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Abstract

In this paper an extended robust independent components analysis (ERICA) algorithm based on cumulants is

applied to identify vibrational alarm signals generated by soldier termites in southern Spain (reticulitermes grassei),

by drumming their heads against the substratum, and measured by low cost equipment. A seismic accelerometer is

employed to strongly characterize these acoustic emissions. To support the proposed technique, vibrational signals

from a low cost microphone have been mixed with known signals, and the mixtures processed by ERICA. The exper-

imental results confirm the validity of the proposed method, which has been taken as the basis for the development of a

low cost, non-invasive, termite detection system.
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1. Introduction

Termites damage wood structures world-wide in

an irreparable way. Most of this dramatic damage

is caused by subterranean termites. The costs of

this harm could be significantly reduced through

earlier detection of the infestation. These methods
ed.
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of detection are also important because environ-

mental laws are becoming more restrictive with ter-

miticides due to their possible health threats.

The primary method of termite detection con-

sists of looking for evidence of activity. But only
about 25% of the building structure is accessible,

and the conclusions depend on the level of exper-

tise and the criteria of the inspector [1].

As a consequence, new techniques have been

developed to remove subjectiveness and gain acces-

sibility. But at best they are considered useful only

as supplements. Acoustic methods have emerged as

an alternative.
Termite activity takes place in wood, and when

the wood fibers are broken they produce acoustic

emissions. These acoustic signals are monitored

using ad hoc resonant acoustic emission (AE) pie-

zoelectric sensors which include microphones and

accelerometers. User-friendly equipment is cur-

rently used in targeting subterranean insect infes-

tations by means of spectral and temporal
analysis. They have the drawback of the relative

high cost and their practical limitations.

The usefulness of acoustic techniques for detec-

tion depends on several biophysical factors. The

main one is the amount of distortion and attenua-

tion as the sound travels through the soil

(�600dBm�1, compared with 0.008dBm�1 in the

air). Furthermore, soil and wood are far from
being ideal acoustic propagation media because

of their high anisotropy and frequency dependent

attenuation characteristics [2].

The aim of the present study is to investigate the

capability of a robust ICA cumulant-based algo-

rithm in the task of separating termite alarms sig-

nals which have been mixed with non-Gaussian

random white noise. Termite alarms are consid-
ered as low-level transient signals. This is to show

that a relatively economic microphone and a non-

specific equipment can be used to collect data if the

algorithm performs the task of separating.

AE data were recorded using a standard low-

cost microphone and the sound card of a portable

PC. A seismic accelerometer was previously used

to characterize the frequency contents of the emis-
sions. The experiment took place in the ‘‘Costa del

Sol’’ (Malaga, Spain), and data taken from subter-

ranean wood structures and roots.
Modern signal processing techniques can be

used to distinguish insect sounds from background

noise with good reliability in soil measurements,

because sound insulating properties of soil help re-

duce interference. Besides, such techniques have
been successfully used in relatively noisy urban

environments.

These techniques are based mainly on spectral

analysis and digital filtering. That is why they

have been applied to data from acoustic ad hoc

sensors and not to data recorded using standard

microphones.

The particular contribution of this study is to
show that an ICA-based method is capable of sep-

arating termite alarm signals, generated in wood

and registered using a low cost sensor, from well-

known signals. The alarm signals are low-noise

patterns, recorded with a low-cost microphone

and high-pass filtered. This could be the basis of

separating low-level termite activity signals from

background urban noise using a traditional PC
and low cost non-invasive sensors.

The paper is structured as follows: Section 2

summarizes the methods for acoustic detection of

termites; Section 3 defines the ICA model and out-

lines the characteristics of emissions in wood; Sec-

tion 4 describes the experiments carried out.

Conclusions are drawn in Section 5.
2. Acoustic detection of termites: characteristics

and devices

2.1. Characteristics of the AE signals

Acoustic emission is defined as the elastic en-

ergy that is spontaneously released by materials
undergoing deformation. This energy transfer

through the material as a stress or strain wave

and is typically detected using a piezoelectric trans-

ducer, which converts the surface displacement

(vibrations) to an electrical signal.

