G,G+, u) is a partially ordered abelian group with orde
unit andD ⊆ G+ is an interval such thatnD = G+ for some natural numbern, then
ϕ(D) = ∞, i.e. D is an unbounded interval. To see this, notice that, given any non
elementx in G+, there exists an elementy in D such thatx �G ny. Hence, for any stat
s on G we have 0� s(x) � ns(y), i.e. 0� φu(x)/n � φu(y). Thus, in order to see tha
ϕ(D) = ∞, it is enough to show thatϕ(G+) = ∞. But now, for everym in N, we have
that mu ∈ G+, and then 0< m = φu(mu), whenceϕ(G+) = ∞. In particular, this fact
applies to the intervalsDi , Xj in Proposition 3.5.

The construction just carried out in Theorem 3.4 guarantees that we are in posi
apply Proposition 3.5 and obtain a somewhat more refined example as follows.

Theorem 3.7. Let J = (qi)i�1 be a sequence of non-negative integers such
gcd(qi, qj ) = 1 for all i, j � 1 (such thati �= j ), and letI = (aj )j�1 be a sequence suc
that everyaj ∈ J , while eachqi ∈ J appears an infinite number of times inI . Letm be a
generalised integer coprime withn(I). Let(G,G+) = (G(m),G+(m)) be the simple Ries
group of rank one constructed in Theorem3.4. ThenG contains a descending sequen
of unbounded intervals(Di) such that(

∏i
j=1 qj )Di = G+ for all i, while tDi �= G+

whenevert � qi − 1.

Proof. We only need to check that(G,G+) fulfils the hypotheses of Proposition 3.5. T
sequence of intervals obtained in the conclusion of Theorem 3.4, say(D′

i ), satisfies tha
tD′

i �= G+ for all t � qi − 1, andqiD
′
i = G+ for all i. Thus, the result holds by Propos

tion 3.5. �
The examples we have just obtained could be considered as an intermediate s

wards constructing a simple Riesz group(G,G+) together with an unbounded intervalD

in G+ such thatnD �= G+ for everyn in N. In fact, a natural candidate for such an inter
could the intersection of the descending chain of intervals appearing in Theorem 3.
fortunately, even under the hypotheses of Theorem 3.7, we are not able to prove whe
not the intersectionD = ⋂

i�1 Di is an interval or even an unbounded subset ofG+, where
(Di) is a descending sequence of countablygenerated, unbounded soft intervals(Di) such
that tDi �= G+ for t � qi − 1 and(

∏i
j=1 qj )Di = G+ ( for everyi � 1).

4. Taylor-made gaps in simple components under order-embeddings

In order to obtain our desired example (announced in the introduction) of a simple
group of rank one(G,G+) together with an unbounded (countably generated) intervD

in G+ such thatnD �= G+ for all n, we adopt the basic philosophy of [14, Section 3]. T
consists of reducing the essential properties that an interval should have to a finite
properties occurring in simple components. For this, we need to have some contr
those non-negative integers in a simple component that its positive cone may conta
we also need to construct order-embeddings among simple components under wh
control is preserved.
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In view of the considerations made at the beginning of Section 1 and related to r
on simple components (see [14,23]), a possible way of getting the desired control is
consider submonoids of the non-negative integers generated by coprime positive intege
and order-embeddings among simple components whose positive cones have this p
form, using [15, Lemma 2.3 (2)]. The basic idea consists of strengthening some arith
properties in order to force the expression of non-negative integers to become p
elements in a certain simple component.

Lemma 4.1. Let N ∈ N. Givena in N, there existp, c andd in N such thatgcd(a,p) =
gcd(a, c) = gcd(c, d) = 1, pc ≡ pd ≡ 1 (moda), d > max{(a − 1)pc + a(N − 1), ac},
p > N , andpc > aN .

Proof. Throughout the proof, denote byx the class of an element inZ/nZ for anyn. For
p andc in N, it is clear that gcd(p, a) = gcd(c, a) = 1 is equivalent to the fact thatp andc

are invertible inZ/aZ. Therefore, if we selectp andc in such a way thatp = c−1 ∈ Z/aZ,
we will havepc ≡ 1 (mod a). It is clear that there exist infinitely many numbersp and
c satisfying the above. We can then takep, c > N and alsopc > aN . By a similar line
of argument, oncep is fixed, there are infinitely manyd in N such thatpd ≡ 1 (moda).
For any of these choices we have thatd = p−1 = c in Z/aZ, whenced − c is divisible
by a, that isd = c + ak for somek in N. Now, in Z/cZ, this saysd = c + ak = ak. We
can choosek big enough such thatd > max{(a − 1)pc + a(N − 1), ac} and gcd(c, k) = 1.
This will also guarantee thatd is invertible inZ/cZ, that is, gcd(c, d) = 1. �
Notation. Let (Z,H+) be a simple component. There is then a (uniquely determi
elementN in H+ such thatN −1 /∈ H+, andN + k ∈ H+ for all k in Z+. We shall denote
this element byNH .

