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Abstract

A linear theory for the physical fields in the water column under the action of large amplitude internal lee waves at the main

sill of the Strait of Gibraltar is developed. The procedure is a combination of the perturbation and normal modes methods in

order to study steady resonant conditions. The lowest order linear approach of the methodology resumes the Taylor–Goldstein

equation, which can reconstruct the main features of the observed fields but the high order approach gives the finest structure

and sometimes the largest contributions. The role of the non-linear terms is investigated up to the second order taking into

account the non-linear interactions between modes, leading to an effective reconstruction of the whole water column for the

velocity field.
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1. Introduction

The surface signatures associated to the interaction

of flows with topography are well-known oceano-

graphic phenomena and can be observed almost in

any coast and straits of the Earth. The surface slicks

consist in slight modulations of the free surface. They

use to be organized in rectangular plumes aligned with

the internal wave crests (La Violette and Lacombe,
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1988; New and Pingree, 1992). If more energetic

waves act, a chaotic sea with breaking short waves is

observed in surface. They are commonly named

hervideros (boiling waters) by the Spanish fishermen

in clear reference to the observed behavior of the

surface water. They were firstly reported in the Strait

of Gibraltar and its surroundings by the Spanish Navy

in 1787 and after by Purdy (1840) and it is cited as

streamers. This last denomination is commonly used

in the scientific literature.

Most of the works on internal waves in the Strait of

Gibraltar has focused on the generation, propagation

and release of the internal bore with critical conditions

over Camarinal sill during maximum Mediterranean
s 53 (2005) 197–216
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outflow (Frasseto, 1964; Ziegenbein, 1969; Cavanie,

1972; La Violette et al., 1986; Armi and Farmer,

1988; Richez, 1994; Watson and Robinson, 1990;

Brandt et al., 1996; Farmer and Armi, 1999). The

small amplitude westward travelling waves produce a

surface signature hardly to detect because interface

deepens into the Atlantic Ocean. All of them are

generated during spring tides.

There is another kind of internal wave named

unsteady large amplitude lee waves (ILW from

hereafter). They were firstly reported by Lott and

Teitelbaum (1993a,b) for the mountain waves in the

atmosphere. The first explicit reference with a full

numerical model is due to Nakamura et al. (2000) and

Nakamura and Awaji (2001). The first observation of

ILW in the Strait of Gibraltar was reported by Bruno

et al. (2002) and the basis for their modeling can be

found in Alonso et al. (2003). However, the ILW have

been found before by Lacombe and Richez (1984), La

Violette and Lacombe (1988) and Richez (1994),

among many others, but they did not distinguish them

from the classical internal bore. Some consequences

of the ILW can be found in Echevarrı́a et al. (2002)

and other interesting details about the role of solitons

in mixing using a simplistic model can be found in

Lenner-Cody and Franks (1999). The linear theory of

hydrodynamic stability has been the main tool to

study ILW stability (Kundu, 1990; Gill, 1982;

Bogucki et al., 1999; Bruno et al., 2002; Alonso et

al., 2003). It leads to a quite good description of the

main features of the phenomenon throughout Sturm–

Liouville-type equations. However, the non-linear

terms must be included in order to make a more

realistic approach. This work deals with the problems

of including the non-linear terms by an analytical

approach based on the combination of perturbation

and normal modes techniques, so all the resulting

equations will be linearized, with the obtention of

linear forced equations for each order depending of

the previous orders solutions. It will be shown that the

first order linear approach will have the largest

contributions to the velocity field.

The work is organized as follows. In Section 2, a

brief review of data, survey and a conceptual model

for ILW is given. Section 3 is devoted to the

description of the theoretical model. In Section 4,

the numerical results are presented and discussed.

Finally, the conclusions are drawn in Section 5.
2. The survey, data and the conceptual frame for

ILW

The survey was carried out in November 1998 at

the Camarinal Sill (Strait of Gibraltar) in a real-time

assessment of currents for drilling operations (Fig.