Termites use a sophisticated system of vibratory

long distance alarm. When disturbed in their nests

and in their extended gallery systems, soldiers
produce vibratory signals by drumming their

heads against the substratum [3]. The drumming

signals consist of trains of pulses which propagate
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Fig. 2. A single pulse of a four-pulse burst.
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through the substrate (substrate vibrations), with

pulse repetition rates (beats) in the range of 10–

25Hz, with burst rates around 500–1000ms,

depending on the species [4]. Soldiers produce such

vibratory signals in response to disturbance (1–
2nm by drumming themselves) by drumming their

head against the substratum. Workers can perceive

these vibrations, become alert and tend to escape

[5].

Fig. 1 shows a typical drumming signal pro-

duced by a soldier by taping its head against a chip

of wood. It comprises two four-impulse bursts.

Each of the pulses arises from a single, brief tap
of the head against the wood.

AE data were acquired using the sound card of

a portable PC and a low-cost standard micro-

phone in low environmental noise conditions (in

a basement), 1m away from the site of the event.

The signal amplitudes were highly variable and de-

pend on the wood and strength of the taps. Thus,

data are normalized to the maximum quantization
level of the series.

Fig. 2 shows one of the impulses in a burst and

its associated power spectrum is depicted in Fig. 3.

Significant drumming responses are produced over

the range 200Hz–10kHz. The carrier frequency of

the drumming signal is around 2600Hz.

The spectrum is not flat as a function of fre-

quency as one would expect for a pulse-like event.
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Fig. 1. Two bursts of a typical acoustic emission alarm signal

produced by a soldier.
This is due to the frequency response of the micro-

phone (its selective characteristics) and also to the

frequency-dependent attenuation coefficient of the

wood.

Due to our identification purposes we are con-
cerned of the spectral and time patterns of the sig-

nals; so we do not care about the energy levels.

Besides during the demixing process of ICA origi-

nal energy levels of the signals are lost.

2.2. Devices and ranges of measurement

Many efforts to develop techniques for detect-
ing hidden termite infestations have produced only

a few real alternatives to traditional visual inspec-

tion methods. Remarkable alternatives are

ground-based monitoring devices and sensors that

detect acoustic emissions of termites in wood. It

has been proved that nearly all noise signals have

most of their energy below 20kHz 1 [3,5]. Besides,

termite activities in the wood generate a significant
amount of acoustic emission with frequency com-

ponents extending to above 100kHz. Therefore,

acoustic emission sensors are successful because

they are non-destructive and operate at high
1 The sensor used was a model A3 resonant sensor (30–

50kHz) manufactured by Physical Acoustics, with a JFET low

noise voltage amplifier, model 324-3.
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frequency (>40kHz) where background noise is

negligible and does not interfere with insect sounds

[6]. Acoustic measurement devices have been used

primarily for detection of termites (feeding and
excavating) in wood, but there is also the need of

detecting termites in trees and soil surrounding

building perimeters. Soil and wood have a much

longer coefficient of sound attenuation than air

and the coefficient increases with frequency. This

attenuation reduces the detection range of acoustic

emission to 2–5cm in soil and 2–3m in wood, as

long as the sensor is in the same piece of material
[6]. The range of acoustic detection is much greater

at frequencies <10kHz, and low frequency acceler-

ometers have been used to detect insect larvae over

1–2m in grain and 10–30cm in soil [1,6].
3. The ICA model

3.1. Outline of ICA

Blind source separation (BSS) by ICA is receiv-

ing attention because of its numerous applications

in signal processing such as speech recognition,
medicine and telecommunications [7]. The aim of

ICA consists in the recovery of the unknown inde-

pendent source signals that have been linearly

mixed in the medium [8]. These mixtures (sensor
observations) are the input data of the ICA algo-

rithm [9]. In contrast to correlation-based algo-

rithms such as principal component analysis

(PCA), ICA not only applies second-order statis-

tics (decorrelation of signals), but also reduces

high-order dependencies with the goal of making

the signals statistically independent [7,9]. The sta-

tistical methods in BSS are based in the probability
distributions and the cumulants of the mixtures.

The recovered signals (the source estimators) have

to satisfy a condition which is modelled by a con-

trast function. This function is optimized and leads

to an estimation of the mixing matrix and the orig-

inal source signals. The underlying assumptions

are the mutual independence among source signals

and the non-singularity of the mixing matrix [7,9].