For the rest of this section, let us fix a simple component(Z,H+). Givena in N, we
can choose by Lemma 4.1 elementsp, c andd in N such that gcd(a,p) = gcd(a, c) =
gcd(c, d) = 1, pc ≡ pd ≡ 1 (mod a), p ∈ H+, pc > aNH andd > max{(a − 1)pc +
a(NH − 1), ac}.

Let G+ = aH+ + p〈c, d〉. Since gcd(c, d) = 1, we have that(Z, 〈c, d〉) is a simple
component. Since gcd(a,p) = 1, we can use [15, Lemma 2.3] to conclude that(Z,G+) is
a simple component and that the map(Z,H+) → (Z,G+) defined by multiplication bya
is an order-embedding.

We shall use these notations in the Proposition below and in the next section.

Proposition 4.2. Leti in Z be such that0 � i � a−1 and letx /∈ H+. Thenipc+ax /∈ G+.
In particular, if we denoteLH = {l0, l1, . . . , la−1} whereli = ipc + a(NH − 1), it follows
thatLH ∩G+ = ∅. Moreover, all integers that are congruent toi (moda) and bigger than
li belong toG+.

Proof. Since multiplication bya is an order-embedding, we see thatat /∈ G+ if and only
if t /∈ H+. In particular,a(NH − 1) /∈ G+. Moreover, any multiple ofa which is bigger
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thana(NH − 1) will belong toG+, as it will have the format with t = NH + k (k in Z+),
and sot ∈ H+.

Assume now 0� i � a − 1 andx /∈ H+. We have to prove thatipc + ax /∈ G+. By way
of contradiction, ifipc + ax ∈ G+, we would then have thatipc + ax = ay + pz where
y ∈ H+ andz ∈ 〈c, d〉, that is,z = cz1+dz2 for some positive integersz1, z2. We therefore
have

ipc + ax = ay + pcz1 + pdz2. (4.1)

We now claim thaty < x. We already know thaty �= x becausey ∈ H+. Assume tha
y � x + 1, so thaty = x + k with k � 1. We would then have thatipc + ax = ay +pcz1 +
pdz2 = ax +ak+pcz1+pdz2, whenceipc = ak+pcz1+pdz2. Thus (since alsoc < d),

0 < a � ak = ipc − pcz1 − pdz2 � ipc − pcz1 − pcz2 = pc
(
i − (z1 + z2)

)
,

and soi − (z1 + z2) � 0. Notice that also

0 ≡ ak = ipc − (pcz1 + pdz2) ≡ i − (z1 + z2) (moda).

This implies thati − (z1 + z2) = ar for some positive integerr. But sincei � a − 1 by
assumption we conclude thatr = 0, hencei = z1 + z2 � a − 1. Thenipc = ak + pcz1 +
pdz2 > ak + pc(z1 + z2) = ak + pci, and so 0> ak > 0. This contradiction establishe
the claim.

Going back to Eq. (4.1), we find that 0� a(x −y) = pcz1 +pdz2− ipc. Sincex /∈ H+,
we have thaty < x � NH − 1. If z2 �= 0, thenaz2 − (a − 1) � 1 and (usingd > ac and
pc > aNH ), we get

a
(
(NH − 1) − y

)
� a(x − y) = pcz1 + pdz2 − ipc � pdz2 − ipc > pacz2 − ipc

� pacz2 − (a − 1)pc = pc
(
az2 − (a − 1)

)
> aNH

(
az2 − (a − 1)

)
> aNH,

which is clearly not possible.
It follows then thatz2 = 0. This means thata(x−y) = pcz1− ipc = pc(z1− i), whence

z1 > i (becausex > y). But thena(x − y) = pc(z1 − i) � pc > aNH . This implies that
x − y ∈ H+ and sincey ∈ H+, it follows thatx ∈ H+, contrary to our assumption.

