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Abstract
Solutions of the Riemann–Hilbert problem implementing the twistorial
structure of the dispersionless Toda (dToda) hierarchy are obtained. Two
types of string equations are considered which characterize solutions arising
in hodograph sectors and integrable structures of two-dimensional quantum
gravity and Laplacian growth problems.

PACS number: 02.40.−k

1. Introduction

The dispersionless Toda (dToda) hierarchy [1–3] describes several relevant integrable
structures as the genus zero-limit of the Landau–Ginzburg formulation of two-dimensional
string theory [4–6], the dynamics of conformal maps and the Laplacian growth problem
governing interface dynamics [7, 8]. It can be formulated in terms of two Laurent series

L = p +
∑
n�0

un+1(t, t̄ , s)

pn
, L̄−1 = ū0(t, t̄ , s)

p
+

∑
n�0

ūn+1(t, t̄ , s)p
n, (1)

with coefficients depending on the variables t := (x := t1, t2, . . .), t̄ := (y := t̄1, t̄2, . . .) and
the spacial variable s, and such that the following Lax equations are satisfied


∂L
∂tn

= {Bn,L}, ∂L̄
∂tn

= {Bn, L̄},
∂L
∂t̄n

= {B̄n,L}, ∂L̄
∂t̄n

= {B̄n, L̄},
(2)
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where the Poisson bracket is defined as

{F,G} := p

(
∂F

∂p

∂G

∂s
− ∂F

∂s

∂G

∂p

)
, (3)

and

Bn := (Ln)�0, B̄n := (L̄−n)�−1. (4)

Here (· · ·)�0 ((· · ·)�−1) means the part of the Laurent series with positive (strictly negative)
powers of p.

The main integrable model included in the dToda hierarchy is the Boyer–Finley
equation [9]

∂2U

∂x∂y
+

∂2

∂s2
(exp U) = 0, (5)

where U = U(x, y, s) := ln ū0. It is a much studied (2+1)-dimensional integrable system
which appears in the classification of self-dual Einstein spaces with rotational Killing symmetry
[9–11] and in the twistor analysis of Einstein–Weyl spaces [12, 13].

Several methods for finding solutions of the members of the dToda hierarchy have been
proposed. A general strategy within the framework of dispersionless integrable hirarchies
is the hodograph method [14–17]. Another approach, used for generating solutions of the
Boyer–Finley equation, is the group foliation method of [18, 19]. In the present work we are
concerned with a third scheme: the twistor method of Takasaki–Takebe [1, 20]. It involves an
extended Lax formalism with a pair of Orlov functions M and M such that

{L,M} = L, {L̄,M} = L̄, (6)

with Laurent expansions

M =
∑
n�1

ntnLn + s +
∑
n�1

vn(t, t̄ , s)

Ln
, M = −

∑
n�1

nt̄nL̄−n + s +
∑
n�1

v̄n(t, t̄ , s)L̄n, (7)

and verifying the same Lax equations (2) as L and L̄. Solutions of the dToda hierarchy are
characterized by imposing two constraints (string equations) of the form

P(L,M) = P̄ (L̄,M), X(L,M) = X̄(L̄,M), (8)

where (P (p, s),X(p, s)) and (P̄ (p, s), X̄(p, s)) are pairs of canonically conjugate variables
(i.e. {P,X} = P, {P̄ , X̄} = P̄ ), which together with the conditions (1) and (7) constitute a
Riemann–Hilbert problem.

In the present work we solve two types of systems of string equations and obtain solutions
of the truncated (n1, n2)-dToda hierarchy with a finite number of nonzero times

tn = t̄m = 0, n > n1, m > n2, tn1 �= 0, t̄n2 �= 0.