1). The hydrodynamic conditions for drilling need

very low currents and the operation was performed

in neap tides. Hence all the results are biased to

such a condition. A ship-mounted ADCP was

working continuously and a multiparameter probe

when needed. A very intense internal activity was

recorded with a large amount of observed surface

slicks. Data for the tidal current prediction has been

taken from the Gibraltar Experiment 94/96 from a

150 kHz upward-looking ADCP moored at the top

of Camarinal sill during 2 years (Fig. 1). The

harmonic constants for the generation of the tidal

current prediction can be found in Alonso et al.

(2003). The records of the upward-looking ADCP

present maximum values of horizontal velocities of

4 m/s when filtering and decimated the data to 1

data/h. Hence the internal activity is not taken into

account. The internal waves were classified as

internal lee waves (Alonso et al., 2003) and it

was demonstrated that it happened during subcrit-

ical conditions over the sill (Bruno et al., 2002;

Alonso et al., 2003). The ILW occurs when a

hydrodynamic perturbation happens and finds suit-

able conditions of stratification for its upward

propagation.

When the amplitude grows very energetic, sur-

face slicks are observed at the surface. In Alonso et

al. (2003), it was proved that the perturbation is

produced by the interaction flow–topography. In the

same paper, two new and important concepts were

also introduced. The first one is the topographic

criterion of its existence which says that the

wavelength of the ILW must be contained in the

topography; otherwise, the internal wave will be

damped. The second one is the existence of a

critical velocity: for background velocities lesser

than a certain critical velocity (in the Strait of

Gibraltar is about 0.5 m/s directed towards the

Atlantic Ocean), there is no enough forcing to

trigger the process.

The conceptual model has been described in

Alonso et al. (2003); however, a brief outline is



Fig. 1. The Strait of Gibraltar. The place where the ADCP was moored is marked with D. All the runs with the ship-mounted ADCP and CTD

casts were performed around that point.
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now given in order to fix some ideas. The

generation of lee waves depends on the background

velocity profile and on the stratification conditions

(Hazel, 1972; Bruno et al., 2002; Alonso et al.,

2003). The triggering mechanism is the interaction

of the flow with the topography. The perturbation

will propagate upward distorting all the physical

fields. The composite Froude number is taken less

than unity. Hence, the hydraulic jump has nothing

to do with it. When an oscillatory (tidal) and

unperturbed current flows over bottom topography

in a stratified fluid, many kinds of hydrodynamic

perturbation arise. Close to the bottom a perturba-

tion occurs due to the advective terms in the

equations of motion. If the conditions for its upward

propagation are favorable (x=UkbN, x is the

frequency of the internal wave, U the background

velocity, k the wave number and N the root squared
of the buoyancy frequency), a harmonic solution is

obtained and it can propagate upward, otherwise the

energy will be dissipated in the lower layer

(damped solution) (Gill, 1982; Konyaev and Sabi-

nin, 1992). With a zero relative velocity (c=0), the

internal wave is arrested by the flow (Bogucki et

al., 1999). When solving the numerical models,

Nakamura et al. (2000) and Nakamura and Awaji

(2001) did consider energy reflection at the surface;

however, their results led to the conclusion that the

energy reflection at the sea surface could be

neglected. This is exact and introduces a difference

with the previous and partially inaccurate conceptual

model presented in Bruno et al. (2002) and Alonso

et al. (2003). Then the conditions for resonance are

observed and the internal wave will be amplified,

producing a very strong mixing (see Echevarrı́a et

al., 2002) with a constant energy input radiating



Table 1

Selected time moments for the computations of the velocity field

Case Time (GMT) Wavelength

a 11:15 26/11/1998 871,156

b 09:45 27/11/1998 959,168,115

c 01:00 29/11/1998 1270,119

d 15:30 29/11/1998 200,123,105
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from the bottom. The study of the vertical

propagation angles can be found in Alonso et al.

