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Due to the lack of regularity of the solutions to the hydrostatic approximation of
Navier–Stokes equations, an energy identity cannot be deduced. By including certain
nonlinear perturbations to the hydrostatic approximation equations, the solutions to
the perturbed problem are smooth enough so that they satisfy the corresponding energy
identity. The perturbations considered in this paper are of the monotone class. Three
kinds of problems are then studied. To do that, we introduce a functional setting and
show in every case that the set of smooth functions with compact support is dense in
the space where we search for solutions. When the perturbations are small enough in a
certain sense, the solutions of the perturbed problem are close to those of the original
one. As a result, this gives a new proof of the existence of solutions to the hydrostatic
approximation of Navier–Stokes equations. Finally, this regularization technique has
been applied to the analysis of a one-equation hydrostatic turbulence model.
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1. Introduction

The hydrostatic approximation of Navier–Stokes equations is a general model used

in oceanography for the description of the circulation of water in oceans and lakes.

In this model, the vertical dimension of the domain (maximum depth of a large

portion of the ocean or lake) is very small compared to its horizontal dimensions.

Taking into account only the essential unknowns, namely, the horizontal velocity

field u: Ω ⊂ R
3 7→ R

2 and the surface pressure ps:ω ⊂ R
2 7→ R, the model, at

climatic time scales, becomes1,2,5,7,11,13,15,16
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(u · ∇)u+W (u)
∂u

∂z
− ν1∆u− ν2

∂2u

∂z2
+ γu⊥ + ∇ps = f in Ω ,

∇ ·
(∫ 0

−D(x,y)

u(x, y, z) dz

)
= 0 in ω ,

u = 0 on Γb , ν2
∂u

∂z
= gs on Γs ,

(1.1)

where Ω stands for the thin domain occupied with water. It is assumed that the

Lipschitz-continuous set Ω ⊂ R
3 may be described through a positive function D,

the depth, defined in the set ω̄ ⊂ R
2, in the following way

Ω = {(x, y, z) ∈ R
3/(x, y) ∈ ω, −D(x, y) < z < 0} , (1.2)

and, in turn, ω is a connected, bounded and open set. The depth is assumed to

be strictly positive in ω (but may vanish on ∂ω). All the differential operators ∇u,
∇ · v and ∆u refer to the usual gradient, divergence and Laplacian 2D-differential

operators with respect to the (x, y)-variables. The function W (u) is defined as

W (u) =

∫ 0

z

∇ · u(x, y, ζ) dζ . (1.3)

The constants ν1 > 0 and ν2 > 0 are the horizontal and vertical viscosity coeffi-

cients, respectively (in practice, we have ν1 � ν2). Also, u⊥ = (u2,−u1)
T and so

γu⊥ stands for the Coriolis acceleration term, γ being a function depending upon

the angular velocity of the earth and the latitude. The boundary of Ω is split into

two parts, namely

∂Ω = Γs ∪ Γb , Γs = ω × {0} , Γb = ∂Ω\Γs ,

so that Γs is the sea surface, whereas Γb stands for the bottom basin together with

(possible) sidewalls or taluses. The right-hand side f is a forcing term taking into

account the effects of salinity, density or temperature, which are considered here

decoupled from the governing equations of the flow (1.1). Finally, gs is the wind

stress.

An equivalent formulation of (1.1) has been studied by Besson and Laydi2

(Azérad and Guillén1 have analyzed the evolution case). This formulation is

obtained as the singular limit of the anisotropic Navier–Stokes equations under

the assumption

vertical diameter of Ω

horizontal diameter of Ω
→ 0 .

Chacón and Guillén7 obtained an existence result for problem (1.1). In this

reference, the depth function D may vanish on ∂ω, and it is shown, for f ∈ H−1(Ω)2

and gs ∈ H−1/2(Γs), the existence of a solution (u, ps) such that u ∈ H1
b(Ω) (see

(1.5) below) and ps ∈ L3/2(Ω). Problem (1.1) is also considered in former works,11,13

but these authors assume the restrictive hypothesis ess inf(x,y)∈∂ωD(x, y) > 0, that
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is, Ω has a sidewall along ∂ω. In this case, it can be shown that the surface pressure

ps also belongs to the space L2(ω).

There are some differences between problem (1.1) and the Navier–Stokes

equations which render the theoretical analysis of (1.1) particularly difficult. The

main difficulty is the lack of a differential equation for the vertical component of

the velocity field. Indeed, this is due to the asymptotic analysis leading to the

hydrostatic approximation,1 and W (u), as defined in (1.3), is in fact the vertical

velocity. As a result, the vertical convection term W (u) ∂u
∂z is less regular than

the horizontal convection term (u · ∇)u. For instance, if we search for solutions

in the usual Sobolev space u ∈ H1(Ω)2, then, at first sight, W (u) ∈ L2(Ω) and

W (u)∂u
∂z ∈ L1(Ω)2. This implies that test functions in the variational formulation

of (1.1) should be in L∞(Ω)2, and in general, the solution u itself could not be

taken as a test function. Consequently, the energy identity

ν1

∫

Ω

|∇u|2 + ν2

∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

= 〈f, u〉 + 〈g, u〉 (1.4)

cannot be deduced.

Fortunately,W (u) is more regular than just L2(Ω). Indeed, if u ∈ H1(Ω)2, W (u)

belongs to the Hilbert space H(∂z) given as

H(∂z) =

{
v ∈ L2(Ω) :

∂v

∂z
∈ L2(Ω)

}
;

it is very easy to check that the elements ofH(∂z) bear a trace v·n3|∂Ω as an element

of H−1/2(∂Ω) (n = n(x) = (n1, n2, n3)
T is the outward, unitary and normal vector

to ∂Ω in x ∈ ∂Ω). On the other hand, for 1 < q < +∞, we introduce the spaces




W 1,q
b (Ω) = {v ∈ W 1,q(Ω)/v = 0 on Γb} ,

W−1,q′

b (Ω) = W 1,q
b (Ω)′ = dual space of W 1,q

b (Ω) , 1/q + 1/q′ = 1 ,

H1
b(Ω) = W 1,2

b (Ω) , H−1
b (Ω) = H1

b(Ω)′ .

(1.5)

It is straightforward to show that if u ∈ H1(Ω)2, then W (u) · n3|Γs = W (u)|Γs = 0

and, if furthermore u ∈ H1
b(Ω)2, then

W (u)
∂u

∂z
∈W

−1,3/2
b (Ω)2 ,

and for all v ∈ W 1,3
b (Ω)2 one has

〈
W (u)

∂u

∂z
, v

〉

W
−1,3/2
b (Ω)2,W 1,3

b (Ω)2
=

∫

Ω

(∇ · u)uv −
∫

Ω

W (u)
∂v

∂z
u .

Going a step further in the analysis of this term, the following “sharp” regularity9

can be shown: if u ∈ H1
b(Ω)2, then

W (u)
∂u

∂z
∈W−1,q′

b (Ω)2 , for all q′ < 2 ,
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and for all v ∈ W 1,q
b (Ω)2, with q > 2 one has

〈
W (u)

∂u

∂z
, v

〉

W−1,q′

b (Ω)2,W 1,q
b (Ω)2

=

∫

Ω

(∇ · u)uv −
∫

Ω

W (u)
∂v

∂z
u ,

and there exists a constant C = C(q,Ω) such that [see (2.9)]
∥∥∥∥W (u)

∂u

∂z

∥∥∥∥
W−1,q′

b (Ω)2
≤ C‖u‖2

H1
b(Ω)2 . (1.6)

These properties are deduced from the so-called anisotropic estimates2,9 for u and

W (u) which give in particular W (u) ∂v
∂zu ∈ L1(Ω). In Sec. 2.4, we recall some of

these estimates and deduce new ones adapted to our functional setting.

Since in general, the solution u /∈ W 1,q
b (Ω)2, for any q > 2, this extra regularity

for the vertical convection term is not enough to use the solution u as a test function

in the variational formulation of problem (1.1), and again it is not possible to deduce

the energy identity (1.4) for this solution.

We insist on including the energy identity due to the interesting consequences

that can be derived from its applications. For instance, it may serve to deduce

certain compactness properties for bounded sequences (uj) inH1(Ω)2 of the velocity

field. In turn, this compactness property may be used to show the existence of

solutions to certain turbulence models6 consisting of a convenient modification

of (1.1) coupled with new transport-diffusion equations (turbulent kinetic energy,

density, salinity, etc.). A simple example of this situation is described in Sec. 7.

In this paper a different approach is developed in order to study (1.1). We

introduce a suitable monotone perturbation in the differential equations of (1.1) in

order to regularize the horizontal velocity field u, yielding an energy identity. In

order to set the perturbed problem, we take ε > 0, q > 2 and define the distance

function db ∈ W 1,∞(Ω) as db(x) = dist(x,Γb), x = (x, y, z) ∈ Ω. The perturbed

problem is given as




(uε · ∇)uε +W (uε)
∂uε

∂z
− ν1∆u

ε − ν2
∂2uε

∂z2
+ γuε⊥

+∇pε
s − ε∇

[
|∇ · uε|q−2∇ · uε

]
+ ε

|uε|q−2uε

dq
b

= f in Ω ,

∇ ·
(∫ 0

−D(x,y)

uε(x, y, z) dz

)
= 0 in ω ,

uε = 0 on Γb , ν2
∂uε

∂z
= gs on Γs ,

(1.7)

and we show the existence of a solution (uε, pε
s ) such that uε ∈ H1

b(Ω)2, pε
s ∈

Lq′

D(ω) = {v: ω 7→ R measurable:
∫

ω
D(x, y)|v|q′

< ∞}, with the extra regularity

∇ · uε, uε/db ∈ Lq(Ω), and the corresponding energy identity holds

ν1

∫

Ω

|∇uε|2 + ν2

∫

Ω

∣∣∣∣
∂uε

∂z

∣∣∣∣
2

+ ε

∫

Ω

|∇ · uε|q + ε

∫

Ω

∣∣∣∣
uε

db

∣∣∣∣
q

= 〈f, uε〉 + 〈g, uε〉 .