We have proved thatipc + ax /∈ G+ whenever 0� i � a − 1 andx /∈ H+. In particular,
sinceNH − 1 /∈ H+, we have thatli = ipc + a(NH − 1) /∈ G+, henceLH ∩ G = ∅.

Let nowt in Z+ be such thatt ≡ i (moda) andt > ipc+a(NH −1). Then, sincepc ≡ 1
(moda), we have thatt − ipc ≡ 0 (moda) and soa(NH − 1) < t − ipc = as for somes

in Z+. ThenNH − 1 < s, and therefores ∈ H+ andt = as + ipc ∈ aH+ + p〈c, d〉 = G+.
It follows from this that any integer congruent toi (mod a) and bigger thanli can be
written asipc + as wheres > NH − 1, and so belongs toG+. �
Corollary 4.3. Under the hypotheses and notation of Proposition4.2, we haveNG =
la−1 + 1.
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Proof. It is clear thatla−1 is the largest element of the setLH defined in Proposition 4.2
Let x > la−1. We obviously have thatx ≡ k (mod a) for some 0� k � a − 1. Since
x > la−1 > lk , we obtain (using Proposition 4.2) thatx ∈ G+. �

5. A new wild example

The main objective of this section is to construct a simple Riesz group(G,G+) of rank
one such that its positive cone contains an unbounded intervalD that satisfiesnD �= G+ for
all n in N. This will be done inductively by constructing a sequence of simple compone
connected by order-embeddings. We first establish a lemma that will provide the ind
step in the theorem below. Given a simple component(Z,H+), retain from the previou
section the notationNH for the (unique) element inH+ such thatNH − 1 /∈ H+ but
NH + k ∈ H+ for all positive integersk.

Lemma 5.1. Let(Z,H+) be a simple component, letx1, y1 ∈ H+ be such thaty1 = x1+1,
and leta > NH . There exists then a simple component(Z,G+) satisfying:

(i) a · : (Z,H+) → (Z,G+) is an order-embedding anda2NH < NG;
(ii) there is an elementy2 in G+ such that:

(a) y2 − 1 ∈ G+,
(b) ay1 <G y2 andy2 − ay1 > aNH ,
(c) (NH − 1)ax1 ≮G (NH − 1)y2.

Proof. Notice that(NH −1)y1− (NH −1)x1 = (NH −1) /∈ H+; whence(NH −1)x1 ��H

(NH − 1)y1.
Choosep, c and d as in Lemma 4.1. LettingG+ = aH+ + p〈c, d〉, we have tha

(Z,G+) is a simple component and multiplication bya is an order-embedding.
Write LH = {l0, l1, . . . , la−1} as in Proposition 4.2, so we have that any integer c

gruent toi (mod a) and larger thanli belongs toG+. Note also thatNG = la−1 + 1 by
Corollary 4.3. This equals toNG = (a − 1)pc + a(NH − 1) + 1, and hence we have

NG = (a − 1)pc + a(NH − 1) + 1 > (a − 1)
(
pc + (NH − 1)

)
> (a − 1)

(
aNH + (NH − 1)

)
> (a − 1)(a + 1)(NH − 1) = (

a2 − 1
)
(NH − 1)

> a2NH,

proving condition (i).
Let y2 = pc + ay1, and observe thaty2 ∈ G+, becausey1 ∈ H+ by assumption. Notice

also thaty2 − ay1 = pc > aNH , by the selection ofp andc. Sincepc ∈ G+, we see tha
ay1 <G y2, thus verifying condition (ii)(b).

Sincea > NH , it follows from Proposition 4.2 thatlNH −1 /∈ G+. Therefore, the fact tha

(NH − 1)y2 − (NH − 1)ax1 = (NH − 1)pc + a(NH − 1) = lNH −1 /∈ G+
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implies that(NH − 1)ax1 ��G (NH − 1)y2. Hence condition (ii)(c) also holds.
It remains to verify condition (ii)(a). Sincey2 − 1 = pc + ay1 − 1 ≡ 0 (mod a) and

y2 − 1 = pc + ay1 − 1 � pc > aNH > a(NH − 1) = l0, Proposition 4.2 ensures thaty2 −
1 ∈ G+, as desired.

Theorem 5.2. Let A be a strictly ascending sequence of non-negative integers. The
any generalised integerm coprime withn(A), there exists a simple Riesz group of rank o
G(m) such that:

(i) there is an unbounded countably generated intervalD satisfyingnD �= G(m)+ for all
n in N;

(ii) for some generalised integern dividing n(A), the groupG(m) is isomorphic toZnm

(as abelian groups).