The first type of systems is characterized by a string equation of the form

P̄ (L̄) = P(L). (9)

The corresponding solutions verify reductions of the dToda hierarchy depending on a finite
number of unknown functions so that they represent hodograph sectors. In section 3 we show
a natural way of deriving hodograph relations in the twistor method and, as an illustration,
several solutions of (5) corresponding to cases of the form,

L̄±β = Lα,

are exhibited.
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Section 4 is devoted to the family of systems of string equations

L̄β = α
Lα

M
,

1

β
M = 1

α
M, (10)

introduced by Takasaki [6] for describing the integrable structure of two-dimensional quantum
gravity. The case α = β = 1 is specially important since the corresponding solutions of the
dToda hierarchy describe the genus zero-limit of two-dimensional quantum gravity coupled
to c = 1 matter [6]. Furthermore, it also underlies the integrable structures in the theory of
conformal maps [7] and Laplacian growth problems [8]. We obtain solutions of the (n1, n2)-
dToda hierarchy satisfying (10) with

n1 > α − β, n2 > β − α.

These solutions are determined by a system of implicit equations which can be conveniently
handed with computer aid. For all the cases considered we provide an equation of hodograph-
type characterizing the function ū0, so that a corresponding solution of the Boyer–Finley
equation is obtained.

2. The twistor method of solution

In terms of the differential form

ω := d ln p ∧ ds +
∑
n�1

dBn ∧ dtn +
∑
n�1

dB̄n ∧ dt̄n, (11)

the dToda hierarchy can be formulated in the following concise way:

ω = d lnL ∧ dM = d ln L̄ ∧ dM. (12)

From (11) and (12) it follows the existence of two functions S = S(L, t, t̄ , s) and
S̄ = S̄(L̄, t, t̄ , s) such that

dS = M d lnL + ln p ds +
∑
n�1

Bn dtn +
∑
n�1

B̄n dt̄n,

(13)
dS̄ = M d ln L̄ + ln p ds +

∑
n�1

Bn dtn +
∑
n�1

B̄n dt̄n,

so that they can be assumed to admit expansions of the form

S =
∑
n�1

tnLn + s lnL −
∑
n�1

vn(t, t̄ , s)

n
L−n,

(14)
S̄ =

∑
n�1

t̄nL̄−n + s ln L̄ + �(x, y, s) +
∑
n�1

v̄n(t, t̄ , s)

n
L̄n.

The twistor method for solving the dToda hierarchy is supplied by the following
result [3]:

Theorem. Let (P (p, s),X(p, s)) and (P̄ (p, s), X̄(p, s)) be a pair of canonically conjugate
variables (i.e. {P,X} = P, {P̄ , X̄} = P̄ ). If (L,M, L̄,M) are functions of (p, t, t̄ , s) which
admit expansions of the form (1) and (7), and satisfy the equations

P(L,M) = P̄ (L̄,M), X(L,M) = X̄(L̄,M), (15)

then (L,M, L̄,M) is a solution of the dToda hierarchy.
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At this point two remarks are in order

1. The string equations (15) are meaningful only when they are interpreted as a suitable
Riemann–Hilbert problem on the complex plane of the variable p. Indeed, (L,M)

must be analytic functions in a neighbourhood D = {|p| > r} of p = ∞ and (L̄,M)

must be analytic functions in a neighbourhood D̄ = {|p| < r̄} of p = 0. Thus the
statement of the theorem holds provided the string equations are satisfied on a common
annulus A ⊂ D

⋂
D̄. The proof (see [3]) consists on differentiating (15) with respect to

(p, t, t̄ , s)(p ∈ A), then using the Laurent series in D and D̄ to obtain two expansions of
the results in powers of p on A and, finally, identifying coefficients of both expansions.
In the cases considered below we impose conditions for

P(L,M), P̄ (L̄,M),X(L,M), X̄(L̄,M),

to be analytic functions of p on A := C − {0}. These conditions play an essential role in
our method as they constitute the relations describing the hodograph sectors represented
by our first class of solutions and are part of the conditions required to characterize the
solutions of Takasaki string equations.

2. It is helpful to use canonical generating functions [20, 21] to introduce pairs of conjugate
variables . For example, the condition of canonicity for a pair (P,X)

p dP ∧ dX = P dp ∧ ds,

is ensured by defining (P,X) through generating functions J0 = J0(P, s1) or J1 =
J1(P, p) verifying

dJ0 = X

P
dP + p ds1, dJ1 = X

P
dP − s1 dp, (16)

where

s1 := s

p
.