3.2. The ICA model and its properties

Let s(t) = [s1(t), s2(t), . . ., sm(t)]
T be the vector of

unknown source signals, where the superscript
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represents transpose. Sources are statistically inde-

pendent. If the probability density function (PDF)

of an individual source entry is denoted as pi(si),

independence implies the joint PDF can be ex-

pressed as the product of the marginal PDFs as

pðsÞ ¼
YN
i¼1

piðsiÞ ð1Þ

Independence of the sources means one entry of a

source signal provides no further information

about any other [10]. The known mixture of the

source signals is modelled by

xðtÞ ¼ A � sðtÞ ð2Þ
where x(t) = [x1(t),x2(t), . . .,xm(t)]

T is the available

vector of observations and A ¼ ½aij� 2 Rm�n is the

unknown mixing matrix, modelling the environ-

ment in which signals are mixed, transmitted and

measured [11]. Without loss of generality we as-

sume that A is a non-singular n · n square matrix.
The goal of ICA is to find a non-singular n · m

separating matrix B such that extract source sig-

nals via [12]

ŝðtÞ ¼ yðtÞ ¼ B � xðtÞ ¼ B � A � sðtÞ ð3Þ
where y(t) = [y1(t),y2(t), . . .,ym(t)]

T is the separated
source vector which is an estimator of the original

vector of sources [13]. The separating matrix has a

scaling freedom on each of its rows because the rel-

ative amplitudes of sources in s(t) and columns of

A are unknown [12,7].

The process of ICA is depicted in the block dia-

gram of Fig. 4.

The final transfer matrix G � BA relates the
vector of independent original signals to its estima-

tor. If the complete determination of the mixing

matrix A were possible, G would be the identity.

Another property of ICA relies on non-Gaussian-

ity [14]. Gaussian distributed signals are insepara-

ble because if individual sources had Gaussian

distributions, the joint probability density function

would look more than a Gaussian distribution
than any entry [15]. When dealing with Gaussian
Mixing

A
s(t)

x(t) ICA

B
y(t)

Fig. 4. Block diagram of the ICA model.
signals, the joint distribution is invariant under lin-

ear transformations [16]. In order to formalize the

principles of separation we introduce the following

theorem.

Theorem 1. (Darmois-Skitovich) Let be the model

described by Eq. (3) which verifies condition (1). Let

be two components of the vector of estimated sources

which are mutually independent

ŝk ¼
Xn

i¼1

gkisi

ŝl ¼
Xn

j¼1

gljsj

ð4Þ

If an index h exists which verifies that gkh and glh are

non-zero, then sh is Gaussian.

As the outputs are mutually independent, G is

an orthogonal matrix. This implies the following

corollary.

Corollary 1. Let be the model described by Eq. (3)

which verifies condition 2. Let be a non-Gaussian

component of the vector s. If the components of the

vector y are mutually independent, then the separa-
tion is guaranteed.

The mutual independence of the outputs only

implies condition GGT = In. But if all the signals

in vector s are non-Gaussian then G = In.

3.3. The implementation of the algorithm

3.3.1. Cumulants and moments

High order statistics, known as cumulants, are

used to infer new properties about the data of a

non-Gaussian process [17]. Before cumulants,

due to the lack of analytical tools, such processes
had to be treated as if they were Gaussian [18].

Cumulants, and their associated Fourier trans-

forms, known as polyspectra, reveal information

about amplitude and phase of the data, whereas

second order statistic methods (power, variance,

covariance and spectra) are phase-blind [20,18].

It is convenient to remark that cumulants of

order higher than two are all zero in signals with
Gaussian probability density functions. What is

the same, cumulants are blind to any kind of a

Gaussian process. This is the reason why it is not
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possible to separate these signals using the statisti-

cal approach [19].

Let x(t) = [x1(t),x2(t), . . .,xr(t)]
T be a vector of r

zero-mean random variables. The rth moment of

this vector of signals is [20]

lrðsÞ ¼ Efsrg ð5Þ
where E is the mathematical expectation.

The relationship among the cumulant of r

stochastic signals and their moments of order p,

p 6 r, can be calculated by using the Leonov-Shiry-

ayev formula [20]

Cumðx1; . . . ; xrÞ ¼
X

ð�1Þk � ðk � 1Þ! � E
Y
i2v1

xi

( )

� E
Y
j2v2

xj

( )
� � �E

Y
k2vp

xk

( )
ð6Þ

where the addition operator is extended over all

the set of vi (1 6 i 6 p 6 r) and vi compose a parti-

tion of 1, . . ., r. For example, the set of indices of
the components of x, I = {1,2,3,4}. A partition

of I is the unordered collection of non-intersecting

non-empty sets Ip such that ¨Ip = I. The set of par-

titions corresponding to r = 4 is given in Table 1.