(2003) following the Garrett and Munk (1972)

scheme. Because the tidal forcing is the driving

force of the process and it is time-dependent, the

ILW must be named unsteady lee waves (Nakamura

et al., 2000) and they will occur as pulses (Alonso

et al., 2003). Because the ILWs occur in subcritical

conditions, the ILW and the internal bore in the

Strait of Gibraltar are excluding and alternating

processes.

Four cases were selected for this study (Table 1).

They correspond to those moments reported in Alonso
et al. (2003) in which the ILWactivity was detected. A

linear model gave the wavelengths detailed in Table 1.

Only the wavelengths longer than 100 m have been

included.
3. The theoretical model

The goal of this theoretical model is to study the velocity field produced by a hydrodynamic perturbation under

resonant conditions. A perturbation technique is applied on a non-linear system of partial differential equations. The

equations for the lowest order (linear) are isolated and reduced to the Taylor–Goldstein equation by means of normal

modes. The resulting Sturm–Liouville problem is numerically solved. The solutions, the eigenfunctions or modes,

are used to build a forcing function contained in the first order approach. The resulting system is reduced again by the

same procedure to one single equation and it is numerically solved again. The process continues till reaching the

required degree of approach. Although the formalism up to the second order is presented, it is enough to reach the first

order in the computation in order to explain many of the features of the physical fields distorted by the action of the

ILW.

3.1. Basic equations

The equations for a linear continuously stratified parallel flow with no rotation, zero viscosity, with Boussinesq

condition and 2Dwith x-axis positive eastward and z-axis positive upwardwith the origin at a flat bottom are (Kundu,

1990):

Bu

Bt
þ u

Bu

Bx
þ w

Bu

Bz
¼ � 1

q0

Bp

Bx
Bw

Bt
þ u

Bw

Bx
þ w

Bw

Bz
¼ � 1

q0

Bp

Bz
� g

q0

q

Bq
Bt

þ u
Bq
Bx

þ w
Bq
Bz

¼ 0

Bu

Bx
þ Bw

Bz
¼ 0

ð1Þ

where u(x,z,t) and w(x,z,t) are the horizontal and vertical velocities, respectively, p(x,z,t) is the pressure field,

q(x,z,t) is the density field, g is the acceleration due to the gravity and q0 is the density of reference. The flat

bottom assumption is valid only when studying the near field. If the medium or the far field is to be studied, the

theory must be drastically modified. Assuming that the horizontal velocity and density can be decomposed in a
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horizontally constant background state and a perturbation due to the action of internal waves, the following set

of equations will be considered:

Bu

Bt
þ u

Bu

Bx
þ w

Bu

Bz
þ U

Bu

Bx
þ w

dU

dz
¼ � 1

q0

Bp

Bx
Bw

Bt
þ u

Bw

Bx
þ w

Bw

Bz
þ U

Bw

Bx
¼ � 1

q0

Bp

Bz
� q

g

q0

:

Bq
Bt

þ u
Bq
Bx

þ w
Bq
Bz

þ U
Bq
Bx

� wN2 q0

g
¼ 0

Bu

Bx
þ Bw

Bz
¼ 0

ð2Þ

For the derivation of the successive approximations, all variables are expanded as:

f ¼ f 0ð Þ þ ef 1ð Þ þ e2f 2ð Þ þ N ð3Þ

where f={u,w,p,q}. The expansion was performed till the second power of e. The e parameter is defined as the

quotient between the amplitude of the incoming tide and the depth of the area under study and takes the value of 1/

300=0.0333.