(1.8)
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Moreover, when ε → 0+, there exist u ∈ H1
b(Ω)2 and ps ∈ Lr

D(ω), for all r < 2,

such that, modulo a subsequence, uε → u in H1(Ω)2-weakly, pε
s → ps in Lq′

D(ω)-

weakly and (u, ps) is a solution to (1.1). In particular, this means that the perturbed

problem (1.7) is a regularized approximation to the initial problem (1.1).

The paper is organized as follows. Section 2 is devoted to the introduction of

some notations and hypotheses. In Sec. 3, we study a simpler version of (1.7) given

in (3.1) below: we drop out the constraint about the divergence in ω so no pressure

gradient will appear in this problem. We just consider homogeneous Dirichlet

boundary conditions and more general monotone perturbations. The analysis of

problem (3.1) relies on some known properties of monotone operators and on the

density of smooth functions with compact support in the space where we search for

solutions.

In Sec. 4, we take into account the divergence constraint in ω and keep the

homogenous Dirichlet boundary conditions: this is problem (4.1) below. In order to

solve this problem, a de Rham-like lemma is needed.14 It is then deduced that the

term ∇ps appears as the Lagrange multiplier related to the divergence constraint

in ω.

The distinction between the boundaries Γs and Γb is taken into account from

Sec. 5 onwards. Indeed, in this section we study the existence of a solution to the

problem that contains (1.7) as a particular case. A different functional setting is

then introduced, and new density properties are shown.

Section 6 deals with the behavior of the solutions (uε, pε
s) when ε → 0+. It is

then deduced that, after extracting a convenient subsequence, (uε, pε
s) converges

weakly to some (u, ps), in some suitable Banach spaces, and (u, ps) is a solution to

the original problem (1.1). In particular, this yields another proof, with a completely

different approach, of the existence of a solution to the hydrostatic approximation

of Navier–Stokes equations, not based on a mixed formulation of these equations,7

nor on a transport truncation technique.11

The inclusion of monotone perturbations in this kind of problems leads to

an energy identity for any solution; the key point is that, in the corresponding

variational formulation, the solution itself may be taken as a test function, in spite

of working in a non-Hilbert setting.

In the last section, we develop an application of the procedure described in

the preceding sections; indeed, we apply this technique to a convenient monotone

perturbation of a one equation hydrostatic turbulence model. An existence theorem

is then shown for this modified turbulence model.

2. Notations and General Assumptions on Data

Throughout this paper, the following notations and hypotheses on data will be

assumed.

2.1. The domain Ω

Let ω ⊂ R
2 be a bounded, connected and open set such that
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ω = int

J⋃

j=1

ωi , J ≥ 1, ωi ∩ ωj = ∅ , for all i, j, 1 ≤ i < j ≤ J ,

where every ωj , j = 1, . . . , J , is an open and Lipschitz-continuous set in R
2. Then,

the domain Ω ⊂ R
3 is defined as in (1.2) through a depth function D:ω 7→ R, D > 0

in ω in such a way that Ω is Lipschitz-continuous. For instance, we may assume

that D fulfills the following conditions:

(1) D|ωj ∈W 1,∞(ωj), j = 1, . . . , J ;

(2) D(x, y) > 0, for all (x, y) ∈ ω̄j\∂ω, j = 1, . . . , J ;

(3) For (x, y) ∈ ∂ωi ∩ ∂ωj 6= ∅, D(x, y) is defined as

D(x, y) = min{Di(x, y), Dj(x, y)} ;

where

Dk(x, y) = lim
m→∞

D(xm, ym) , (xm, ym) ∈ ωk , (xm, ym) → (x, y), k = i, j ;

(4) Let Ej = {(x, y) ∈ ∂ω ∩ ∂ωj/D(x, y) = 0}, 1 ≤ j ≤ J , then

min
1≤j≤J

ess inf
(x,y)∈Ej

|∇D(x, y)| > 0 ;

Also, since the depth function D may have finite jumps along a common boundary

∂ωi ∩ ∂ωj 6= ∅, the domain Ω may have a talus (inner vertical slope). On one hand,

the presence of sidewalls on ∂ω is connected with a condition of the kindD(x, y) > 0

on points (x, y) ∈ ∂ω. On the other hand, the depth may vanish along a portion of

∂ω (this is the case of a beach); in this case, we just assume condition (4) in order

to assure the Lipschitz-continuous regularity of Ω.

2.2. The differential operators

As it has already been stated, the differential operators ∇, ∆, etc., refer to the usual

gradient, Laplacian, etc., respectively, in the (x, y)-variables. Thus, for a function

v: Ω 7→ R (or v:ω 7→ R), we have

∇v =

(
∂v

∂x
,
∂v

∂y

)T

, ∆v =
∂2v

∂x2
+
∂2v

∂y2
.

If u: Ω 7→ R
2, then ∇u and ∆u apply the former definitions to the two components

of u; thus, ∇u is a 2 × 2 matrix, and ∆u is a vector in R
2. Also, for u, v: Ω 7→ R

2,

the horizontal convection term (u · ∇)v is given by

(u · ∇)v = u1
∂v

∂x
+ u2

∂v

∂y
, u = (u1, u2)

T .

Remember that the vertical transport function W (u): Ω 7→ R is defined in (1.3). It

will be interesting to introduce the function M(u):ω 7→ R
2 given as

M(u) =

∫ 0

−D(x,y)

u(x, y, z) dz . (2.1)
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2.3. The functional setting

We have already introduced some functional spaces in (1.5). The method developed

in the following sections make use of some other Banach spaces. Let 1 < q < ∞
and q′ the conjugate exponent of q, that is 1/q + 1/q′ = 1. We put

D(Ω) =
{
φ ∈ C

∞(Ω) : supp φ is compact in Ω
}

,

D
′(Ω) = space of distributions in Ω ,

W
1,q(Ω) =

{
φ ∈ L

q(Ω) :
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
∈ L

q(Ω)

}
,

a Banach space with norm ‖φ‖W 1,q(Ω)

=

(
‖φ‖q

Lq(Ω)
+

∥∥∥∥
∂φ

∂x

∥∥∥∥
q

Lq(Ω)

+

∥∥∥∥
∂φ

∂y

∥∥∥∥
q

Lq(Ω)

+

∥∥∥∥
∂φ

∂z

∥∥∥∥
q

Lq(Ω)

)1/q

,

W
1,q
0 (Ω) = D(Ω)

W 1,q(Ω)
, a Banach space with norm ‖φ‖W 1,q

0 (Ω)

=

(∥∥∥∥
∂φ

∂x

∥∥∥∥
q

Lq(Ω)

+

∥∥∥∥
∂φ

∂y

∥∥∥∥
q

Lq(Ω)

+

∥∥∥∥
∂φ

∂z

∥∥∥∥
q

Lq(Ω)

)1/q

,

W
−1,q′

(Ω) = dual of W
1,q
0 (Ω) ,

H
1
0 (Ω) = W

1,2
0 (Ω) , H

−1(Ω) = W
−1,2(Ω) ,

Db(Ω) = {φ ∈ C
∞(Ω̄) : supp φ is compact in Ω̄\Γb} ,

L
q′

D(ω) =

{
v: ω 7→ R measurable :

∫

ω
D|v|q

′

< ∞

}
,

L
q′

D,0(ω) =

{
v ∈ L

q′

D(ω) :

∫

ω
Dv = 0

}
.

Since Ω is Lipschitz-continuous, it is well known that W 1,q
b (Ω) = Db(Ω)

W 1,q(Ω)
,

(see (1.5) above). We also consider the function d ∈ W 1,∞(Ω), the distance to the

boundary ∂Ω:

d(x) = dist(x, ∂Ω) ; (2.2)

and then introduce the following spaces:




X
q
0 (Ω) = {v ∈ H1

0 (Ω)2 : ∇ · v ∈ Lq(Ω), d−1v ∈ Lq(Ω)2} ,

a Banach space with norm ‖v‖Xq
0 (Ω)

= (‖v‖2
H1

0 (Ω)2 + ‖∇ · v‖2
Lq(Ω) + ‖d−1v‖2

Lq(Ω)2 )1/2 ,

X
q
b(Ω) = {v ∈ H1

b(Ω)2 : ∇ · v ∈ Lq(Ω), d−1
b v ∈ Lq(Ω)2} ,

V
q
0 (Ω) = {v ∈ X

q
0 (Ω) : ∇ · M(v) = 0 in ω} ,

V
q
b (Ω) = {v ∈ X

q
b(Ω) : ∇ · M(v) = 0 in ω} ,

V(Ω) = {ϕ ∈ D(Ω)2 : ∇ · M(ϕ) = 0 in ω} ,

Vb(Ω) = {ϕ ∈ Db(Ω)2 : ∇ · M(ϕ) = 0 in ω} .

(2.3)
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It is very easy to check that Xq
0 (Ω)′ = H−1(Ω)2 + Y + Z, where Y = {∇g : g ∈

Lq′

(Ω)} and Z = {d−1v : v ∈ Lq′

(Ω)2}; thus, Xq
0 (Ω) is a separable and reflexive

Banach space.

Owing to Poincaré’s inequality, Xq
b(Ω), V q

0 (Ω) and V q
b (Ω) are also Banach

spaces with the same norm ‖ · ‖Xq
0 (Ω). Also, from Hardy’s inequality (if φ ∈ H1

0 (Ω)

then d−1φ ∈ L2(Ω) and there exists a constant C > 0 such that ‖d−1φ‖L2(Ω) ≤
C‖φ‖H1

0 (Ω), for all φ ∈ H1
0 (Ω)) we have Xq

0 (Ω) = H1
0 (Ω)2 whenever q ≤ 2. In the

same way, if q ≤ 2, then Xq
b(Ω) = H1

b(Ω)2 since there is a Hardy inequality related

to db, namely, ‖d−1
b φ‖L2(Ω) ≤ C‖φ‖H1

b(Ω) for all φ ∈ H1
b(Ω). This means that we

are defining something new only for q > 2. From this point on we will apply the

following assumption

q > 2 . (2.4)

The value of q also appears in (2.7) below. Note that the linear operator W given

in (1.3) is continuous from Xq
0 (Ω) [or Xq

b(Ω)] to Lq(Ω). Indeed, if u ∈ Xq
0 (Ω), then

|W (u)| ≤
∫ 0

−D(x,y)

|∇ · u(x, y, ζ)| dζ

≤ ‖D‖1/q′

L∞(ω)

(∫ 0

−D(x,y)

|∇ · u(x, y, ζ)|q dζ
)1/q

,

whence ∫ 0

−D(x,y)

|W (u)|q ≤ ‖D‖1+q/q′

L∞(ω)

∫ 0

−D(x,y)

|∇ · u(x, y, ζ)|q dζ ,

and integrating over ω, it yields

‖W (u)‖Lq(Ω) ≤ ‖D‖L∞(ω)‖∇ · u‖Lq(Ω) . (2.5)

As far as the coefficient function γ of the Coriolis term is concerned, it will be

assumed that

γ ∈ L3/2(Ω) ; (2.6)

note that in this case, if u ∈ H1
b(Ω) then γu ∈ L6/5(Ω) ⊂ H−1

b (Ω).