Equivalently

p = ∂J0

∂s1
, X = P

∂J0

∂P
, s = −p

∂J1

∂p
, X = P

∂J1

∂P
. (17)

3. Hodograph sectors

3.1. Hodograph relations in the twistor formalism

From generating functions of the form

J0(P, s1) = f (P )s1 + g(P ), J̄ 0(P̄ , s1) = f̄ (P̄ )s1, (18)

we determine two pairs of conjugate variables (P,X) and (P̄ , X̄) given by

P = P(p), X = s
d ln p

d ln P
+

dg(P )

d ln P
,

P̄ = P̄ (p), X̄ = s
d ln p

d ln P̄
,

where P = P(p) and P̄ = P̄ (p) are the inverse functions of f = f (P ) f̄ = f̄ (P ),
respectively. It follows at once that the corresponding string equations are

P̄ (L̄) = P(L), (19)
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and

M
∂ ln L̄

∂ ln P̄ (L̄)
= M

∂ lnL
∂ ln P(L)

+
∂g(P (L))

∂ ln P(L)
. (20)

The second string equation can be rewritten as

M = ∂(S + g(P̄ (L̄)))

∂ ln L̄
, (21)

or, equivalently, in terms of derivatives with respect to the variable p

M = ∂p(S + g(P (L)))

∂pP (L)
L̄P̄ ′(L̄). (22)

We may design a method of solution of (19) and (22) provided the following conditions
are satisfied:

(A.1) There exists a solution L = L(p,w) and L̄ = L̄(p,w) of (19), of the form (1), depending
on a finite number N of unknown coefficients w := (w1, . . . , wN).

(A.2) The function ∂p ln P(L(p,w)) vanishes at exactly N different points pi = pi(w)

Indeed, under these assumptions we determine the unknowns w by imposing

S + g(P (L)) =
n1∑

n=1

tnBn +
n2∑

n=1

t̄nB̄n + s ln p + (g(P (L)))�0, (23)

and the vanishing of the numerator of (22) at the points pi . Thus we get the N hodograph
relations

n1∑
n=1

tn∂pBn(pi) +
n2∑

n=1

t̄n∂pB̄n(pi) +
s

pi

+ h(pi) = 0, (24)

where

h(p) := ∂p(g(P (L(p,w))))�0,

and find M from (22). Note that the hodograph relations prevent M from having poles at the
points pi . Moreover, near p = 0 the form of M satisfies (7) since from (23) and by taking
into account the assumption (A.1) we deduce

S + g(P (L)) =
n2∑

n=1

t̄nL̄−n + s ln L̄ + O(1), L̄ → 0,

and therefore

M = ∂(S + g(P (L)))

∂ ln L̄
= −

n2∑
n=1

nt̄nL̄−n + s + O(L̄).

Similarly, expression (23) for S leads to a function M with an expansion of the form (7).
We note that for the simplest case n1 = n2 = 1, (24) becomes

x +
s

pi

− ū0(w)

p2
i

y + h(pi) = 0,

which coincides with the system of hodograph relations for the Boyer–Finley equation found
in [15].
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3.2. Examples

If we take

L̄β = Lα, α > β > 0, (25)

then it is immediate to see that expressions of the form

L̄ = (pβw1 + · · · + pα−1wα−β + pα)
1
β , L = (pβw1 + · · · + pα−1wα−β + pα)

1
α

solve (25), depend on the α − β unknown coefficients w = (w1, . . . , wα−β) and have
expansions of the form (1). Furthermore,

∂p ln P(L) = αpα−β + (α − 1)pα−β−1wα−β + · · · + βw1

pα−β+1 + · · · + pw1
,

has exactly α −β zeros pi = pi(w). Hence, the assumptions (A.1) and (A.2) are satisfied and
the hodograph relations (24) determine solutions of the truncated dToda hierarchy.