Proof. First, we will inductively construct asequence of simple components and ord
embeddings

ai · :
(
Z,H+

i

) → (
Z,H+

i+1

)
,

together with a sequence(yi) in Z+ (i � 1) such that

(a) for all i � 1, ai ∈ A;
(b) for all i � 1, ai > NHi > a2

i−1NHi−1 > (a2
1)i−1NH1; alsoyi ∈ H+

i , and the elemen
xi = yi − 1 ∈ H+

i for all i;
(c) (NHi − 1)xi ≮Hi (NHi − 1)yi ;
(d) aiyi <Hi+1 yi+1;
(e) (NHj − 1)ai−1ai−2 · · ·ajxj ��Hi (NHj − 1)yi for all j � i − 1.

Let (Z,H+
1 ) be any simple component such that 1/∈ H+

1 . Let y1 in H+
1 be such tha

x1 = y1 − 1 ∈ H+
1 (for example,y1 = NH1 + 1). Choosea1 in A with a1 > max{NH1,3}.

Then Lemma 5.1 provides us with a simple component(Z,H+
2 ) (whereNH2 > a2

1NH1)
and an elementy2 ∈ H+

2 such that the elementx2 = y2 − 1 ∈ H+
2 , a1y1 <H2 y2,

(NH1 − 1)a1x1 ≮H1 (NH1 − 1)y2 anda1NH1 < y2 − a1y1. Moreover, multiplication by
a1 is an order-embedding from(Z,H+

1 ) into (Z,H+
2 ).

Suppose thata1, . . . , an−1, H+
1 , . . . ,H+

n andy1, . . . , yn have been constructed satisf
ing conditions (a)–(e) above.

Choosean in A with an > NHn and apply Lemma 5.1 to obtain an order-embedding

an · :
(
Z,H+

n

) → (
Z,H+

n+1

)
,

where(Z,H+
n+1) is a simple component such thatNHn+1 > a2

nNHn . Moreover, there is an
elementyn+1 in H+

n+1 such that the elementxn+1 = yn+1 − 1 ∈ H+
n+1, anyn <Hn+1 yn+1,

yn+1−anyn > anNHn and(NHn −1)anxn ≮Hn+1 (NHn −1)yn+1. Hence conditions (a)–(d
are satisfied (as well as condition (e) withi = n + 1 andj = n).
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Thus, in order to see that condition (e) also holds withi = n + 1, we only need to
consider the cases wherej � n − 1.

Notice thatyn+1 = pncn + anyn (by the proof of Lemma 5.1) wherepn, cn are chosen
as in Lemma 4.1. By our induction hypothesis,

(NHj − 1)yn − (NHj − 1)

n−1∏
k=j

akxj /∈ H+
n ,

wheneverj � n − 1.
SinceNHj − 1 < an − 1 if j � n − 1, Proposition 4.2 applies and so

(NHj − 1)pncn + an

[
(NHj − 1)yn − (NHj − 1)

n−1∏
k=j

akxj

]
/∈ H+

n+1;

that is,

(NHj − 1)yn+1 − (NHj − 1)

n∏
k=j

akxj /∈ H+
n+1

for everyj � n − 1, as desired.
Next, let (G,G+) = lim−→((Z,H+

i ), ai · ), and denote byfn : (Z,H+
n ) → (G,G+)

the natural (order-embedding) maps. By condition (d),yi+1 − aiyi ∈ H+
i \ {0}, hence

fi+1(yi+1) − fi(yi) = fi+1(yi+1 − aiyi) ∈ G+ \ {0}. This shows that the intervalE =
〈fi(yi)〉 is soft and countably generated (see, e.g. [17, Lemma 3.4]).

Let u = f1(y1) in G+, and take this as an order-unit. Denote bys the (unique) state o
(G,u); for i in N, let si denote the unique state on the simple component(Z,H+

i ) with
respect to the order-unitui = ai−1ai−2 · · ·a1y1. We now check thatE is unbounded, tha
is, supφu(E) = ∞. By the first part of the proof,yi+1 = pici + aiyi wherepi andci are
chosen in such a way thatpici > aiNHi . Then, by using condition (b) recurrently, we ge

s
(
fi+1(yi+1)