Finally, we consider nonlinear functions Φ: R 7→ R (respectively Φ: R2 7→ R
2)

from which the monotone operators are built. We assume the following assumptions

for these functions:



(a) Φ ∈ C0(R) , [respectively Φ ∈ C0(R2)] ;

(b) there exists a constant C0 > 0 such that

|Φ(s)| ≤ C0(|s|q−1 + 1) , for all s ∈ R (respectively s ∈ R
2) ;

(c) there exists a constant C1 > 0 such that

Φ(s)s ≥ C1(|s|q − 1) , for all s ∈ R (respectively s ∈ R
2) ;

(d) (Φ(s1) − Φ(s2))(s1 − s2) ≥ 0 , for all s1, s2 ∈ R (respectively s1, s2 ∈ R
2) ,

(2.7)
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where q > 2. An example of a function Φ fulfilling these conditions is Φ(s) = |s|q−2s.

Note that if u ∈ Xq
0 (Ω) [respectively u ∈ Xq

b(Ω)], then Φ(∇ · u) ∈ Lq′

(Ω) and

Φ(d−1u) ∈ Lq′

(Ω)2 [respectively Φ(d−1
b u) ∈ Lq′

(Ω)2].

2.4. The anisotropic estimates

The particular geometry of the domain Ω, as has been introduced in (1.2), allows

us to distinguish between the regularity of functions defined in Ω with respect

to, on one hand, the (x, y)-variables and, on the other hand, the z-variable, in

a separate manner. This regularity distinction has led to the derivation of the

so-called anisotropic estimates. In turn, these estimates has been used in order to

give a sense to the vertical convection term W (u) ∂u
∂z . For the sake of completeness,

we recall some well-known anisotropic estimates, and then derive new ones that are

valid in our functional setting.

For every z ∈ (−‖D‖L∞(ω), 0), we define the set Sz = {(x, y) ∈ ω/(x, y, z) ∈
Ω}. Also, for α, β ∈ [1,+∞], we introduce the following Banach spaces (here and

henceforth, a.e. will stand for “almost everywhere”)

Lα
zL

β
xy(Ω) = {v ∈ L1(Ω) : v(· , z) ∈ Lβ(Sz) for a.e. z ∈ (−‖D‖L∞(ω), 0)

and ‖v(· , z)‖Lβ(Sz) ∈ Lα(−‖D‖L∞(ω), 0)} ,

endowed with the norm

‖v‖Lα
z Lβ

xy(Ω) = ‖‖v(· , z)‖Lβ(Sz)‖Lα(−‖D‖L∞(ω),0) .

The next result holds.9

Lemma 2.1. Let Ω ⊂ R
3 like in (1.2). If u ∈ H1(Ω) is such that un1 = un2 = 0

on Γb, then u ∈ L2
zL

β
xy(Ω) for all β < ∞ and there exists a constant Cβ such that

Cβ → +∞ as β → +∞ and

‖u‖L2
zLβ

xy(Ω) ≤ Cβ‖u‖1−θ(β)
L2(Ω) ‖u‖θ(β)

H1(Ω) ≤ Cβ‖u‖H1(Ω) , (2.8)

where θ is an increasing function and 0 < θ(β) < 1.

If h ∈ L2(Ω) and W (x, y, z) =
∫ 0

z h(x, y, ζ) dζ. Then, W ∈ L∞
z L

2
xy(Ω) and

‖W‖L∞

z L2
xy(Ω) ≤ ‖D‖1/2

L∞(ω)‖h‖L2(Ω) .

Let u ∈ H1
b(Ω)2 and take h = ∇ · u, then Lemma 2.1 claims that W (u) ∈

L∞
z L

2
xy(Ω). This regularity, together with the estimate (2.8) applied to both

components of u, yield the regularity of the vertical convection term. Indeed, if

v ∈ W 1,q
b (Ω)2, q > 2, it is not difficult to see that

∣∣∣∣
∫

Ω

W (u)
∂v

∂z
u

∣∣∣∣ ≤ ‖W (u)‖L∞

z L2
xy(Ω)

∥∥∥∥
∂v

∂z

∥∥∥∥
Lq(Ω)2

‖u‖
L2

zL
r(q)
xy (Ω)2

, r(q) =
2q

q − 2

and thus
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∣∣∣∣
∫

Ω

W (u)
∂v

∂z
u

∣∣∣∣ ≤ Cr(q)‖D‖1/2
L∞(ω)‖∇ · u‖L2(Ω)‖u‖H1(Ω)2

∥∥∥∥
∂v

∂z

∥∥∥∥
Lq(Ω)2

, (2.9)

which implies that W (u) ∂u
∂z ∈W−1,q′

b (Ω)2.

The problems studied below involve spaces like Xq
b(Ω) (or a subspace); since

W 1,q
b (Ω)2 ⊂ Xq

b(Ω), the estimate (2.9) does not guarantee that W (u) ∂u
∂z ∈ Xq

b(Ω)′

for u ∈ Xq
b(Ω). The next result will be useful in order to determine that assertion.

It is obtained through the derivation of new anisotropic estimates.

Lemma 2.2. Let Ω ⊂ R
3 like in (1.2) and q > 2. Let h ∈ Lq(Ω) and W (x, y, z) =∫ 0

z
h(x, y, ζ) dζ. Then W ∈ L∞

z L
q
xy(Ω) and

‖W‖L∞

z Lq
xy(Ω) ≤ ‖D‖1/q′

L∞(ω)‖h‖Lq(Ω) .

Moreover, if u, v ∈ Xq
b(Ω), then

∣∣∣∣
∫

Ω

W (u)
∂v

∂z
u

∣∣∣∣ ≤ Cr(q)‖D‖1/q′

L∞(ω)‖∇ · u‖Lq(Ω)‖u‖H1(Ω)2

∥∥∥∥
∂v

∂z

∥∥∥∥
L2(Ω)2

. (2.10)

Proof. We have |W (x, y, z)| ≤
∫ 0

−D(x,y) |h(x, y, ζ)| dζ, thus, for almost everywhere

z ∈ (−‖D‖L∞(ω), 0),

|W (x, y, z)|q ≤ ‖D‖q/q′

L∞(ω)

∫ 0

−D(x,y)

|h(x, y, ζ)|q dζ ,

integrating over Sz,
∫

Sz

|W (x, y, z)|q dxdy ≤ ‖D‖q/q′

L∞(ω)

∫

Sz

∫ 0

−D(x,y)

|h(x, y, ζ)|q dζdxdy

≤ ‖D‖q/q′

L∞(ω)

∫

ω

∫ 0

−D(x,y)

|h(x, y, ζ)|q dζdxdy

= ‖D‖q/q′

L∞(ω)

∫

Ω

|h(x, y, ζ)|q dζdxdy ,

thus, for almost everywhere z ∈ (−‖D‖L∞(ω), 0),

‖W (· , z)‖Lq(Sz) ≤ ‖D‖1/q′

L∞(ω)‖h‖Lq(Ω)

and taking the essential supremum in z, it yields the desired result.

In order to show (2.10), let u, v ∈ Xq
b(Ω), then W (u) ∈ L∞

z L
q
xy(Ω), and putting

again r(q) = 2q/(q − 2), we have
∣∣∣∣
∫

Ω

W (u)
∂v

∂z
u

∣∣∣∣ ≤
∫ 0

−D(x,y)

∫

Sz

∣∣∣∣W (u)
∂v

∂z
u

∣∣∣∣

≤
∫ 0

−D(x,y)

‖W (u)‖Lq(Sz)

∥∥∥∥
∂v

∂z

∥∥∥∥
L2(Sz)2

‖u‖
L

r(q)
xy (Sz)2
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≤ ‖W (u)‖L∞

z Lq
xy(Ω)

∥∥∥∥
∂v

∂z

∥∥∥∥
L2(Ω)2

‖u‖
L2L

r(q)
xy (Ω)2

≤ Cr(q)‖D‖1/q′

L∞(ω)‖∇ · u‖Lq(Ω)‖u‖H1(Ω)2

∥∥∥∥
∂v

∂z

∥∥∥∥
L2(Ω)2

.

3. Analysis of a Simpler Version of the Original Problem

In order to analyze the perturbed problem (1.7), we first study a simpler version in

which the divergence constraint ∇ ·M(u) = 0 in ω is not taken into account. Also,

we just consider homogeneous Dirichlet boundary conditions. The problem is the

following: To find u ∈ Xq
0 (Ω) such that





(u · ∇)u+W (u)
∂u

∂z
− ν1∆u− ν2

∂2u

∂z2
+ γu⊥

−∇Φ1(∇ · u) + d−1Φ2(d
−1u) = f in Ω ,

u = 0 on ∂Ω ,

(3.1)

where W (u) is given in (1.3), Φ1: R 7→ R and Φ2: R
2 7→ R

2 verify (2.7), and f ∈
Xq

0 (Ω)′, the dual space of Xq
0 (Ω).

In order to solve (3.1), we introduce the operators A,B: Xq
0 (Ω) 7→ Xq

0 (Ω)′,

defined as




Au = −ν1∆u− ν2
∂2u

∂z2
+ γu⊥ −∇Φ1(∇ · u) + d−1Φ2(d

−1u) ,

Bu = (u · ∇)u+W (u)
∂u

∂z
,

(3.2)

that is, A keeps the monotone part of the differential equation of problem (3.1)

while B retains the convection terms. Notice that (3.1) now becomes

To find u ∈ Xq
0 (Ω) such that Au+Bu = f . (3.3)

To begin with, we first establish some interesting properties on A and B.