For example if

α = 2, β = 1, g(P ) = 0,

we have w = w1, ū0 = 1/w1 and it follows an hodograph relation for the (1, 1)-dToda
hierarchy of the form

x − 4yū3
0 − 2sū0 = 0, (26)

which provides the solution

ū0 = s

3
1
3

√
y(−9x

√
y +

√
3
√

8s3 + 27x2y)
− 1

3 − 1

2 · 3
2
3
√

y
(−9x

√
y +

√
3
√

8s3 + 27x2y)
1
3 .

Other solutions of the (1, 1)-dToda hierarchy are

(1) α = 3, β = 1, g(P ) = 0

w = (w1, w2), ū0 = 1

w1
.

The system of hodograph equations for w is

x − 6s

2w2 +
√

−12w1 + 4w2
2

− 36y

w1
( − 2w2 −

√
−12w1 + 4w2

2
)2 = 0

x − 6s

2w2 −
√

−12w1 + 4w2
2

− 36y

w1
( − 2w2 +

√
−12w1 + 4w2

2
)2 = 0

which leads to the following implicit equation for ū0(
x + 3yū2

0

)(−3s2ū0 +
(
x − 3yū2

0

)2) = 0. (27)

(2) α = 3, β = 2, g(P ) = 0

w = w1, ū0 = 1

w
1/2
1

.

We get the hodograph equation

−6sū2
0 + 4x − 9yū5

0 = 0. (28)
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(3) α = 2, β = 1, g(P ) = P
3
2

w = w1, ū0 = 1

w1
.

The hodograph equation is

−3 − 16sū3
0 + 8xū2

0 − 32yū5
0 = 0. (29)

For the choice
1

L̄β
= Lα, α, β > 0, (30)

it follows that

1

L̄
=

(
w−β

pβ
+ · · · +

w−1

p
+ w1 + pw2 + · · · + pα−1wα + pα

) 1
β

,

L =
(

w−β

pβ
+ · · · +

w−1

p
+ w1 + pw2 + · · · + pα−1wα + pα

) 1
α

,

solve (30), depend on the α + β unknown coefficients w = (w−β, . . . , w−1, w1, . . . , wα) and
have expansions of the form (1). Moreover,

∂p ln P(L) = αpα+β + (α − 1)pα+β−1wα + · · · − βw−β

pα+β+1 + · · · + pw−β

,

has exactly α + β zeros pi = pi(w). Hence, the assumptions (A.1) and (A.2) are satisfied so
that the hodograph relations (24) determine solutions of the dToda hierarchy.

For example if α = 2, β = 1, g(P ) = P −3, then

w = (w−1, w1, w2), ū0 = w−1.

In this case the hodograph equations for w lead to the system

12w1w−1 + x = 0, s + 6w1w2w−1 + 6w2
−1 = 0, 3w2

1w−1 + 6w2w
2
−1 − yw−1 = 0,

which implies the following implicit relation for ū0:

−x3 + 48xyū2
0 − 576sū3

0 − 3456ū5
0 = 0. (31)

4. Takasaki string equations

4.1. General scheme

By taking the generating functions

J1(P, p) = −pα

P
, J̄ 0(P̄ , s1) = P̄ 1/βs1, α, β > 0,

we determine the pairs of conjugate variables

P = α
pα

s
, X = s

α
,

P̄ = pβ, X̄ = s

β
.

They lead to the string equations proposed by Takasaki

L̄β = α
Lα

M
,

1

β
M = 1

α
M, (32)
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or equivalently

βM = αM, (33)

β
Lα

L̄β
= M. (34)

We next prove that the string equations (33), (34) have solutions satisfying (1) and (7) with

M =
n1∑

n=1

ntnLn + s +
∞∑

n=1

vnL−n, M = −
n2∑

n=1

nt̄nL̄−n + s +
∞∑

n=1

v̄nL̄n. (35)

Given two integers r � s let us denote by V[r, s] the set of truncated Laurent series of
the form

crp
r + cr+1p

r+1 + · · · + csp
s.