) = si+1(yi+1) = pici

aiai−1 · · ·a1y1
+ aiyi

aiai−1 · · ·a1y1
>

pici

aiai−1 · · ·a1y1

>
aiNHi

aiai−1 · · ·a1y1
= NHi

ai−1 · · ·a1y1
>

a2
i−1NHi−1

ai−1 · · ·a1y1
= ai−1NHi−1

ai−2 · · ·a1y1

>
ai−1a

2
i−2NHi−2

ai−2 · · ·a1y1
> · · · > ai−1 . . . a2a1NH1

y1
> a

(i−2)(i−1)
1

NH1

y1
,

and so clearly supφu(E) = ∞.
Now, suppose thatnE = G+ for somen. Choosej in N such that(NHj − 1) � n. We

have thatfj ((NHj − 1)xj ) <G (NHj − 1)fi(yi) for all (suitably) largei. This will happen
in particular for somei > j , which translates intofi((NHj − 1)ai−1ai−2 · · ·ajxj ) <G
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fi((NHj − 1)yi). Sincefi is an order-embedding, we get(NHj − 1)ai−1ai−2 · · ·ajxj <Hi

(NHj − 1)yi for somei > j , in contradiction with condition (e).
Hence, we have constructed a simple group of rank one(G,G+), containing an interva

E ⊂ G+ such thatϕ(E) = ∞ andnE �= G+ for everyn in N. Notice thatA′ = (ai)i�1 is
an infinite subsequence ofA, so thatn = n(A′) is a generalised integer dividingn(A).
Moreover, by construction,G ∼= Zn (as abelian groups). Thus, for any generalised
teger m coprime with n, there exists by Theorem 1.2 a simple Riesz group of r
one (G(m),G+(m)) such thatG(m) ∼= Znm, and an order-embeddingτ :G → G(m).
Then, by condition (iii) in Lemma 3.1, the intervalD = Eτ = 〈(τfi)(yi)〉 satisfies tha
nD �= G+(m) for every n in N. Let u be an order-unit inG. Since bothS(G,u) and
S(G(m), τ (u)) are singletons with (unique) statess ands′ respectively, the affine continu
ous mapS(τ) :S(G,u) → S(G(m), τ (u)) is an homeomorphism withS(τ)(s′) = s′τ = s.
Hence, sups′((τfi)(yi)) = sup(s′τ )(fi(yi)) = sups(fi(yi)) = ∞, whenceD is also un-
bounded. This completes the proof.�

6. The monster example

In this section, we will use the constructions carried out in Theorems 3.4 and
order to construct an example of a simple Riesz group of rank one containing unbound
intervals that (simultaneously) enjoy the properties exhibited in those theorems.

Theorem 6.1. LetL = (qi)i�1 be a sequence of non-negative, relatively prime integers
I = (aj )j�1 be a sequence such that everyaj ∈ L, while eachqi in L appears infinitely
many times inI . LetJ = (bi)i�1 be a strictly increasing sequence of non-negative inte
such thatgcd(qi, bj ) = 1 for all i, j � 1. Let n(I) andn(J ) be the generalised intege
associated toI and J , respectively. Then, for any generalised integerm coprime with
n(I) · n(J ), there exists a simple Riesz group of rank oneG(m) such that:

(i) for everyqi in L, there is a countably generated intervalDi satisfyingtDi �= G(m)+
for t � qi − 1 andqiDi = G(m)+;

(ii) there is an intervalD ⊂ G(m)+ such thatnD �= G(m)+ for all n in N;
(iii) for some generalised integern dividing n(J ), the groupG(m) is isomorphic to

Zn(I )·n·m (as abelian groups).

Proof. We first use the argument in the proof of Theorem 3.4 with the sequenceI . In this
way we get a simple group of rank one(H,H+) such that:

(a) H ∼= Zn(I );
(b) for everyqi in L, there is a countably generated intervalEi satisfyingtEi �= H+ for

t � qi − 1 andqiEi = H+.

By Proposition 1.1,(H,H+) = lim−→((Z,H+
i ), li · ), where(Z,H+

i ) is a simple componen
andli · : (Z,H+) → (Z,H+ ) is an order-embedding for alli � 1. Notice that

∏
i�1 li =
i i+1
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n(I) = ∏
k�1 q∞

k . Thus, for eachi � 1, li = ∏ri
j=1 q

nj

kj
for someri andnj in N. Therefore

gcd(li, bj ) = 1 for all i, j � 1.
Now, fix (Z,K+

1 ) = (Z,H+
1 ) and apply the argument in the proof of Theorem 5.2 us

the sequenceJ . Thus, we get an inductive system((Z,K+
i ), ai · ), where(Z,K+

i ) is a
simple component,ai ∈ J andai · : (Z,K+

i ) → (Z,K+
i+1) is an order-embedding for a

i � 1. Moreover, the group(K,K+) = lim−→((Z,K+
i ), ai · ) is a simple group of rank on

such that:

(a) K ∼= Zn for the generalised integern = ∏
n�1 an, which dividesn(J );

(b) there is a countably generated intervalE such thatnE �= K+ for everyn � 1.