Lemma 3.1. The operator A : Xq
0 (Ω) 7→ Xq

0 (Ω)′ is well defined and satisfy the

following properties :

(1) A is continuous.

(2) A is monotone, that is, for all u, v ∈ Xq
0 (Ω) we have

〈Au−Av, u− v〉 ≥ 0 , (3.4)

where 〈· , ·〉 stands for the duality product between Xq
0 (Ω)′ and Xq

0 (Ω).

(3) A is coercive, that is

lim
‖u‖→∞

〈Au, u〉
‖u‖ = +∞ , (3.5)

where ‖u‖ = ‖u‖Xq
0 (Ω).
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Proof. Let u, v ∈ Xq
0 (Ω). According to the definition of A, we have

〈Au, v〉 = ν1

∫

Ω

∇u∇v + ν2

∫

Ω

∂u

∂z

∂v

∂z
+

∫

Ω

γu⊥v

+

∫

Ω

Φ1(∇ · u)∇ · v +

∫

Ω

Φ2(d
−1u)d−1v ,

whence, using (b) of (2.7), for some constant C ′
0 > 0 we have

|〈Au, v〉| ≤ ν1‖∇u‖L2‖∇v‖L2 + ν2

∥∥∥∥
∂u

∂z

∥∥∥∥
L2

∥∥∥∥
∂v

∂z

∥∥∥∥
L2

+ ‖γ‖L3/2‖u‖L6‖v‖L6

+C ′
0(‖∇ · u‖Lq + 1)‖∇ · v‖Lq + C ′

0(‖d−1u‖Lq + 1)‖d−1v‖Lq

≤ K‖v‖Xq
0 (Ω)

where K = K(‖u‖Xq
0 (Ω), ν1, ν2, ‖γ‖L3/2(Ω), C

′
0,Ω), and we have used Ω ⊂ R

3 so that

H1
0 (Ω) ↪→ L6(Ω) with continuous embedding. Consequently, Au ∈ Xq

0 (Ω)′.

In order to show the continuity of A, let u ∈ Xq
0 (Ω) and (um) ⊂ Xq

0 (Ω) such

that um → u in Xq
0 (Ω)-strongly. Then,

−ν1∆um − ν2
∂2um

∂z2
+ γu⊥m → −ν1∆u− ν2

∂2u

∂z2
+ γu⊥ ,

in H−1(Ω)2-strongly .

Also, since ∇·um → ∇·u in Lq(Ω)-strongly, and d−1um → d−1u in Lq(Ω)2-strongly,

then from conditions (a) and (b) of (2.7), we deduce10

Φ1(∇ · um) → Φ1(∇ · u) in Lq′

(Ω)-strongly ,

Φ2(d
−1um) → Φ2(d

−1u) in Lq′

(Ω)2-strongly .

These three convergences lead directly to Aum → Au in Xq
0 (Ω)′-strongly.

To see the monotone character of A, consider u, v ∈ Xq
0 (Ω), then putting ν =

min(ν1, ν2) and using (d) of (2.7), it yields

〈Au−Av, u− v〉 = ν1

∫

Ω

|∇(u− v)|2 + ν2

∫

Ω

∣∣∣∣
∂(u− v)

∂z

∣∣∣∣
2

+

∫

Ω

(Φ1(∇ · u) − Φ1(∇ · v))(∇ · u−∇ · v)

+

∫

Ω

(Φ2(d
−1 · u) − Φ2(d

−1v))(d−1u− d−1v)

≥ ν‖u− v‖2
H1

0 (Ω) ≥ 0 .
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Finally, we show the coerciveness of A: let u ∈ Xq
0 (Ω), then using (2.4) and (c) of

(2.7) we have

〈Au, u〉 = ν1

∫

Ω

|∇u|2 + ν2

∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

+

∫

Ω

Φ1(∇ · u)∇ · u+

∫

Ω

Φ2(d
−1 · u)d−1u

≥ ν‖u‖2
H1

0 (Ω) + C1

[∫

Ω

(|∇ · u|q − 1) +

∫

Ω

(|d−1u|q − 1)

]

≥ k(‖u‖2
H1

0 (Ω) + ‖∇ · u‖q
Lq(Ω) + ‖d−1u‖q

Lq(Ω)) − C

≥ k(‖u‖2
H1

0 (Ω) + ‖∇ · u‖2
Lq(Ω) + ‖d−1u‖2

Lq(Ω) − 2) − C

= k‖u‖2
Xq

0 (Ω) − C ′, (3.6)

which implies the coerciveness of A. This ends the proof of Lemma 3.1.

As far as the operator B is concerned, the next density result will be needed.

Lemma 3.2. The space D(Ω)2 is dense in Xq
0 (Ω).

Proof. The proof is divided into two steps.

Step 1. Let u ∈ Xq
0 (Ω) such that suppu is compact in Ω. We consider a sequence

of mollifiers (ρε) ⊂ D(R3) in the usual way. Thus, for ε > 0 small enough, we have

ρε ∗ u ∈ D(Ω)2 , ∇ · (ρε ∗ u) = ρε ∗ (∇ · u) ,
and so, as ε→ 0+, ρε ∗u→ u in H1

0 (Ω)2-strongly, and ∇· (ρε ∗u) → ∇·u in Lq(Ω)-

strongly. On the other hand, since suppu is compact, it is straightforward that

d−1ρε ∗ u→ d−1u ∈ Lq(Ω). In conclusion, we have ρε ∗ u→ u in Xq
0(Ω)-strongly.

Step 2. Let u be any function in Xq
0 (Ω). In this step, we show that there exists

(um) ⊂ Xq
0 (Ω), supp um compact in Ω, such that um is arbitrarily close to u in

Xq
0 (Ω), form ≥ 1 large enough. To do so, we first introduce the functionH ∈ C∞(R)

defined as follows

H(s) =





0 , if s ≤ 1 ,

h(s) , if 1 < s < 2 ,

1 , if s ≥ 2 ,

h(s) =
1 + e1/(s−2)

1 + e1/(s−1)+1/(s−2)
,

and put um(x) = u(x)H(md(x)). Since d ∈ W 1,∞(Ω) and H is smooth, it is easy

to check that (um) ⊂ Xq
0 (Ω) and supp um is compact in Ω. On the other hand,

∇um(x) = ∇u(x)H(md(x)) + u(x)mH ′(md(x))∇d(x)

= ∇u(x)H(md(x)) + d−1(x)u(x)md(x)H ′(md(x))∇d(x) ,

with a similar expression for ∂um

∂z . Now, since u ∈ H1
0 (Ω)2, then (from Hardy’s

inequality) d−1u ∈ L2(Ω)2. Also (md(x)H ′(md(x))) is bounded in L∞(Ω); thus,

um → u in H1
0 (Ω)2-strongly.
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In the same way,

∇ · um(x) = ∇ · u(x)H(md(x)) + d−1(x)u(x)md(x)H ′(md(x))∇ · d(x) ,

and since ∇·u ∈ Lq(Ω) and d−1u ∈ Lq(Ω)2 [because u ∈ Xq
0 (Ω)], it yields ∇·um →

∇ · u in Lq(Ω)-strongly.

Finally, d−1(x)um(x) = d−1(x)u(x)H(md(x)), and again, thanks to d−1u ∈
Lq(Ω)2, we obtain d−1um → d−1u in Lq(Ω)2-strongly.

Thus, we have deduced that um → u in Xq
0 (Ω)-strongly.

Remark 3.1. The introduction of the distance d through the function Φ2 in

problem (3.1) is now clear: it has been used in the definition of the space Xq
0 (Ω) and

the regularity condition d−1u ∈ Lq(Ω)2 has led to the density of smooth functions

with compact support in Xq
0 (Ω), as it has been stated in Step 2 of Lemma 3.2.

Corollary 3.1. The operator B: Xq
0 (Ω) 7→ Xq

0 (Ω)′ is well defined and is continuous

(1) from Xq
0 (Ω)-strong to Xq

0 (Ω)′-strong, and (2) from Xq
0 (Ω)-weak to Xq

0 (Ω)′-weak.

Moreover, we have the following representation

〈Bu, v〉 = −
∫

Ω

(u · ∇)vu−
∫

Ω

W (u)
∂v

∂z
u , for all u, v ∈ Xq

0 (Ω) , (3.7)

in particular

〈Bu, u〉 = 0 , for all u ∈ Xq
0 (Ω) . (3.8)

Proof. Let u, v, w ∈ Xq
0 (Ω), and define the trilinear operator b:Xq

0 (Ω)×Xq
0 (Ω)×

Xq
0 (Ω) 7→ R given as

b(u, v, w) =

∫

Ω

(u · ∇)vw +

∫

Ω

W (u)
∂v

∂z
w ;

repeating the same steps as in the proof of Lemma 2.2, it is easy to check that there

exists a constant M = M(q,Ω) such that

|b(u, v, w)| ≤M‖u‖Xq
0 (Ω)‖v‖Xq

0 (Ω)‖w‖Xq
0 (Ω) ,

and consequently b is a continuous operator. The relation 〈Bu, v〉 = b(u, u, v) yields

that B: Xq
0 (Ω) 7→ Xq

0 (Ω)′ is continuous for the strong topologies in both spaces and

also

‖Bu‖Xq
0 (Ω)′ ≤M‖u‖2

Xq
0 (Ω) . (3.9)

If u, v ∈ D(Ω)2, then (3.7) is easily obtained by means of an integration by

parts. Owing to the density of D(Ω)2 in Xq
0 (Ω) (Lemma 3.2), and the continuity of

B, we have that, in fact, (3.7) holds true for all u, v ∈ Xq
0 (Ω).

Finally, to see that B is continuous for the weak topologies in both spaces,

let (uj) ⊂ Xq
0 (Ω) and u ∈ Xq

0 (Ω) such that uj → u in Xq
0 (Ω)-weakly. According

to (3.9), (Buj) ⊂ Xq
0 (Ω)′ is bounded, so that there exists χ ∈ Xq

0 (Ω)′ and a
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subsequence, still denoted in the same way, such that Buj → χ in Xq
0 (Ω)′-weakly.