By using (6) the second-, third-, and fourth-

order cumulants are given by:

Cumðx1; x2Þ ¼ Efx1 � x2g ð7aÞ

Cumðx1; x2; x3Þ ¼ Efx1 � x2 � x3g ð7bÞ

Cumðx1; x2; x3; x4Þ ¼ Efx1 � x2 � x3 � x4g
� Efx1 � x2gEfx3 � x4g
� Efx1 � x3gEfx2 � x4g
� Efx1 � x4gEfx2 � x3g ð7cÞ
Table 1

Partitions corresponding to r = 4

Order Set of partitions

1 {(1, 2, 3, 4)}

2 {(1), (2, 3, 4)}, {(2), (1, 3, 4)},

{(3), (1, 2, 4)}, {(4), (1, 2, 3)},

{(1, 2), (3, 4)}, {(1, 3), (2, 4)},

{(1, 4), (2, 3)}

3 {(1), (2), (3, 4)}, {(1), (3), (2, 4)},

{(2), (3), (1, 4)}, {(1), (4), (2, 3)},

{(2), (4), (1, 3)}, {(3), (4), (1, 2)}

4 {(1), (2), (3), (4)}
In the case of nonzero mean variables xi have to be

replaced by xi � E{xi}. Let {x(t)} be a rth-order

stationary random process. The rth-order cumu-

lant is defined as the joint rth-order cumulant of

the random variables x(t), x(t + s1), . . .,x(t + sr�1),

Cr;xðs1; s2; . . . ; sr�1Þ
¼ Cum½xðtÞ; xðt þ s1Þ; . . . ; xðt þ sr�1Þ� ð8Þ

For stationary random processes the rth-order

cumulant is only a function of r�1 lags. If

{x(t)} is nonstationary then the rth-order cumu-
lant includes time dependency. For a zero-mean

stationary process and for r = 3,4, the rth-order

cumulant can also be defined as

Cumðs1; s2; . . . ; sr�1Þ ¼ Efxðs1Þ � � � xðsr�1Þg
� Efgðs1Þ � � � gðsr�1Þg ð9Þ

where {g(t)} is a Gaussian random process with

the same second order statistics as {x(t)}. There-

fore, cumulants also conveys a measure of the dis-

tance of a random process from Gaussianity [20].

The second-, third- and fourth-order cumulants
of zero-mean x(t) can be expressed using (7) and

(8).

C2;xðsÞ ¼ EfxðtÞ � xðt þ sÞg ð10aÞ

C3;xðs1; s2Þ ¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þg ð10bÞ

C4;xðs1; s2; s3Þ
¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þ � xðt þ s3Þg
¼ C2;xðs1Þ � C2;xðs2 � s3Þ
¼ C2;xðs2Þ � C2;xðs3 � s1Þ
¼ C2;xðs3Þ � C2;xðs1 � s2Þ ð10cÞ

By putting s1 = s2 = s3 = 0 in (10), we obtain

c2;x ¼ Efx2ðtÞg ¼ C2;xð0Þ ð11aÞ

c3;x ¼ Efx3ðtÞg ¼ C3;xð0; 0Þ ð11bÞ

c4;x ¼ Efx4ðtÞg � 3ðc2;xÞ
2 ¼ C4;xð0; 0; 0Þ ð11cÞ

Eqs. (11) are the measures of the variance, skewness

and kurtosis of the distribution in terms of cumu-

lants at zero lags. Normalized kurtosis and skew-

ness are defined as c4,x/(c2,x)
2 and c3,x/(c2,x)

3/2,
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respectively. We will use and refer to normalized

quantities because they are shift and scale invariant.

If x(t) is symmetric distributed, its skewness is nec-

essarily zero (but not vice versa); if x(t) is Gaussian

distributed, its kurtosis is necessarily zero (but not
vice versa).

3.3.2. Contrast functions

It has been proved that a set of random varia-

bles are statistically independent if their cross-

cumulants are zero [12].

Cumulants can be used to define contrast func-

tions. The contrast function, U[y], verifies

U½y� ¼ U½BAs� P U½s� ð12Þ
in order to be minimized. A criteria chosen to ob-

tain the contrast function is to minimize the dis-

tance between the cumulants of the sources s(t)

and the outputs y(t).