We next define submonoidsG+
i,j of the non-negative integers by recurrence oni, j � 0,

as follows:

(a) G+
0,0 = H+

1 = K+
1 ;

(b) for everyi � 1, G+
i,0 = K+

i+1;

(c) for everyj � 1, G+
0,j = H+

j+1;

(d) for everyi, j � 1, G+
i,j = aiG

+
i−1,j + ljG

+
i,j−1.

By [15, Lemma 2.3(1)], we have that(Z,G+
i,j ) is a simple component for everyi, j � 0,

and in the following diagram:

(
Z,G+

0,0

) l1·

a1·

(
Z,G+

0,1

) l2·

a1·

(
Z,G+

0,2

) l3·

a1·

· · ·

(
Z,G+

1,0

) l1·

a2·

(
Z,G+

1,1

) l2·

a2·

(
Z,G+

1,2

) l3·

a2·

· · ·

(
Z,G+

2,0

) l1·

a3·

(
Z,G+

2,1

) l2·

a3·

(
Z,G+

2,2

) l3·

a3·

· · ·

...
...

...

(6.1)

all squares are commutative and all the maps are order-embeddings (see Proposition
and [15, Proposition 2.10]).

Let (G,G+) = lim−→((Z,G+
i,i ), ai li · ). Then (G,G+) is a simple group of rank one

and G ∼= Zn·n(I ) by construction. An argument analogous to that in condition (iii)
Proposition 3.3 guarantees the existence of order-embeddingsσ : (H,H+) → (G,G+)

andτ : (K,K+) → (G,G+). Thus, for any generalised integerm coprime withn(I) · n,
there exist by Theorem 1.2 a simple Riesz group of rank one(G(m),G(m)+) and an
order-embeddingβ : (G,G+) → (G(m),G(m)+). Clearly, the maps(βσ) : (H,H+) →
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(G(m),G(m)+) and(βτ) : (K,K+) → (G(m),G(m)+) are order-embeddings. Thus,
condition (iii) in Lemma 3.1, the intervalsD = E(βτ) andDi = (Ei)(βσ) in (G(m),G(m)+)

enjoy the desired properties.�
The example in Theorem 6.1 above allows us to construct a (stably finite) mon

intervalsWD
σ (G+) over a simple Riesz groupG, whereD is an unbounded interval suc

that the representation mapϕ defined in (3.3) is not injective, even in the case whenD is
not functionally complete (see [13, Remark 3.4(2)]). Other consequences will be outlin
in Section 7.

7. Final comments and remarks

In this section we explore the possible applications of the results obtained in pre
sections to the context ofK-theory of multiplier algebras of simpleC∗-algebras with rea
rank zero.

We remind the reader thatC∗-algebras are precisely the norm-closed∗-subalgebras o
B(H), the algebra of bounded linear operators on a Hilbert spaceH. Recall that a (unital
C∗-algebraA hasreal rank zeroprovided that the set of invertible self-adjoint elements
A is dense in the set of self-adjoint elements ofA (see [4]). In caseA does not have a uni
thenA has real rank zero if, by definition, the minimal unitisationÃ has real rank zero. W
say that a (unital)C∗-algebraA hasstable rank oneif the set of invertible elements ofA
is dense (see [12,19]). As with the real rank zero case, ifA does not have a unit, thenA
has stable rank one if̃A has. A simple and separableC∗-algebra is said to beelementary
if it is isomorphic to the algebra of compact operators on a (separable) Hilbert space. T
translates into the requirement that the algebra contains minimal projections. We s
concerned with non-elementaryC∗-algebras.

Problem 7.1. Let (G,G+) be any of the groups obtained in Theorems 3.4, 5.2 or 6.1. D
there exist a simple, separable, non-unitalC∗-algebraA with real rank zero and stable ran
one for which the ordered group(K0(A),K0(A)+) is order-isomorphic to(G,G+)?