Let v ∈ D(Ω)2; on one hand we have 〈Buj , v〉 → 〈χ, v〉; on the other, thanks to

(3.7), we obtain

〈Buj , v〉 = −
∫

Ω

(uj · ∇)vuj −
∫

Ω

W (uj)
∂v

∂z
uj

→ −
∫

Ω

(u · ∇)vu−
∫

Ω

W (u)
∂v

∂z
u = 〈Bu, v〉 ,

thus 〈Bu, v〉 = 〈χ, v〉 for all v ∈ D(Ω)2, and using again the density of this space

in Xq
0 (Ω), we deduce that Bu = χ, and consequently, it is the whole sequence Buj

that converges to Bu.

3.1. An existence result

Now, we are ready to state an existence result for problem 3.1.

Theorem 3.1. Assume (2.4) and (2.7) for both Φ1 and Φ2; then for every f ∈
Xq

0 (Ω)′ there exists a solution u ∈ Xq
0 (Ω) to problem 3.1. Moreover, the following

energy identity holds

ν1

∫

Ω

|∇u|2 + ν2

∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

+

∫

Ω

Φ1(∇ · u)∇ · u+

∫

Ω

Φ2(d
−1u)d−1u = 〈f, u〉 .

(3.10)

Proof. We implement a Faedo–Galerkin procedure, then apply a well-known result

derived from Brower’s fixed point theorem, and finally pass to limit.

Let {wj}j≥1 ⊂ D(Ω)2 be a complete system in Xq
0 (Ω), that is

(1) Ej = 〈w1, . . . , wj〉, dimEj = j for all j ≥ 1;

(2) Xq
0 (Ω) =

⋃
j≥1 Ej

Xq
0 (Ω)

.

For every j ≥ 1, we consider the corresponding projected problem in Ej , namely
{

To find uj ∈ Ej such that

〈Auj , v〉 + 〈Buj , v〉 = 〈f, v〉 , for all v ∈ Ej .
(3.11)

In order to solve (3.11), we apply the following variant of Brower’s fixed point

theorem12:

Lemma 3.3. Let P : RN 7→ R
N be a continuous function and assume that there

exists ρ > 0 such that

P (ξ)ξ ≥ 0 , for all ξ ∈ R
N with |ξ| = ρ ,

then, there exists ξ such that |ξ| ≤ ρ and P (ξ) = 0.
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Putting uj =
∑j

k=1 ξkwk ∈ Ej , ξ = (ξ1, . . . , ξj)
T ∈ R

j and P = (P1, . . . , Pj)
T,

where Pk: Rj 7→ R is given as

Pk(ξ) = 〈Auj +Buj − f, wk〉 , 1 ≤ k ≤ j, j ≥ 1 ,

then P is continuous, and owing to (3.6) and (3.8)

P (ξ)ξ = 〈Auj +Buj − f, uj〉 = 〈Auj − f, uj〉

≥ k‖uj‖2
Xq

0 (Ω) − C ′ − ‖f‖Xq
0 (Ω)′‖uj‖Xq

0 (Ω) ,

for some constants k, C ′ > 0. Consequently, there exists R > 0 large enough

(independent of j) such that

P (ξ)ξ ≥ 0 , for ‖uj‖Xq
0 (Ω) ≥ R ,

or, equivalently,

P (ξ)ξ ≥ 0 , for |ξ| large enough .

We can then apply Lemma 3.3 and deduce the existence of a solution uj ∈ Ej to

problem (3.11) such that

‖uj‖Xq
0 (Ω) ≤ R , for all j ≥ 1 .

Thus (uj) is bounded in the reflexive space Xq
0 (Ω), and using (2.7), it is straight-

forward to see that (Auj) is bounded in Xq
0 (Ω)′. As a result, we can extract a

subsequence, still denoted in the same way, such that

uj → u in Xq
0 (Ω)-weakly , for some u ∈ Xq

0 (Ω) ,

and also




uj → u





in H1
0 (Ω)-weakly ,

in Lr(Ω)-strongly for all r < 6 , and

almost everywhere in Ω ;

∇ · uj → ∇ · u in Lq(Ω)-weakly ,

d−1uj → d−1u in Lq(Ω)-weakly ,

W (uj) → W (u) in Lq(Ω)-weakly ,

Auj → χ in Xq
0 (Ω)′-weakly , for some χ ∈ Xq

0 (Ω)′ .

(3.12)

On the other hand,

〈Auj , uj〉 = 〈f, uj〉 → 〈f, u〉 = 〈f −Bu, u〉 .

Next we show that χ = f − Bu. To do so, we take v = wk ∈ Ej , j ≥ k in

(3.11). It yields 〈Auj , wk〉 = 〈f, wk〉 − 〈Buj , wk〉, and, according to Lemma 3.7,

〈Buj , wk〉 → 〈Bu,wk〉. Consequently, 〈Auj , wk〉 → 〈χ,wk〉 = 〈f − Bu,wk〉, for all

k ≥ 1, and this implies that χ = f −Bu.
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Summing up, we have shown (a) uj → u in Xq
0 (Ω)-weakly, (b) Auj → f − Bu

in Xq
0 (Ω)′-weakly, and (c) 〈Auj , uj〉 → 〈f−Bu, u〉; owing to the monotonicity trick

(see Lemma 7.1) conditions (a), (b) and (c) implies that12 Au = f −Bu.

Finally, the energy identity is easily derived using (3.8).

Remark 3.2. The continuity of the monotone operator A is not mandatory in

order to apply the monotonicity trick; indeed, it is enough the hemicontinuity A.

3.2. A comment about the uniqueness of solutions

No uniqueness result is known up to date for the 3D hydrostatic approximations

of Navier–Stokes equations (1.1). Not much can be said about the uniqueness of

solutions to problem (3.1).

In fact, assume without loss of generality that Φ1(0) = 0 ∈ R and Φ2(0) = 0 ∈
R

2. We also consider the following hypothesis: there exists a constant C2 > 0 such

that

(Φ(s1) − Φ(s2), s1 − s2)

≥ C2|s1 − s2|q for all s1, s2 ∈ R (respectively ∈ R
2) . (3.13)

The following result gives some estimates for the difference of two solutions.

Lemma 3.4. Assume the same hypothese of Theorem 3.1 and also (3.13). Let

u ∈ Xq
0 (Ω) be any solution of problem (3.1). Then,

‖u‖2
H1

0 (Ω) + ‖∇ · u‖q
Lq(Ω) + ‖d−1u‖q

Lq(Ω) ≤ β‖f‖Xq
0 (Ω)′ ,

where β = β(‖f‖Xq
0 (Ω)′); in particular, for f = 0, the trivial solution u = 0 is

unique.

Let u, v ∈ Xq
0 (Ω) be two solutions of problem (3.1). Then, there exists a constant

C3 > 0 such that

‖u− v‖2
H1

0 (Ω) + ‖∇ · (u− v)‖q
Lq(Ω) ≤ C3β‖f‖Xq

0 (Ω)′‖∇ · (u− v)‖2
Lq(Ω) ,

‖u− v‖2
H1

0 (Ω) + ‖∇ · (u− v)‖q
Lq(Ω) ≤ C3β‖f‖Xq

0 (Ω)′‖u− v‖q′

H1
0 (Ω)

.

The first estimate is derived directly from the energy identity. The last two

inequalities can be obtained in the same way as in the case of the steady-state

Navier–Stokes equations (in the case 2 < q < 3, the anisotropic estimates are

needed). Unfortunately, we cannot go any further. Indeed, since q > 2, these two

last inequalities are not enough to achieve the conclusion u = v even for ‖f‖Xq
0 (Ω)′

small enough. Thus, the uniqueness of solutions still remains open for problem (3.1).
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4. Monotone Perturbations of the Hydrostatic Approximation

with Homogeneous Dirichlet Boundary Conditions

In this section we consider the hydrostatic approximation of Navier–Stokes

equations with homogeneous Dirichlet boundary conditions and with monotone

perturbations like those introduced in the former section. The description of the

problem now follows: let f ∈ W−1,q′

(Ω)2 be given. We search for u: Ω 7→ R
2 and

ps:ω 7→ R such that




(u · ∇)u+W (u)
∂u

∂z
− ν1∆u− ν2

∂2u

∂z2
+ γu⊥ + ∇ps

−∇Φ1(∇ · u) + d−1Φ2(d
−1u) = f in Ω ,

∇ ·M(u) = 0 in ω ,

u = 0 on ∂Ω ,

(4.1)

the operators W and M being defined in (1.3) and (2.1), respectively. In order

to deal with the gradient of the surface pressure, ∇ps, a de Rham-like lemma is

needed. This enables us to give an equivalent variational formulation to problem

(4.1) where no pressure term appears; the space where we search for solutions is

V q
0 (Ω) [see (2.3)].

In this section, we also show that (4.1) is equivalent, in some sense, to the next

problem
{

To find u ∈ V q
0 (Ω) such that

〈Au+Bu, v〉 = 〈f, v〉 for all v ∈ V q
0 (Ω)′ ,

(4.2)

where A and B are given in (3.2). As it has been stated in the former section the

operator A and B maps Xq
0 (Ω) onto its dual space Xq

0 (Ω)′. Since, (see Sec. 2.3)

Xq
0 (Ω)′ = H−1(Ω)2 + Y + Z and H−1(Ω)2, Y, Z ⊂ W−1,q′

(Ω)2, we also have

Au,Bu ∈W−1,q′

(Ω)2, so that the condition f ∈W−1,q′

(Ω)2 is meaningful.

We begin this analysis with a result which relates certain distributions in Ω with

distributions defined in ω.14

Lemma 4.1. The following assertions are equivalent :

(1) F ∈ D′(Ω) and ∂F
∂z = 0;

(2) there exists a unique distribution S ∈ D′(ω) such that

〈F, ϕ〉D′(Ω),D(Ω) = 〈S,M(ϕ)〉D′(ω),D(ω) , for all ϕ ∈ D(Ω) . (4.3)

Owing to Lemma 4.1, we may deduce14 a version of de Rham’s lemma useful

in the resolution of (4.1). Indeed, it tells us that the resolution of (4.1) reduces to

that of (4.2). Also, this result is a generalization of the one due to Lions, Temam

and Wang,13 to more general domains Ω, without the assumption on the existence

of a sidewall all along ∂ω.