3.2. Lowest order solution (0-order)

The lowest order solution is achieve substituting Eq. (3) onto Eq. (2) and dropping all the terms multiplied by ei

with iN0. The resulting system is well known and can be found in many references (i.e. Kundu, 1990; Gill, 1982):

Bu 0ð Þ

Bt
þ U

Bu 0ð Þ

Bx
þ w 0ð Þ dU

dz
¼ � 1

q 0ð Þ

Bp 0ð Þ

Bx

Bw 0ð Þ

Bt
þ U

Bw 0ð Þ

Bx
¼ � 1

q0

Bp 0ð Þ

Bz
� g

q0

q 0ð Þ

Bq 0ð Þ

Bt
þ U

Bq 0ð Þ

Bx
� w 0ð ÞN 2 q0

g
¼ 0

Bu 0ð Þ

Bx
þ Bw 0ð Þ

Bz
¼ 0

ð4Þ

where the superscript (0) stands for the lowest order approach. Taking normal modes, it is easy to get the Taylor–

Goldstein equation that plays an important role in the study of hydrodynamic instabilities (Kundu, 1990; Konyaev

and Sabinin, 1992):

ŵw 0ð Þ
zz þ q zð Þŵw 0ð Þ ¼ k2ŵw 0ð Þ ð5Þ

where subscripts stand for derivatives, ŵ is the complex amplitude of the stream function, k is the wave number,

and the potential function is

q zð Þ ¼ N2

U � cð Þ2
� Uzz

U � cð Þ ð6Þ

where c is the phase speed of the internal wave. Eq. (5), together with the boundary conditions ŵ (0)=ŵ(h)=0, is a

classical fixed end-point Sturm–Liouville problem (Levitan, 1987) where the solutions are the eigenvectors, ŵn,
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and their correspondent eigenvalues, kn
2. For an arbitrary buoyancy frequency and background velocity profile (i.e.

for an arbitrary q(z) function), Eq. (5) must be solved numerically. If the interest is on internal waves that can be

resonant, this is equivalent to say that the attention is focused on steady ILW, hence a zero relative phase velocity,

c=0 (Bogucki et al., 1999; Nakamura et al., 2000; Nakamura and Awaji, 2001; Bruno et al., 2002; Alonso et al.,

2003), is considered.

Once the numerical solution is obtained, the following expressions recover all the fields for the steady

state perturbed velocity and density fields:

q 0ð Þ
n x; zð Þ ¼ q̂qn zð Þcos kxð Þ

u 0ð Þ
n x; zð Þ ¼ ûun zð Þcos kxð Þ ð7Þ

w 0ð Þ
n x; zð Þ ¼ iŵwn zð Þsin kxð Þ

where i is the imaginary number and the equations for the amplitudes of the velocity and density fields are:

q̂qn zð Þ ¼ � C
q0N

2

gU
ŵw 0ð Þ

n zð Þ

ûun zð Þ ¼ � C
Bŵw 0ð Þ

n zð Þ
Bz

ŵwn zð Þ ¼ � iCkŵw 0ð Þ
n zð Þ

ð8Þ

where C is an arbitrary constant that must be fitted from observations and it can be selected equal to the observed

amplitude of the isohalines, isotherms or isopicnals oscillations.

3.3. Next to lowest order solution

The first order linear solution is achieved by repeating the same procedure dropping all the terms multiplied by

e2 and higher powers in the expansion. The first order linear system is:

Bu 1ð Þ

Bt
þ U

Bu 1ð Þ

Bx
þ w 1ð Þ dU

dz
¼ � 1

q 0ð Þ

Bp 1ð Þ

Bx
þ bw0

Bw 1ð Þ

Bt
þ U

Bw 1ð Þ

Bx
¼ � 1

q0

Bp 1ð Þ

Bz
� g

q0

q 1ð Þmbw0

Bq 1ð Þ

Bt
þ U

Bq 1ð Þ

Bx
� w 1ð ÞN2 q0

g
¼ þ b

q
0

Bu 1ð Þ

Bx
þ Bw 1ð Þ

Bz
¼ 0

ð9Þ

With

bu0 x; zð Þ ¼ � u 0ð Þ Bu
0ð Þ

Bx
þ w 0ð Þ Bu

0ð Þ

Bz

� �
¼ � u 0ð Þ

P rP u 0ð Þ

bw0 x; zð Þ ¼ � u 0ð Þ Bw
0ð Þ

Bx
þ w 0ð Þ Bw

0ð Þ

Bz

� �
¼ � u 0ð Þ

P rP w 0ð Þ

b
q
0 x; zð Þ ¼ � u 0ð Þ Bq 0ð Þ

Bx
þ w 0ð Þ Bq 0ð Þ

Bz

� �
¼ � u 0ð Þ

P rP q 0ð Þ

ð10Þ

where subscripts and superscripts (0) and (1) stand for the lowest order and first order linear solution, respectively.

The underline terms denote vectors. Notice that Eq. (9) is the same as Eq. (4) with additional terms (Eq. (10))
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except in the continuity. The non-linear interactions between the modes of the velocities and density are grouped in

the terms of Eq. (10). Taking again normal modes and after a simple algebra, it is easy to get a single equation

similar to Eq. (5):

ŵw 1ð Þ
zz þ q zð Þŵw 1ð Þ ¼ l2ŵw 1ð Þ þ Q zð Þ ð11Þ

where l is the wave number, the definition of the potential function stands (Eq. (6)) and the forcing function

is:

Q zð Þ ¼ � g

q0U zð Þ w 0ð Þ
z q 0ð Þ þ w 0ð Þq 0ð Þ

z

� �
� 1

U zð Þ w 0ð Þ
z w 0ð Þ

zz � w 0ð Þw 0ð Þ
zzz

��
ð12Þ

In the development of Eqs. (11) and (12), a zero relative phase velocity has been assumed. Eq. (11) together

with the boundary conditions, ŵ (z=0)=ŵ (z=�h)=0, is a forced Sturm–Liouville problem that must be solved

numerically. The forcing function, Q(z), can be understood as the deflection from the equilibrium position of the

stream lines (from an example of Courant and Hilbert, 1989a,b for the oscillations of a string) and takes into

account the non-linear interaction between the modes of the stream function and density. Once the solution is

achieved, the velocity field is computed in a similar way as that of the linear solution. The resulting amplitudes are

computed combining Eqs. (3) and (8), multiplying the integration constant introduced in Section 3.2 and the small

parameter e used in the power expansion Eq. (3) and then considering Eq. (8).

3.4. Second order linear solution

The next step is building up the second order approach. The obtained linear system is

Bu 2ð Þ

Bt
þ U

Bu 2ð Þ

Bx
þ w 2ð Þ dU

dz
¼ � 1

q 0ð Þ

Bp 2ð Þ

Bx
þ bu01

Bw 2ð Þ

Bt
þ U

Bw 2ð Þ

Bx
¼ � 1

q0

Bp 2ð Þ

Bz
� g

q0

q 2ð Þ þ bw01

Bq 2ð Þ

Bt
þ U

Bq 2ð Þ

Bx
� w 2ð ÞN 2 q0

g
¼ b

q
01

Bu 2ð Þ

Bx
þ Bw 2ð Þ

Bz
¼ 0

ð13Þ

With

bu01 x; zð Þ ¼ �
�
e�1 u 0ð Þ

P rP u 0ð Þ þ u 0ð Þ
P rP u 1ð Þ þ u 1ð Þ

P rP u 0ð ÞÞ

bw01 x; zð Þ ¼ �
�
e�1 u 0ð Þ

P rP w 0ð Þ þ u 0ð Þ
P rP w 1ð Þ þ u 1ð Þ

P rP w 0ð ÞÞ

b
q
01 x; zð Þ ¼ � e�1 u 0ð Þ

P rP q 0ð Þ þ u 0ð Þ
P rP q 1ð Þ þ u 1ð Þ

P rP q 0ð Þ� �
ð14Þ

where the meaning of all the symbols is understood. It must be noticed the great influence of the lowest

order solution whose terms are multiplied by e�1, and recalling the expressions of the forcing (Eq. (10))

onto the new forcing terms (Eq. (14)): bu0 x; zð Þ ¼ u 0ð Þ
P rP u 0ð Þ; bw0 x; zð Þ ¼ u 0ð Þ