Let us look for solutions of (33) and (34) such that Lα and L̄−β are meromorphic functions of
p with possible poles only at p = 0 and p = ∞. Then, as a consequence of the assumptions
(1), (35) and the twistor equations

α

L̄β
= ML−α, βLα = ML̄β,

it follows that
1

L̄β
∈ V[−β, n1 − α], Lα ∈ V[β − n2, α]. (36)

Thus, the existence of nontrivial solutions requieres

n1 > α − β, n2 > β − α. (37)

We can split (33) into the system of equations:

αM�1 = βM�1, (38)

αM0 = βM0, (39)

αM�−1 = βM�−1, (40)

where (· · ·)�1((· · ·)�−1) denote the part of the Laurent series with strictly positive (strictly
negative) powers of p, and (· · ·)0 stands for the constant term. Obviously this system is
satisfied if we set

M =
n1∑

n=1

ntn(Ln)�1 +
α

β
M0 − α

β

n2∑
n=1

nt̄n(L̄−n)�−1,

(41)

M = −
n2∑

n=1

nt̄n(L̄−n)�−1 + M0 +
β

α

n1∑
n=1

ntn(Ln)�1,

where

M0 = s −
n2∑

n=1

nt̄n(L̄−n)0.

Moreover, from (41) it can easily be seen that M has the required expansion of the form (7)
provided L and L̄ satisfy (1). On the other hand, the expression (41) for M has an expansion
of the form (35) if the residue of ML−1 corresponding to its Laurent expansion in powers of
L verifies

Res

(
M
L

,L
)

= s. (42)

Hence the problem reduces to finding L and L̄ satisfying (1), (34) and (42).
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In view of (1) and (36) we look for L̄−β and Lα in the form

L̄−β = w̄0

pβ
+

w̄1

pβ−1
+ · · · +

w̄m

pβ−m
, m := n1 − α + β,

(43)
Lα = pα + w1p

α−1 + · · · + wα−β+n2p
β−n2 .

Hence (34) reads

βLα = pβM
w̄mpm + · · · + w̄1p + w̄0

, (44)

and in order to prevent Lα from having poles different from p = 0 and p = ∞ we impose

M(pi(w̄)) = 0, (45)

where pi(w̄), (w̄ := (w̄1, . . . , w̄m)) denote the m zeros of

w̄mpm + · · · + w̄1p + w̄0 = 0.

In this way by using (43) in expression (41) for M, equation (44) becomes dependent on
the variables (

p, s, t, t̄ , w̄0, . . . , w̄m,w1, . . . , wα−β+n2

)
.

Thus, by identifying coefficients of the powers pi, i = β − n2, . . . , α we get α − β + n2 + 1
equations which together with the m equations (45) determine the α−β +n2 +m+1 unknowns
variables

(
w̄0, . . . , w̄m,w1, . . . , wα−β+n2

)
as functions of (s, t, t̄). However, to complete our

proof we must show that (42) is satisfied too. To do that let us take two circles γ (|p| = r)

and γ̄ (|p| = r̄) in the complex p-plane and denote by � and �̄ their images under the maps
L = L(p) and L̄ = L̄(p), respectively. Then we have

Res

(
M
L

,L
)

− Res

(
M
L̄

, L̄
)

= 1

2iπ

∮
�

M
L

dL − 1

2iπ

∮
�̄

M
L̄

dL̄

= 1

2iπ

∮
γ

∂pLα

L̄β
dp +

1

2iπ

∮
γ̄

Lα∂p(L̄−β) dp

= 1

2iπ

∮
γ

∂p

(
Lα

L̄β

)
dp = 0,

where we have taken into account that the integrands are analytic functions of p in C − {0}
and that γ and γ̄ are homotopic with respect to C−{0}. Therefore, as we have already proved
that M has an expansion of the form (7), we deduce

Res

(
M
L

,L
)

= Res

(
M
L̄

, L̄
)

= s,

so that (42) follows.

4.2. Examples

We first illustrate our method by considering two cases with α = β.