Lemma 4.2. Let F ∈W−1,q′

(Ω)2. Then the following conditions are equivalent :
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(1) 〈F, ϕ〉W−1,q′ (Ω)2,W 1,q
0 (Ω)2 = 0 for all ϕ ∈ V(Ω);

(2) F does not depend upon the z-variable and there exists ps ∈ Lq′

D(ω) (unique up

to an additive constant) such that F = ∇ps.

Remark 4.1. Lemma 4.2 is equivalent to the following reduced inf–sup condition:

there exists β > 0 such that

‖p‖
Lq′

D,0(ω)
≤ β sup

v∈W 1,q
0 (Ω)

∫
ω
p∇ ·M(v)

‖v‖W 1,q
0 (Ω)

, for all p ∈ Lq′

D,0 ;

this reduced inf–sup condition was already shown by Chacón and Guillén,7 and its

proof is based in the application of the de Rham lemma in Ω. Note that we have

applied de Rham’s lemma in ω.

Remark 4.2. Obviously, if Ω has a sidewall all along ∂ω, that is ess infωD > 0,

then ps ∈ Lq′

(ω) as it was first considered by Lions, Temam and Wang.13

Corollary 4.1. The space V(Ω) is dense in V q
0 (Ω).

Proof. Since V q
0 (Ω) is a closed subspace of Xq

0 (Ω), we may consider the dual space

V q
0 (Ω)′ as a subspace of Xq

0 (Ω)′. On the other hand, since Xq
0 (Ω)′ ⊂ W−1,q′

(Ω)2,

we also have V q
0 (Ω)′ ⊂W−1,q′

(Ω)2.

Now, let F ∈ V q
0 (Ω)′ such that 〈F, ϕ〉W−1,q′ (Ω)2,W 1,q

0 (Ω)2 = 0, for all ϕ ∈ V(Ω).

We want to show that F = 0. Indeed, owing to Lemma 4.2, there exists ps ∈ Lq′

D(ω)

such that F = ∇ps. Now, let v ∈ Xq
0 (Ω), then M(v) ∈ Lq(Ω) and using the density

of D(Ω)2 in Xq
0 (Ω) (Lemma 3.2) it is easy to check that

〈∇ps, v〉W−1,q′ (Ω)2,W 1,q
0 (Ω)2 = −

∫

ω

ps∇ ·M(v) , for all v ∈ Xq
0 (Ω) ;

in particular, this implies that

〈F, v〉W−1,q′ (Ω)2,W 1,q
0 (Ω)2 = 〈∇ps, v〉W−1,q′ (Ω)2,W 1,q

0 (Ω)2 = 0 , for all v ∈ V q
0 (Ω) .

The existence result for problem (4.2), or equivalently (4.1), now follows.

Theorem 4.1. Assume (2.4), (2.6) and also (2.7) for Φ1 and Φ2 respectively. Then,

for every f ∈W−1,q′

(Ω)2 there exists u ∈ V q
0 (Ω) solution to problem (4.2), and the

energy identity (3.10) holds.

Furthermore, for every solution u ∈ V q
0 (Ω) of (4.2), there exists ps ∈ Lq′

(ω),

uniquely determined up to an additive constant, such that the couple (u, ps) is a

solution to problem (4.1) in W−1,q′

(Ω)2.

Proof. Since V(Ω) is dense and V q
0 (Ω) is a separable, reflexive Banach space, we

may apply a Faedo–Galerkin procedure as in the proof of Theorem 3.1. We may

repeat all the steps of the proof, adapted to this new framework, and obtain the
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existence of u ∈ V q
0 (Ω) solution to (4.2). The energy identity is easily deduced by

taking v = u in the variational formulation of (4.2).

Finally, putting F = f − Au − Bu ∈ W−1,q′

(Ω)2 we have that F fulfills the

assumptions of Lemma 4.2, whence the existence of ps ∈ Lq′

(ω).

5. Monotone Perturbations of the Hydrostatic Approximation

We finally study the hydrostatic approximation of Navier–Stokes equations with the

usual boundary conditions, namely homogeneous Dirichlet boundary conditions on

Γb and nonhomogeneous Neumann boundary conditions on Γs. We also include

monotone perturbations like those introduced in the former sections. Thus the

problem is the following: let f ∈ W−1,q′

(Ω)2 and gs ∈ H−1/2(Γs)
2 be given, we

search for u: Ω 7→ R
2 and ps:ω 7→ R such that





(u · ∇)u+W (u)
∂u

∂z
− ν1∆u− ν2

∂2u

∂z2
+ γu⊥ + ∇ps

−∇Φ1(∇ · u) + d−1
b Φ2(d

−1
b u) = f in Ω ,

∇ ·M(u) = 0 in ω ,

u = 0 on Γb , ν2
∂u

∂z
= gs on Γs ,

(5.1)

W and M being defined in (1.3) and (2.1), respectively, and db ∈ W 1,∞(Ω) is the

distance to Γb. The natural space to search for solutions u is V q
b (Ω) defined in

(2.3). The formal multiplication by v ∈ V q
b (Ω) of the differential equation of (5.1),

followed with an integration over Ω leads to the variational formulation
{

To find u ∈ V q
b (Ω) such that

〈Au+Bu, v〉 = 〈`, v〉 for all v ∈ V q
b (Ω) ,

(5.2)

where A and B are given in (3.2), and ` ∈ V q
b (Ω)′ is given by

〈`, v〉 = 〈f, v〉
W−1,q′

b (Ω)2,W 1,q
b (Ω)2

+ 〈gs, v〉H−1/2(Γs)2,H1/2(Γs)2 . (5.3)

As in the preceding sections, we show some intermediate results in order to

deduce an existence result for these equivalent formulations. The first thing we

note is that V q
b (Ω) is a closed subspace of Xq

b(Ω). The next result tells us that

smooth functions are dense in this space.

Lemma 5.1. The space Db(Ω)2 is dense in Xq
b(Ω).

Proof. Consider the set Ω̂ consisting of Ω together with its reflecting image with

respect to the plane z = 0 and Γs, that is

Ω̂ = {(x, y, z) ∈ R
3: (x, y) ∈ ω and −D(x, y) < z < D(x, y)} . (5.4)

A very easy generalization of Lemma 3.2 yields that D(Ω̂)2 is dense in the space

Xq
0 (Ω̂).
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Now let v: Ω 7→ R
2 and consider the function v̂ defined in Ω̂ as

v̂(x, y, z) =

{
v(x, y, z) , if z < 0 ,

v(x, y,−z) , if z > 0 ;
(5.5)

it is straightforward that v ∈ Xq
b(Ω) if and only if v̂ ∈ Xq

0 (Ω̂) and, in that case, the

two following inequalities hold
√

2

2
‖v̂‖Xq

0 (Ω̂) ≤ ‖v‖Xq
b(Ω) ≤ ‖v̂‖Xq

0 (Ω̂) . (5.6)

Let v ∈ Xq
b(Ω) and ε > 0 be given; then, there exists ϕε ∈ D(Ω̂)2 such that

‖v̂ − ϕε‖Xq
0 (Ω̂) < ε. Then it is an easy task to check that ϕε|Ω ∈ Db(Ω)2 and

‖v − ϕε|Ω‖Xq
b(Ω) < ε.

Corollary 5.1. The operator B: Xq
b(Ω) 7→ Xq

b(Ω)′ is well defined and is continuous

(1) from Xq
b(Ω)-strong to Xq

b(Ω)′-strong, and (2) from Xq
b(Ω)-weak to Xq

b(Ω)′-weak.

Moreover, the following representation formula holds :

〈Bu, v〉 = −
∫

Ω

(u · ∇)vu−
∫

Ω

W (u)
∂v

∂z
u , for all u, v ∈ Xq

b(Ω) , (5.7)

in particular

〈Bu, u〉 = 0 , for all u ∈ Xq
b(Ω) . (5.8)

Proof. Let u, v ∈ Db(Ω)2; then, using the identity ∂W (u)
∂z = −∇ · u in Ω, and the

boundary conditions we have

〈Bu, v〉 =

∫

Ω

[
(u · ∇)uv +W (u)

∂u

∂z
v

]

=

∫

∂Ω

(u1n1 + u2n2)uv +

∫

∂Ω

W (u)n3uv

−
∫

Ω

[
(∇ · u)uv + (u · ∇)vu+

∂W (u)

∂z
uv +W (u)

∂v

∂z
u

]

= −
∫

Ω

[
(u · ∇)vu+W (u)

∂v

∂z
u

]

and thus (5.7) holds true for smooth functions. From this point on, we can

repeat the same arguments as in the proof of Corollary 3.1 to achieve the desired

results.

Remark 5.1. As in the two problems studied in the preceding sections, the

expression (5.8) is the key for the derivation of the energy identity for solutions

to problem (5.2).
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We turn to the space V q
b (Ω); we introduce the space V q

0 (Ω̂), Ω̂ being defined in

(5.4), as follows

V q
0 (Ω̂) =

{
φ ∈ Xq

0 (Ω̂) : ∇ · M̂(φ) = 0 in ω
}
, M̂(φ) =

∫ D(x,y)

−D(x,y)

φ(x, y, z) dz .

A straightforward adaptation of Corollary 4.1 yields the density of V(Ω̂) in the

space V q
0 (Ω̂). As a result, we have the following consequence.

Corollary 5.2. The space Vb(Ω) is dense in V q
b (Ω).

Proof. For a function v ∈ V q
b (Ω), we consider v̂ ∈ Xq

0 (Ω), its extension to Ω̂ given

in (5.5). Then,

M̂(v̂) =

∫ D(x,y)

−D(x,y)

v̂ dz = 2

∫ 0

−D(x,y)

v̂ dz = 2M(v) ,

consequently, v̂ ∈ V q
0 (Ω̂).

Now, let ε > 0. Then, we may find φε ∈ V(Ω̂) such that ‖v̂ − φε‖V q
0 (Ω̂) < ε.

In general, φε|Ω /∈ Vb(Ω) since we cannot guarantee that ∇ ·M(φε|Ω) = 0 in ω.