In a real situation sources are unknown so it is
necessary to use contrast functions which involve

only the observed signals. In our case we use an

entropic function in the terms described in the fol-

lowing [21].
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Theorem 2. Separation of the sources can be

developed using the following contrast function

based on the entropy of the outputs

HðzÞ ¼ HðsÞ þ log½detðGÞ� �
XC1þb;yi

1þ b
ð13Þ

where C1þb;yi is the 1 + bth-order cumulant of the ith
output, z is a non-linear function of the outputs yi, s

is the source vector, G is the global transfer matrix

of the ICA model and b > 1 is an integer verifying

that b + 1 order cumulants are non-zero.

Using the above contrast function it can be

shown [21] that the separating matrix can be

obtained by means of the following recurrent

equation

Bðhþ1Þ ¼ Iþ lðhÞ C1;b
y;yS

b
y � I

� �h i
BðhÞ ð14Þ

where Sb
y is the matrix of the signs of the output

cumulants. Eq. (14) can be interpreted as a
quasi-Newton algorithm of the cumulant matrix

C1;b
y;y . The learning rate parameters l(h) and g are

related by
6000 8000 10000

uency (Hz)

s. termite signals. Seismic accelerometer

and spectrum of vibratory alarm signals.
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lðhÞ ¼ min
2g

1þ gb
;

g

1þ g C1;b
y;y

��� ���
p

0
B@

1
CA ð15Þ

with g < 1 to avoid B(h+1) being singular; k.kp de-

notes the p-norm of a matrix.

The adaptative Eq. (14) converges, if the matrix
C1;b

y;yS
b
y tends to the identity.

The following sections describe the results we

obtained by the application of the method de-

scribed above.
4. Results and discussions

The experiment carried out comprises two

stages. The first one handles the original signals

once they have been high-pass filtered. In the sec-
Fig. 6. The filtered and simulated source signals and
ond part of the experiment we consider the signals

without pre-processing. This division was thought

to perform a preliminary experiment which han-

dles trains of pulses as sources, without any cou-

pling from the media.
Vibratory signals were collected in a basement

of a building located in the Costa del Sol (southern

Spain). Due to the quiet conditions it was easy to

ear termites drumming, and we used an economi-

cal directional microphone, Ariston CME6

model, with a sensibility of 62 ± 3 (dB) and a

bandwidth of 100Hz–8kHz. The device was con-

nected to the sound card of a portable compu-
ter and the sample frequency was adjusted to

96,000Hz.

These ideal conditions were thought to in order

to collect non-contaminated data. In the first stage

time series were high-pass filtered in the lab to sup-
their mixtures. Horizontal units: 1/96,000 (s).
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press low-frequency coupling signals introduced

by the microphone and the environment which

are non-relevant in the first set of signals. We ob-

tained two zero-mean normalized bursts (like ones

of Fig. 1) as sources 1 and 2. The computed nor-
malized kurtosis are 212.93, and 211.09, respec-

tively; which shows that ICA is expected to work

with the measured acoustic data.

In both parts of the experiment we used four

sources as the inputs of the model. The third and

forth sources consist of two uniform distributed

noise signals with enough amplitude to mask the

burst once the mixture was done. The mixing ma-
trix is a 4 · 4 random matrix whose elements are

chosen from uniformly distributed random num-

bers within 0 and 1. No pre-whitened was applied

in order to manipulate four mixtures. Further-

more, we have proved that whitening suppresses

three of the mixtures.
Fig. 7. The separation results by the ICA alg
In order to compare this method with tradi-

tional methods based on power spectrum compar-

isons, we obtain the power spectrum of the

separated signals and compare it with the power

spectrum of vibratory signals (original sources)
First of all we have to characterize the spectrum

corresponding to this specie of termite (reticuliter-

mes grassei).

4.1. Power spectra characteristics

In order to obtain a reference to compare with

ad hoc references were consulted. AE detection
methods based on energy conservation principles

work under the hypothesis of considering the

vibratory signals as pulse trains. So we have to

compare a lab-impulse frequency response of the

sensor to the real frequency response when the sen-

sor is excited with the vibratory signals. We have
orithm. Horizontal units: 1/96,000 (s).
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to see if carrier frequencies match. If it is the case,

the detection has been carried out and the pattern

of the spectrum is the reference which indicates a

vibratory signal is present.