P rP w 0ð Þ; bq
0 x; zð Þ ¼ u 0ð Þ

P rP q 0ð Þ. In

addition, the non-linear interaction between the zero and first order linear solutions is contemplated in Eq. (14). By

means of the same algebra as that of above, the following equation is reached for the second order:

ŵw 2ð Þ
zz þ q zð Þŵw 2ð Þ ¼ m2ŵw 2ð Þ þ R zð Þ ð15Þ
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where m is the wave number and the forcing function R(x,z) is defined as:

R zð Þ ¼ � 1

U zð Þðe�1ŵw 0ð Þ
z ŵw 0ð Þ

zz � e�1ŵw 0ð Þŵw 0ð Þ
zzz þ ŵw 0ð Þ

zz ŵw 1ð Þ
z þ ŵw 0ð Þŵw 1ð Þ

zzz þ ŵw 1ð Þ
zz ŵw 0ð Þ

z þ ŵw 1ð Þŵw 0ð Þ
zzz þ

e�1ŵw 0ð Þ
z q 0ð Þ � e�1ŵw 0ð Þq 0ð Þ

z þ ŵw 0ð Þ
z q 1ð Þ � ŵw 0ð Þq 1ð Þ

z þ ŵw 1ð Þ
z q 0ð Þ � ŵw 1ð Þq 0ð Þ

z
Þ ð16Þ

taking into account again the non-linear interactions between modes of the lowest and first order solutions.
4. Numerical experiments, results and discussion

The best approach to solve this problem is

developing a full non-linear tri-dimensional numerical

model. This has been done partially by Nakamura et

al. (2000) and Nakamura and Awaji (2001) with a bi-

dimensional model. In the present study, we have

adopted a more simplified approach with the objective

of predicting the velocity field accurately, not exactly,

but very fast. With this, the evolution problem is

divided in many steady problems although sometimes

could be unrealistic. Hence the background velocity

and density fields are steady in each profile. The

results will be the steady velocity field for each

considered case.

4.1. Background velocity and buoyancy profiles

The study is focused in the period November 20th–

30th, 1998 when a survey was performed (Alonso et

al., 2003). Because the ILW occurs during neap tides

condition and Mediterranean outflow, all the results

are biased to such a condition (Bruno et al., 2002;

Alonso et al., 2003). Some plots of the velocity field

can be found in the two mentioned references and the

considered moments for the computation (detailed in

Table 1) have been selected from the paper of Alonso

et al. (2003) when the internal waves were observed.

The four vertical profiles of background velocities are

presented in Fig. 2a. They have been obtained from

the harmonic prediction of the currents following

Foreman (1998).

The buoyancy profile is computed from the density

profile (Bruno et al., 2002; Alonso et al., 2003). Since

the survey was carried out during neap tides, the

density and buoyancy profiles are representative of

only such a tidal state. The density profile, without the

action of internal waves, responds to a more or less
constant vertical structure that can be described in

terms of:

q zð Þ ¼ q0 þ
qa�

1þ exp �
z� qz0

� �
qb

��qc
�

From observed CTD profiles, the mean computed

parameters are qa=3.36, qb=�10.08, qc=1.29 and

q0=1026.5 (Fig. 2b). The depth of the interface was

taken from the vertical profile of background velocity.

Because one of the main problems at the Strait of

Gibraltar is the location of the depth of the interface, it

is necessary to say some words about it. The most

common depth for the interface is where the 37.5 PSU

isohaline is located, but because the CTD during the

survey was not working continuously some approach

to it is needed. In Bruno et al. (2002) and Alonso et al.

(2003), the depth of the maximum shear was used

successfully as an estimator of the depth of the

interface. This is in agreement with Tsimplis and

Bryden (2000) who found a difference of 8 m between

the interface and the maximum shear depths.