We comment below on the relevance of this question for the consequences that wo
sult given a positive answer. For this, we need to remind the reader of some basic el
in K-theory that will be needed in our discussion (see, e.g. [3]). Given aC∗-algebraA,
we denote byM∞(A) = lim−→ Mn(A), under the mapsMn(A) → Mn+1(A) defined by
x �→ diag(x,0); that is,M∞(A) is the algebra of countably infinite matrices overA with
only finitely many non-zero entries.

We denote byV (A) the set of equivalence classes of projections inM∞(A) under the
Murray-von Neumann equivalence∼. This becomes an abelian monoid with operation

[p] + [q] =
[(

p 0
0 q

)]
.

This monoid is naturally endowed with thealgebraic preorder, denoted by�, induced by
the previous equivalence; namely[p] � [q] if p is equivalent to a subprojection ofq .
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If the C∗-algebraA is represented faithfully as a∗-subalgebra ofB(H) for a separable
Hilbert spaceH and the action is non-degenerate, then we define themultiplier algebra
M(A) of A as theC∗-algebra

M(A) = {
x ∈ B(H)

∣∣ xA ⊂ A andAx ⊂ A
}
.

It is well known that this construction is equivalent to the one obtained by using d
centralisers (see, e.g. [26]), and it is of course only relevant in caseA does not have a un
itself, since otherwiseM(A) coincides withA. The multiplier algebra, together with th
embedding ofA as a two-sided closed ideal, provides the solution to the universal pro
of adjoining a unit to the algebraA.

If A is a separable (non-unital)C∗-algebra with real rank zero andP is a projection in
M(A), then by [11, Lemma 1.3] we have thatPAP also has real rank zero and an appr
imate unit consisting of an increasing sequence of projections, say(pn). If, moreover,p is
a projection inA, thenp � P if and only if p � pn for somen � 1. In this situation, we
define

Θ([P ]) = {[p] ∈ V (A)
∣∣ p is a projection inPM∞(A)P

}
= {[p] ∈ V (A)

∣∣ [p] � [pn] for somen in N
}
.

Then Θ([P ]) is a countably generated interval inV (A), which is soft precisely whe
P /∈ A. Let D(A) = Θ([1M(A)]). In the case whenA has moreover stable rank one, t
map

Θ :
(
V

(
M(A)

)
, [1M(A)]

) → WD(A)
σ

(
V (A)

)
(7.1)

is a normalised monoid isomorphism (see [17, Theorem 2.4] and also [11, Theorem
For any separable, non-unital, non-elementary simpleC∗-algebra with real rank zer

and stable rank one, it is well known that the groupK0(A) is a countable, non-atomi
simple Riesz group. Because of the existence of an approximate unit of projections,K0(A)

is naturally isomorphic to the Grothendieck group of the monoidV (A). SinceA has stable
rank one,V (A) has cancellation and can be identified withK0(A)+. Let p be any non-
zero projection inA and setu = [p] in V (A). If d = supφu(D(A)) (see also the notatio
in Section 3), then by composing the mapϕ defined in (3.3) with the map defined in (7.1
we get a normalised monoid morphism

Φ :
(
V

(
M(A)

)
, [1M(A)]

) → (
V (A) � Wd

σ (Su), d
)
, (7.2)

which is an isomorphism ifV (A) is furthermore strictly unperforated, see [17, Theor
3.8]. We now comment on what kind of examples a positive solution to Problem 7.1 w
lead to in connection with the results obtained in previous sections.

7.2. Let I = (qn) be an increasing sequence of non-negative and relatively prime inte
and letA be a separable, non-unital, non-elementaryC∗-algebra with real rank zero and
stable rank one such that(K0(A),K0(A)+) is order-isomorphic to the group constructe
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in Theorem3.4 (with respect to the sequenceI ). Then, there exists a sequence of projecti
(En)n�1 ⊂M(A ⊗ K) such that:

(i) Φ(En) = Φ(1M(A⊗K)) = ∞ for all n � 1;
(ii) En+1 � En for everyn � 1 (i.e.En+1 is not equivalent to a subprojection ofEn);
(iii) for eachn � 1, t · En � 1M(A⊗K) whenevert < qn, andqn · En ∼ 1M(A⊗K).

ReplaceA by its stabilisationA ⊗ K (whereK is theC∗-algebra of compact operato
on a separable Hilbert space), and note that theK0 group remains the same. So, to ver
the above claim, assume thatA is stable.