This characterization process was developed
with data from a seismic accelerometer (KB12V,

MMF). Fig. 5 shows a comparison between the

impulse response (upper graph) of the accelero-

meter and the spectrum of the data series corre-

sponding to drumming signals. The traditional

procedure used to detect termite alarms consists

of comparing the frequencies of the maxima of

these two spectra. The comparison let us con-
clude the same 2600Hz peak corresponding to

the carrier frequency. So, this is the reference

frequency.

These criteria were considered in the first stage

of the experiment in order to check if carrier fre-

quency is present in the spectra of the outputs.

The first stage is presented first.
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4.2. Filtered pulse trains as original sources

Fig. 6 shows the original filtered sources and the

mixed results. Mixed signals give very little infor-

mation about the original sources. The ERICA
separated results are shown in Fig. 7.

Comparing the separated results with the source

signals in Fig. 6, a number of differences are found.

First, the amplitudes are amplified to some extent

due to the changes in the demixing matrix, imply-

ing that original amplitude (energy) information

has lost. Second, there are time shifts between

the original sources and the recovered signals.
Third, the sequences are arranged as the same

way as the original.

Figs. 8 and 9 show the qualitative evaluation of

the performance of the algorithm. Fig. 7 show

wide area geometric patterns, which let us con-

clude that mixtures are composed by random

numbers.
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On the other hand, Fig. 8 comprises more

informative graphs. The comparison between s1
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vs. s2 and y1 vs. y2 graph yields a very similar pat-

tern which leads us to very similar signals. The rest
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of the graphs are not as explicit, but it can be ob-

served similarities between source patterns and

measured patterns.

Figs. 10–12 show the normalized power spectra

corresponding to one source and the two impulsive
outputs, respectively.

The spectra of the separated signals y1(t) and

y2(t) show the same carrier frequency. So we can

confirm the validity of the ERICA method based

on the traditional spectra-based method.

4.3. Non-Filtered pulse trains as original sources

Signals without pre-processing are considered

here. Fig. 13 shows the original sources and the

mixtures. No lag–lag graphs are depicted because

they exhibit a similar shape to those in Fig. 9.
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The outputs of the algorithm are depicted in

Fig. 14. It is seen that the algorithm considers

the two bursts as if they had the same origin.

It is not necessary to perform a frequency-do-

main comparison because it was developed with

filtered signals. Besides, the spectra exhibit maxi-

ma point in the low-frequency interval near DC.
5. Conclusion

The independent component analysis has been

presented in this paper as a novel method used

to detect vibratory signals from termite activity

in wood. This ICA method is far different from

traditional energy conservation-based methods,
as power spectrum, which obtain an energy dia-

gram of the different frequency components, with

the risk that low-level sound can be masked.

This experience demonstrates that the algo-

rithm ERICA is able to separate the sources with

whatever small energy levels. This is due to the fact

that ICA is based on the statistical independence
of the components and not in the energy associ-

ated to each frequency component. This conclu-

sion can be expanded.

From the results of the spectra in the first stage

of the experience it is clear that the separation task

has been performed correctly. This is so because

the same spectral shape is outlined. In this stage

we have proved the validity of ICA over a pre-
processed set of signals.

The second stage confirms the performance of

the algorithm ERICA in the sense that it joins

the two bursts in one. This means that only an in-

sect (one emitter) should be considered. This is the

situation we had in practice.

Besides, ICA can be a useful tool to identify

sounds produced by insects and to study them in
detail.

From the device point of view, it has been

proved that a low-cost microphone can be used

for insect-detection purposes. This is so because

in case of high-level background noise, even if it

is white, as it has been proved, ICA is capable of

extracting the burst of impulses. This means that
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accelerometers-based equipment could be dis-

placed when it is not needed a high sensitive device.

In the case of a high sensibility requirement, accel-

erometers can be used to extract distorted informa-

tion which would be ICA processed to extract the
possible vibratory signals produced by insects.

Finally, we attend the bandwidth specification of

the AE sensor. Traditional methods compare the

impulsive response of the AE sensor with the spec-

trum of the acquired signal, based on the hypothesis

that bursts produced by termites comprise straight

pulses [1]. In the case of an ICA method of detec-

tion, no frequency-domain comparison is needed;
a time-domain characterization is enough.

Further experiments will be developed in resi-

dential zones where background noise is high

and where coloured noise is present. This would

be the next step in checking the performance.
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