For that reason, we consider the symmetric part of φε, namely ψε = 1
2 (φε + φ′ε),

where φ′ε(x, y, z) = φε(x, y,−z), (x, y, z) ∈ Ω̂; it is an easy task to check that

ψε|Ω ∈ Vb(Ω). Finally, using (5.6) and taking into account that ψ̂ε|Ω = ψε, we have

‖v − ψε|Ω‖V q
b (Ω) ≤ ‖v̂ − ψε‖V q

0 (Ω̂)

≤ 1

2
‖v̂ − φε‖V q

0 (Ω̂) +
1

2
‖v̂ − φ′ε‖V q

0 (Ω̂)

= ‖v̂ − φε‖V q
0 (Ω̂) < ε .

This last result allows us to show the existence result for the hydrostatic

approximation with monotone perturbations by means of an implementation of

a Faedo–Galerkin procedure like the one described in Sec. 3.

Theorem 5.1. Assume (2.4), (2.6) and also (2.7) for Φ1 and Φ2 respectively. Then,

for every f ∈ W−1,q′

(Ω)2 and gs ∈ H−1/2(Γs)
2 there exists u ∈ V q

b (Ω) solution to

problem (5.2), and the following energy identity holds :

ν1

∫

Ω

|∇u|2 + ν2

∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

+

∫

Ω

Φ1(∇ · u)∇ · u+

∫

Ω

Φ2(d
−1
b u)d−1

b u = 〈`, u〉 ,

(5.9)

where ` is given in (5.3).

Furthermore, for every solution u ∈ V q
b (Ω) of (5.2), there exists ps ∈ Lq′

D(ω),

uniquely determined up to an additive constant, such that the couple (u, ps) is

a solution to problem (5.1), the differential equation being taken in the sense of

W−1,q′

(Ω)2.
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6. Convergence of Regularized Solutions to a Solution of the

Hydrostatic Approximation

In this section we assume the monotone terms are of the forms εΦ1 and εΦ2, where

Φ1 and Φ2 verify (2.7), and ε > 0 plays the role of a small parameter. We write

(uε, pε
s ) a solution to problem (5.1), and we want to analyze the behavior of (uε, pε

s )

as ε goes to zero. Indeed, we show that there exists a couple (u, ps) such that uε → u

and pε
s → ps, weakly in certain Banach spaces, whereas (u, ps) is a solution to the

hydrostatic approximation of Navier–Stokes equations (1.1). In particular, this gives

another proof of the existence of a solution to the hydrostatic approximation with

a completely different approach.

The parametrized problem is the following:




(uε · ∇)uε +W (uε)
∂uε

∂z
− ν1∆u

ε − ν2
∂2uε

∂z2
+ γuε⊥ + ∇pε

s

− ε∇Φ1(∇ · uε) + εd−1
b Φ2(d

−1
b uε) = f in Ω ,

∇ ·M(uε) = 0 in ω ,

uε = 0 on Γb , ν2
∂uε

∂z
= gs on Γs .

(6.1)

Here we assume a bit more regularity to f , namely f ∈ H−1
b (Ω)2. According to

Theorem 5.1, if gs ∈ H−1/2(Γs)
2, problem (6.1) has a solution (uε, pε

s ) such that

uε ∈ V q
b (Ω) and pε

s ∈ Lq′

D,0(ω). When ε goes to zero, the monotone nonlinear terms

vanish; so, it is quite natural to expect that the regularity in the space V q
b (Ω) is

lost in the limit.

Theorem 6.1. Assume (2.4), (2.6) and also (2.7) for Φ1 and Φ2, respectively, hold.

Let f ∈ H−1
b (Ω)2 and gs ∈ H−1/2(Γs)

2, and let (uε, pε
s) ∈ V q

b (Ω) × Lq′

D,0(ω) be a

solution to problem (6.1).

Then, there exists (u, ps) ∈ H1
b(Ω)2 ×Lr

D,0(ω), for all r < 2, such that (u, ps) is

a solution of the hydrostatic approximation equations (1.1) and

uε → u in H1(Ω)2-weakly , pε
s → ps in Lq′

D,0(ω)-weakly . (6.2)

Proof. Since f ∈ H−1
b (Ω)2, and according to the energy identity (5.9), we have

ν1

∫

Ω

|∇uε|2 + ν2

∫

Ω

∣∣∣∣
∂uε

∂z

∣∣∣∣
2

+ ε

∫

Ω

Φ1(∇ · uε)∇ · uε + ε

∫

Ω

Φ2(d
−1
b uε) d−1

b uε

= 〈f, uε〉H−1
b (Ω)2,H−1

b (Ω)2 + 〈gs, uε〉H−1/2(Γs)2,H1/2(Γs)2

≤ C(‖f‖H−1
b (Ω)2‖u‖H1

b(Ω)2 + ‖gs‖H−1/2(Γs)2‖u‖H1
b(Ω)2) .

Using (2.7), we may deduce that

(uε) is bounded in H−1
b (Ω)2 ,

(ε1/q′

Φ1(∇ · uε)) is bounded in Lq′

(Ω) ,
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(ε1/q′

Φ2(d
−1
b uε)) is bounded in Lq′

(Ω)2 .

Then, for v ∈ Vb(Ω), we deduce, as ε→ 0+,

ε

∫

Ω

Φ1(∇ · uε)∇ · v = ε1/q

∫

Ω

ε1/q′

Φ1(∇ · uε)∇ · v → 0 ,

ε

∫

Ω

Φ2(d
−1
b uε) d−1

b v = ε1/q

∫

Ω

ε1/q′

Φ2(d
−1
b uε) d−1

b v → 0 .

Let u ∈ H−1
b (Ω)2 such that uε → u in H−1

b (Ω)2-weakly, and in Ls(Ω)-strongly, for

all s < 6. Then,

ν1

∫

Ω

∇uε∇v + ν2

∫

Ω

∂uε

∂z

∂v

∂z
+

∫

Ω

γuε⊥v → ν1

∫

Ω

∇u∇v + ν2

∫

Ω

∂u

∂z

∂v

∂z
+

∫

Ω

γu⊥v ,

∫

Ω

[
(uε · ∇)vuε +W (uε)

∂v

∂z
uε

]
→
∫

Ω

[
(u · ∇)vu+W (u)

∂v

∂z
u

]
.

Consequently u ∈ H−1
b (Ω)2 satisfies the variational formulation

−
∫

Ω

[
(u · ∇)vu+W (u)

∂v

∂z
u

]
+ ν1

∫

Ω

∇u∇v + ν2

∫

Ω

∂u

∂z

∂v

∂z
+

∫

Ω

γu⊥v

= 〈f, v〉 + 〈g, v〉 , for all v ∈ Vb(Ω) .

Putting A0u = −ν1∆u − ν2
∂2u
∂z2 + γu⊥ ∈ H−1

b (Ω)2, Bu = (u · ∇)u + W (u)∂u
∂z ∈

W−1,r(Ω), for all r < 2 (this regularity is due to the anisotropic estimates of

Sec. 2.4) and F = f − A0u − Bu, then F ∈ W−1,r(Ω), for all r < 2, and satisfies

the conditions of Lemma 4.2. Consequently, there exists ps ∈ Lr
D,0(ω), for all r < 2

such that A0u+Bu+∇ps = f in W−1,r(Ω), for all r < 2 [that is, (u, ps) solves the

differential equations of the hydrostatic approximation inW−1,r(Ω)]. The boundary

condition on Γs may be deduced in the standard way.

Finally, since

lim
ε→0+

∇pε
s = lim

ε→0+
{f −A0u

ε −Buε + ε∇Φ1(∇ · uε) − εd−1
b Φ2(d

−1
b uε)}

= f −A0u−Bu = ∇ps , in W−1,r(Ω)2-weakly , for all r < 2 ,

we obtain pε
s → ps, in Lr(Ω)-weakly, for all r < 2, or, equivalently,

pε
s → ps , in Lr

D,0(ω)-weakly , for all r < 2 .

7. Application to a Regularized Hydrostatic Turbulence Model

In this last section we show how the regularizing technique described in the

preceding sections can be applied to the resolution of a modified turbulence model.

We just consider a simple example of a system of equations involving the mean

horizontal velocity field u, the mean surface pressure ps and the mean turbulent
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kinetic energy k. Keeping the same notations as above, the problem is: to find

u: Ω 7→ R
2, ps:ω 7→ R and k: Ω 7→ R such that




(u · ∇)u+W (u)
∂u

∂z
−∇ · [(ν1 + ν̄1(k))∇u] −

∂

∂z

[
(ν2 + ν̄2(k))

∂u

∂z

]

+ γu⊥ + ∇ps −∇Φ1(∇ · u) + d−1
b Φ2(d

−1
b u) = f in Ω ,

∇ ·M(u) = 0 in ω ,

−∇ · [(ν1 + ν̄1(k))∇k] −
∂

∂z

[
(ν2 + ν̄2(k))

∂k

∂z

]
+ |k|1/2k

= ν̄1(k)|∇u|2 + ν̄2(k)

∣∣∣∣
∂u

∂z

∣∣∣∣
2

+ h in Ω ,

u = 0 on Γb , (ν2 + ν̄2(k))
∂u

∂z
= gs , on Γs , k = 0 on ∂Ω ,

(7.1)

where ν̄1(k) and ν̄2(k) stand, respectively, for the horizontal and vertical turbulent

viscosity coefficients (usually, ν̄1(k) is taken to be null). Also, the datum function

h on the right-hand side of the equation of k takes into account density effects and

nonhomogeneous Dirichlet boundary conditions on Γs for the original unknown (in

fact, k is a shifted turbulent kinetic energy).