(I) α = β, n1 = n2 = 1
The starting point is to set

Lα = pα + w1p
α−1, L̄−α = w̄0

pα
+

w̄1

pα−1
.
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The polynomial pαL̄−α has a unique zero at

p1 = − w̄0

w̄1
,

thus, (46) leads us to

s − x
w̄0

w̄1
+

(
1 − 1

α

)
yw̄

−1+ 1
α

0 w̄1 = 0. (46)

Now, by equating the powers of p in (45) we obtain

pα : αw̄1 + x = 0
(47)

pα−1 : αw1 − s

w̄1
+

xw̄0

w̄2
1

+
yw̄

−1+ 1
α

0

α
= 0.

Finally, from (46) and (47) we can eliminate w̄1 and w1, and taking into account that
w̄0 = ūα

0 we get ū0 implicitly defined by

(1 − α)xyū0 − α2sūα
0 + α3ū2α

0 = 0. (48)

(II) α = β, n1 = 2, n2 = 1.
We start with the expressions

Lα = pα + w1p
α−1, L̄−α = w̄0

pα
+

w̄1

pα−1
+

w̄2

pα−2
.

Now the polynomial pαL̄−α has two zeros at the points

p1 =
−w̄1 +

√
w̄2

1 − 4w̄0w̄2

2w̄2
, p2 =

−w̄1 −
√

w̄2
1 − 4w̄0w̄2

2w̄2
,

thus, (46) yields two equations which become equivalent to

2αt2w̄0w̄
2
1 − 2αt2w̄

2
0w̄2 − 4t2w̄0w1w̄1w̄2 + αsw̄0w̄

2
2 − αxw̄0w̄1w̄2 − yw̄

1
α

0 w̄1w̄
2
2 = 0,

(49)

2αt2w̄
2
0w̄1 − 4t2w̄

2
0w1w̄2 − αxw̄2

0w̄2 − αyw̄
1+ 1

α

0 w̄2
2 = 0. (50)

Now, by identifying coefficients of powers of p in (45) we obtain

pα : −2t2 + αw̄2 = 0
(51)

pα−1 : 2at2w̄1 − 4t2w1w̄2 + α2w1w̄
2
2 − αxw̄2 = 0.

Finally, from (49), (50) and (51) we can eliminate w̄1, w̄2 and w1, and taking into account
that w̄0 = ūα

0 we get the following implicit equation for ū0:

α4sū2α
0 − α5ū3α

0 + α3xyūα+1
0 + 4t2y

2ū2
0 − 6αt2y

2ū2
0 + α2yū0

( − xūα
0 + 2t2yū0

) = 0.

(52)

Next we quote the final implicit relation for ū0 corresponding to some examples of
solutions for α �= β.

(1) α = 4, β = 2, n1 = 3, n2 = 1.

2560ū7
0 − 1536t2ū

5
0 + 64

(
2t2

2 + 3t3x
)
ū3

0 − 72t2
3 sū0 − 27t3

3y = 0.

(2) α = 3, β = 2, n1 = 2, n2 = 1.

3st2ū0 + 27ū5
0 − 9xū3

0 + t2
2y = 0.
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(3) α = 5, β = 3, n1 = 3, n2 = 1

−120t3
2sū2

0 + 100t2
2ū5

0 − 2000t2ū
8
0 + 4375ū11

0 + 300t3xū5
0 − 48t3

3y = 0.

(4) α = 2, β = 1, n1 = 3, n2 = 1.

−3t3s
2 − 16ū3

0 + 8xū2
0 − 12t3yū2

0 = 0.

(5) α = 3, β = 1, n1 = 4, n2 = 1.

−64t4
3s3 + 288t2t4

2s2ū0 − 1296t4
2s2ū2

0 − 864t2
3ū3

0 + 1296t2t4sū
3
0 + 7776t2

2ū4
0

− 4860t4sū
4
0 − 21 870t2ū

5
0 + 18 225ū6

0 + 972t4x
2ū3

0 − 2592t4
2xyū3

0

+ 1728t4
3y2ū3

0 = 0.