By Theorem 3.4, for everyqn in I , there is a countably generated unbounded inte
Dn ⊂ K+

0 (A) such thattDn �= K+
0 (A) for t � qn − 1 andqnDn = K+

0 (A). Moreover, by
Theorem 3.7, we can choose these intervals in such way thatDn+1 � Dn in the algebraic
ordering of the monoid of intervalsWD(A)

σ (K+
0 (A)).

Since, as mentioned, we can identifyV (A) with K0(A)+, we can use the isomo
phism (7.1) to get a sequence of projections inM(A ⊗ K) by settingEn = Θ−1(Dn).
Clearly they satisfy properties (i)–(iii).

Notice that, ifA is aC∗-algebra satisfying the hypotheses in 7.2 then, for everyn, the
C∗-algebraM(En(A ⊗ K)En) is finite. Otherwise, at the level of monoids,Dn + Y = Dn

for a non-zero intervalY , and thus, by simplicity ofK0(A), we would conclude thatDn =
K+

0 (A), in contradiction with Theorem 3.4. On the other hand,

Mqn

(
M

(
En(A ⊗ K)En

)) ∼=M
(
Mqn

(
En(A ⊗ K)En

)) ∼=M(A ⊗ K),

which implies thatMqn(M(En(A ⊗ K)En)) is not finite. This kind of behaviour has be
exhibited in concrete examples constructed by Rørdam (see [20]). There are even
examples, but they do not have real rank zero (see [21,22]).

The existence of examples as in 7.2 would provide us with examples ofC∗-algebras
of real rank zero that fail to have weak cancellation in the sense of Brown and Pe
(see [5]). They would also give a solution to the Fundamental Separativity Problem
e.g. [1]).

7.3. LetA be a separable, non-unital, non-elementaryC∗-algebra with real rank zero and
stable rank one such that(K0(A),K0(A)+) is order-isomorphic to the group constructe
in Theorem5.2. There exists then a projectionE in M(A ⊗ K) such that:

(i) Φ(E) = Φ(1M(A⊗K)) = ∞;
(ii) n · E � 1M(A⊗K) for everyn � 1.

To check this, use Theorem 5.2 to find a countably generated unbounded intervaD ⊂
K+

0 (A) such thatnD �= K+
0 (A) for everyn � 1. Then, using the isomorphism (7.1), w

get a projectionE = Θ−1(D) in M(A ⊗ K) satisfying the required properties.
Notice that ifA is aC∗-algebra satisfying the hypotheses in 7.3, then we have a

swer to an implicit question posed in [13, Remark 3.4(2)]. Namely, if(G,G+) is a simple
Riesz group containing an intervalD ⊆ G+ such thatϕ(D) = ϕ(G+) = ∞, butnD �= G+
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for everyn in N, then if Y ∈ WD
σ (G+) andnD + Y = nD, the simplicity of (G,G+)

would imply that(n + 1)D = nD, and thusnD = G+, contradicting the hypothesis (i.
WD

σ (G+) is a stably finite monoid, see, e.g. [13]). So,nD �= mD whenevern �= m, but still
ϕ(nD) = ∞. Hence, it might be possible to construct a unital, simpleC∗-algebraA with
real rank zero and stable rank one, such that the multiplier algebraM(A ⊗ K) contains
a non-zero projectionE with M(E(A ⊗ K)E) stably finite, but with identically infinite
scale [17]. Moreover, according to [20, Proposition 3.6] (also see [16, Theorem 2
E(A⊗K)E would not be a stable algebra. The existence of such an example would
exact limits of application of [16, Proposition 2.11].

7.4. Let I = (qn) be an increasing sequence of relatively prime non-negative inte
Let A be a separable, non-unital, non-elementaryC∗-algebra with real rank zero and
stable rank one such that(K0(A),K0(A)+) is order-isomorphic to the group constructe
in Theorem6.1 (with respect to the sequenceI ). There exists then a sequence of projecti
(En)n�1 and a projectionE in M(A ⊗ K) such that:

(i) Φ(En) = Φ(1M(A⊗K)) = ∞ for everyn � 1;
(ii) En+1 � En for everyn � 1;
(iii) for everyn � 1, t · En � 1M(A⊗K) whenevert < qn, andqn · En ∼ 1M(A⊗K);
(iv) Φ(E) = Φ(1M(A⊗K)) = ∞;
(v) n · E � 1M(A⊗K) for everyn � 1.

Hence, in view of 7.2 and 7.3, the existence of aC∗-algebraA satisfying the hypothese
in 7.4 would imply that the multiplier algebraM(A ⊗ K) contains projections having th
special behaviours stated in there.
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