We consider the following assumptions for ν̄1, ν̄2:

ν̄1, ν̄2 ∈ C(R) ∩ L∞(R) , ν̄1(s) ≥ 0 , ν̄2(s) ≥ 0 for all s ∈ R . (7.2)

Apart from the nonlinearities of the coupled system (7.1), one of the main

theoretical difficulties is the regularity of the two terms appearing on the right-

hand side of the equation of k: in fact, we may expect to have u ∈ H1(Ω), and thus

ν̄1(k)|∇u|2, ν̄2(k)|∂u
∂z |2 ∈ L1(Ω). This leads us to search for solutions u ∈ V q

b (Ω),

as in the preceding sections, whereas k ∈ W 1,r
0 (Ω) for all r < 3/2, according to

the analysis of renormalized solutions of elliptic equations with right-hand side in

L1(Ω).3,8

In order to solve (7.1), we introduce the operators D(u, k) and A(u, k), and the

function H(u, k) given as




D(u, k) = −∇ · [(ν1 + ν̄1(k))∇u] −
∂

∂z

[
(ν2 + ν̄2(k))

∂u

∂z

]
,

A(u, k) = D(u, k) + γu⊥ −∇Φ1(∇ · u) + d−1
b Φ2(d

−1
b u) ,

H(u, k) = ν̄1(k)|∇u|2 + ν̄2(k)

∣∣∣∣
∂u

∂z

∣∣∣∣
2

+ h ,

(7.3)

so that system (7.1) becomes



〈A(u, k) +Bu, v〉 = 〈`, v〉 for all v ∈ V q
b (Ω) ,

〈D(k, k), φ〉 +

∫

Ω

|k|1/2kφ =

∫

Ω

H(u, k)φ , for all φ ∈ D(Ω) ,
(7.4)

where B is given in (3.2) and ` in (5.3).
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Theorem 7.1. Assume the hypotheses of Theorem 5.1 and also h ∈ L1(Ω). Then,

problem (7.4) has a solution (u, k) such that u ∈ V q
b (Ω) and k ∈ W 1,r

0 (Ω) for

all r < 3/2. Moreover, for every solution (u, k) of (7.4), there exists a unique

ps ∈ Lq′

D,0(ω) such that (u, ps, k) is a solution to problem (7.1) in the sense of

W−1,q′

b (Ω)2 for the first equation, in D′(Ω) for the second one.

The proof of this existence result is developed along the following sections.

7.1. Approximate problems

For every j ≥ 1, we define Tj to be the truncation function at height j, that is

Tj(s) = min(j, |s|) sign s, whereas sign s is the standard sign function. Then, we

put

Hj(u, k) = Tj(ν̄1(k)|∇u|2) + Tj

(
ν̄2(k)

∣∣∣∣
∂u

∂z

∣∣∣∣
2
)

+ Tj(h)

and for j ≥ 1, we set the approximate problems as




To find uj ∈ V q
b (Ω) and kj ∈ H1

0 (Ω) such that

〈A(uj , kj) +Buj , v〉 = 〈`, v〉 for all v ∈ V q
b (Ω) ,

〈D(kj , kj), φ〉 +

∫

Ω

|kj |1/2kjφ =

∫

Ω

Hj(uj , kj)φ for all φ ∈ D(Ω) .

(7.5)

A straightforward application of Schauder’s fixed point theorem leads to the

existence of a solution (uj , kj) to system (7.5).

Remark 7.1. Observe that, for every fixed k ∈ L1(Ω), the operator u ∈ V q
b (Ω) 7→

A(u, k) is monotone and coercive.

7.2. Estimates for the approximate solutions

Putting v = uj in (7.5) yields the corresponding energy identity, and thus we

obtain that (uj) is bounded in V q
b (Ω). In particular, (uj) is bounded in H1(Ω)2,

and thus Hj(uj , kj) is bounded in L1(Ω). It can be shown then that the sequence

(kj) verifies the Boccardo and Gallouët estimates,4 and this implies that (kj) is

bounded in W 1,r
0 (Ω) for all r < 3/2. Consequently, there exist u ∈ V q

b (Ω) and

k ∈W 1,r
0 (Ω) for all r < 3/2, and subsequences, still denoted in the same way, such

that

uj → u





in H1(Ω)2-weakly ,

in Ls(Ω)2-strongly for all s < 6 , and

almost everywhere in Ω ;

(7.6)

kj → k





in W 1,r
0 (Ω)-weakly , for all r < 3/2

in Ls(Ω)-strongly for all s < 3 , and

almost everywhere in Ω .

(7.7)
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We can readily realize that (7.6) and (7.7) are not enough to achieve the strong

convergence of uj to u in H1(Ω) (this is necessary in order to pass to the limit

in the approximate problems). Here is where the monotone properties of A(· , kj)

comes into the scene.

7.3. Strong convergence of the derivatives of the

velocity field and conclusion

Owing to corollary (5.1) and (7.6), we also have

Buj → Bu in V q
b (Ω)-weakly , (7.8)

and, it is easy to check that (7.6)–(7.8) imply that (A(uj , kj)) is bounded in V q
b (Ω)′.

Thus, for a subsequence,

A(uj , kj) → χ in V q
b (Ω)′-weakly . (7.9)

From (7.5), we have A(uj , kj) = ` − Buj → ` − Bu, and so χ = ` − Bu. Finally,

taking v = uj in (7.5), it yields

〈A(uj , kj), uj〉 = 〈`, uj〉 → 〈`, u〉 = 〈`−Bu, u〉 . (7.10)

But now, in order to deduce that A(u, k) = ` − Bu, we cannot apply the mono-

tonicity trick to the monotone operators Aj = A(· , kj) (since they depend on j).

To overcome this difficulty, we use the following result.

Lemma 7.1. Let X be a Banach space, X ′ its dual and Aj :X 7→ X ′, j ≥ 1, a

sequence of monotone operators [see (3.4)]. Assume that the sequence (uj) ⊂ X

fulfills the following conditions :

(a) uj → u in X-weakly, for some u ∈ X ;

(b) Ajuj → χ in X ′-weakly, for some χ ∈ X ′;

(c) 〈Ajuj , uj〉 → 〈χ, u〉;
(d) there exists an operator A:X 7→ X ′ such that

〈Ajv, uj〉 → 〈Av, u〉 for all v ∈ X ;

(e) the operator A is hemicontinuous, that is, for all u, v, w ∈ X the mapping

t ∈ R 7→ 〈A(u+ tv), w〉 is continuous.

Then Au = χ.

Proof. Owing to the monotone character of Aj , we have, for all v ∈ X ,

〈Ajuj , uj〉 − 〈Ajv, uj〉 − 〈Ajuj −Av, v〉 = 〈Ajuj −Ajv, uj − v〉 ≥ 0 ;

according to the assumptions (a)–(d), the passing to the limit yields

〈χ, u〉 − 〈Av, u〉 − 〈χ−Av, v〉 = 〈χ−Av, u− v〉 ≥ 0 , for all v ∈ X ;
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putting v = u± tw, for t > 0 and w ∈ X , we obtain

±〈χ−A(u± tw), w〉 ≥ 0 , for all w ∈ X ;

and letting t→ 0+, using the hemicontinuity of A, we finally deduce 〈χ−Au,w〉 = 0

for all w ∈ X , that is Au = χ.

Remark 7.2. Taking Aj = A for all j ≥ 1, we find the standard monotonicity

trick. Thus, Lemma 7.1 is a generalization of that result.

We can apply Lemma 7.1 to the sequence of monotone operators Aj = A(· , kj)

together with the sequence uj . It is very easy to check that the limit operator

A of Lemma 7.1 is A(· , k). It is enough to argue with (7.2) and use the almost

everywhere convergence of the sequence kj to k, also A(· , k) verifies conditions (d)

and (e) of Lemma 7.1 (in fact, A is a continuous operator). Summing up, we have

shown that u ∈ V q
b (Ω) is such that A(u, k) + Bu = ` in V q

b (Ω)′. In particular,

remembering (7.5), we have

〈A(uj , kj) −A(u, k), v〉 = −〈Buj −Bu, v〉 , for all v ∈ V q
b (Ω) ; (7.11)

now, we take v = uj − u in this expression. The right-hand side reads

−〈Buj −Bu, uj − u〉 = 〈Buj , u〉 + 〈Bu, uj〉 ,
and by virtue of (7.8) and (7.6), we readily obtain that

lim
j→∞

〈Buj −Bu, uj − u〉 = 0 . (7.12)

We turn to (7.11) for v = uj − u:

〈A(uj , kj) −A(u, kj), uj − u〉

= −〈A(u, kj) −A(u, k), uj − u〉〈Buj −Bu, uj − u〉 ,
that is

∫

Ω

ν1|∇(uj − u)|2 +

∫

Ω

ν2

∣∣∣∣
∂(uj − u)

∂z

∣∣∣∣
2

≤
∫

Ω

(ν1 + ν̄1(kj))|∇(uj − u)|2 +

∫

Ω

(ν2 + ν̄2(kj))

∣∣∣∣
∂(uj − u)

∂z

∣∣∣∣
2

+

∫

Ω

(Φ1(∇ · uj) − Φ1(∇ · u)) (∇ · uj −∇ · u)

+

∫

Ω

(
Φ2(d

−1
b uj) − Φ2(d

−1
b u)

)
(d−1

b uj − d−1
b u)

= −
{∫

Ω

(ν1 + ν̄1(kj))∇u∇(uj − u) +

∫

Ω

(ν2 + ν̄2(kj))
∂u

∂z

∂(uj − u)

∂z

}

+

{∫

Ω

(ν1 + ν̄1(k))∇u∇(uj − u) +

∫

Ω

(ν2 + ν̄2(k))
∂u

∂z

∂(uj − u)

∂z

}

−〈Buj −Bu, uj − u〉
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and letting j → ∞ we finally deduce that uj → u in H1(Ω)-strongly. Now, we can

pass to the limit in (7.5) and obtain that (u, k) is a solution to problem (7.4).

Finally, the pressure ps ∈ Lq′

D,0(ω) is obtained as in Theorem 5.1. This ends the

proof of Theorem 7.1.

Remark 7.3. If Φ1 and Φ2 verify (3.13), then it is easy to see that uj → u in

V q
b (Ω)-strongly.

Remark 7.4. The solution k obtained in Theorem 7.1 satisfies some more inter-

esting properties. Indeed, it can be shown that k is a renormalized solution,8 so

that it also bears the following conditions:

(1) Tj(k) ∈ H1
0 (Ω), for all j > 0;

(2) limj→∞
1
j

∫
|k|≤j(|∇k|2 +

∣∣∂k
∂z

∣∣2) = 0.

Remark 7.5. We may also consider the presence of convection terms of the form

u∇k+W (u)∂k
∂z in the equation for k. In this case, it can be shown that the existence

result given in Theorem 7.1 still holds.
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