4.3. Applications to integrable contour dynamics

Let z = z(p) be an invertible conformal map of the exterior of the unit circle |p| > 1 to the
exterior of a simply connected domain bounded by a simple analytic curve γ . At p → ∞ it
can be expanded in the form

z(p) = rp +
∞∑

n=0

rn

pn
, (53)

where the coefficient r is real. By expressing the coefficients (r, r0, r1, . . .) as functions
of the harmonic moments t = (t0, t1, . . .) of the exterior of γ it turns out [7, 8] that the
corresponding function z(p, t) determines a solution of the dToda hierarchy. The relation
between the dynamical objects involved in the two different gauges of the dToda hierarchy
used in [1, 3] and [6, 7] is as follows:

z(p) = L(rp), z̄

(
1

p

)
= L̄−1(rp), r := √

ū0, (54)

where

z̄

(
1

p

)
= r

p
+

∞∑
n=0

r∗
n

pn
, (55)

and

t0 = s, t̄n = −t∗n , n � 1.

The associated system of string equations is

L̄ = L
M

, M = M, (56)

which implies {
z(p), z̄

(
1

p

)}
= 1. (57)

Furthermore, in view of (54) and (55), the solution satisfies the reduction condition

1

L̄(rp)
= (L(rp))∗, for |p| = 1. (58)

It can be seen that the method developed in subsection 4.1 is compatible with (58) provided r
is real, so that it can be applied to obtain these solutions by setting

α = β = 1, n1 = n2.

The following two examples illustrate the simplest cases.
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(I) n1 = n2 = 2 (the ellipse). The polynomial pL̄−1 has two zeros at the points

p1 =
−w̄1 +

√
w̄2

1 − 4w̄0w̄2

2w̄2
, p2 =

−w̄1 −
√

w̄2
1 − 4w̄0w̄2

2w̄2
.

From (45) we get two equations which lead to

−2t2w̄
3
1 + 4t2w̄0w̄1w̄2 + t1w̄

2
1w̄2 + 4t2w1w̄

2
1w̄2 − t1w̄0w̄

2
2 − 4t2w̄0w1w̄

2
2

− t0w̄1w̄
2
2 − t∗1 w̄2

1w̄
2
2 − 2t∗2 w̄3

1w̄
2
2 + t∗1 w̄0w̄

3
2 = 0, (59)

−2t2w̄0w̄
2
1 + 2t2w̄

2
0w̄2 + t1w̄0w̄1w̄2 + 4t2w̄0w1w̄1w̄2 − t0w̄0w̄

2
2

− t∗1 w̄0w̄1w̄
2
2 − 2t∗2 w̄0w̄

2
1w̄

2
2 − 2t∗2 w̄2

0w̄
3
2 = 0. (60)

Identification of powers of p in (44) implies

p : −2t2 + w̄2 = 0,

p0 : 2t2w̄1 − t1w̄2 − 4t2w1w̄2 + w1w̄
2
2 = 0,

p−1 : −2t2w̄
2
1 + 2t2w̄0w̄2 + t1w̄1w̄2 + 4t2w1w̄1w̄2 − t0w̄

2
2 − t∗1 w̄1w̄

2
2

− 2t∗2 w̄2
1w̄

2
2 − 4t∗2 w̄0w̄

3
2 + w2w̄

3
2 = 0. (61)

By solving equations (59)–(61) we get the solution:

L = p +
t∗1 + 2t1t

∗
2

1 − 4t2t
∗
2

+
2t0t

∗
2

p(1 − 4t2t
∗
2 )

,

1

L̄
= t0

p(1 − 4t2t
∗
2 )

+
t1 + 2t∗1 t2

1 − 4t2t
∗
2

+ 2pt2,

which leads to the conformal map describing an ellipse growing from a circle [6]

z =
(

t0

1 − 4t2t
∗
2

) 1
2

p +
t∗1 + 2t1t

∗
2

1 − 4t2t
∗
2

+ 2

(
t0

1 − 4t2t
∗
2

) 1
2 t∗2

p
. (62)

(II) n1 = n2 = 3 (the hypotrochoid). Let us take t1 = t2 = t∗1 = t∗2 = 0, then pL̄−1 is a third
degree polynomial and (45) gives rise to a system of three equations which can be reduced to

3t3w̄
4
2 − 9t3w̄1w̄

2
2w̄3 − 9t3w1w̄

3
2w̄3 + 3t3w̄

2
1w̄

2
3 + 6t3w̄0w̄2w̄

2
3 + 18t3w1w̄1w̄2w̄

2
3

+ 9t3w1
2w̄2

2w̄
2
3 + 9t3w2w̄

2
2w̄

2
3 − 9t3w̄0w1w̄

3
3 − 9t3w1

2w̄1w̄
3
3 − 9t3w̄1w2w̄

3
3

− t0w̄2w̄
3
3 − 3t∗3 w̄3

1w̄2w̄
3
3 − 18t∗3 w̄0w̄1w̄

2
2w̄

3
3 + 9t∗3 w̄0w̄

2
1w̄

4
3 = 0 (63)

3t3w̄1w̄
3
2 − 6t3w̄

2
1w̄2w̄3 − 3t3w̄0w̄

2
2w̄3 − 9t3w1w̄1w̄

2
2w̄3 + 6t3w̄0w̄1w̄

2
3 + 9t3w1w̄

2
1w̄

2
3

+ 9t3w̄0w1w̄2w̄
2
3 + 9t3w1

2w̄1w̄2w̄
2
3 + 9t3w̄1w2w̄2w̄

2
3 − 9t3w̄0w1

2w̄3
3

− t0w̄1w̄
3
3 − 3t∗3 w̄4

1w̄
3
3 − 9t3w̄0w2w̄

3
3 − 18t∗3 w̄0w̄

2
1w̄2w̄

3
3 = 0 (64)

3t3w̄0w̄
3
2 − 6t3w̄0w̄1w̄2w̄3 − 9t3w̄0w1w̄

2
2w̄3 + 3t3w̄

2
0w̄

2
3

+ 9t3w̄0w1w̄1w̄
2
3 + 9t3w̄0w1

2w̄2w̄
2
3 + 9t3w̄0w2w̄2w̄

2
3 − t0w̄0w̄

3
3

− 3t∗3 w̄0w̄
3
1w̄

3
3 − 18t∗3 w̄2

0w̄1w̄2w̄
3
3 − 6t∗3 w̄3

0w̄
4
3 = 0. (65)

Now, by equating coefficients of powers of p in (44) we obtain

p : −3t3 + w̄3 = 0

p0 : 3t3w̄2 − 9t3w1w̄3 + w1w̄
2
3 = 0

p−1 : −3t3w̄
2
2 + 3t3w̄1w̄3 + 9t3w1w̄2w̄3 − 9t3w1

2w̄2
3 − 9t3w2w̄

2
3 + w2w̄

3
3 = 0

(66)
p−2 : 3t3w̄

3
2 − 6t3w̄1w̄2w̄3 − 9t3w1w̄

2
2w̄3 + 3t3w̄0w̄

2
3 + 9t3w1w̄1w̄

2
3 + 9t3w1

2w̄2w̄
2
3

+ 9t3w2w̄2w̄
2
3 − tw̄3

3 − 3t∗3 w̄3
1w̄

3
3 − 18t∗3 w̄0w̄1w̄2w̄

3
3

− 9t∗3 w̄2
0w̄

4
3 + w3w̄

4
3 = 0.
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Now by setting w1 = w̄1 = w2 = w̄2 = 0 one finds the solution

L = p +
3t∗3 w̄2

0

p2
,

1

L̄
= 3p2t3 +

w̄0

p
,

with

w̄0 = 1 − √
1 − 72t0t3t

∗
3

36t3t
∗
3

,

which satisfies (58) and leads to the conformal map associated with the hypotrochoid [23]

z = w̄
1
2
0 p +

3t∗3 w̄0

p2
. (67)
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