4.2. Linear solution

After building the potential function (Eq. (6)), the

linear solution is found by solving the Sturm–Liou-

ville problem (Eq. (5)). This can be done by several

numerical standard methods. Among them is that

described in Henrici (1962) and the SLEIGN program

(Bailey et al., 1991). The first one has problems with

the round off errors and the second minimizes them

for the smallest eigenvalue. Although formally the

linear problem has infinite solutions, some wave-

lengths are only physically reliable. The topographic

criterion of its existence was applied (Alonso et al.,

2003). With this, the linear solution has the wave-



Fig. 2. (a) Vertical profiles of background velocities (m/s) for the

four selected moments of Table 1. (b) Vertical profile of density

(look the same for the selected moments with variations in the depth

of the interface).
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lengths detailed in Table 1. Eigenfunctions shorter

than 100 m have not been considered.

Some words about the checking of the numerical

solution are needed. The vertical profiles of the

background velocity present zero crosses. Even if a

different value of celerity, c, was considered, the term

U(z)�c would be zero somewhere in depth. In those

points, the potential q(z) (Eq. (6)) becomes infinity

and wzz
(0) presents a discontinuity. In classical

mechanics, this problem has no easy solution. The

only approach consists in considering two opposite
travelling wave packets (Messiah, 1962). This highly

theoretical line is left for further works. However, the

problem has been solved in Quantum Mechanics. This

corresponds to the case of infinitely deep potential

wall and the check point is that the solution of the

Sturm–Liouville problem must be zero where the

potential tends to infinity (Messiah, 1962). This is

known as the tunnel effect. This has been verified in

the process of the numerical solving. In the context of

this study, this is read as the interface is a non-

permeable barrier for the interchange of momentum

across it. This is in agreement with the formulation of

the theoretical model since the viscosity has not been

taken into account.

Considering Eqs. (7) and (8) and selecting the

integration constant as the maximum possible ampli-

tude that the ILW can reach in the Strait of Gibraltar

(about C=100 m), the linear reconstructed fields are

shown in Fig. 3a–d for the horizontal velocity. The

intensity is greater than 2 m/s for all cases without

taking into account the background velocity. The

vertical velocity is presented in Fig. 4a–d and the

intensity is about 1 m/s. In order to check these

values, the statistics of the current meters moored in

the Gibraltar Experiment 84/86 (Pillsbury et al., 1987)

prescribe maximum values for the horizontal velocity

about 2 m/s for the two moorings placed several

kilometres to the north and south of the Camarinal sill.

It must be noticed that the values have been averaged

by the instruments and smoothen by numerical filter-

ing, so the internal activity was not taken into account.

The velocity field presented in Figs. 3 and 4 and the

linear superposition of all the modes detailed in Table

1 have been considered. The effect of adding the

higher oscillation modes is the loosing of the

symmetry. Although the initial model is valid for

small perturbations and the constant of integration

seems quite large, Groeb (1948) gave two mathemat-

ical theorems showing the validity of Eq. (5) for long

waves and large amplitudes. Hence, regardless of the

value of the constant, it can be selected as large as

needed. Notice the typical structure of the fields when

an internal wave is acting and the high values of the

vertical velocity field.

The streamers observed at the sea surface appear

where a strong horizontal gradient of horizontal

velocities as it was observed in Bruno et al. (2002).

This can be easily located in Fig. 3a–d. Cases b and d



Fig. 3. Horizontal velocity field for the linear problem. The order of the figures follows that of Table 1.

J.J. Alonso del Rosario, E. Andonegui Odriozola / Journal of Marine Systems 53 (2005) 197–216206



Fig. 4. Vertical velocity field for the linear problem. The order of the figures follows that of Table 1.
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Fig. 5. Vertical structure of the forcing term for the selected cases of

Table 1.
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show a very intense internal activity with streamers

irregularly spaced. Hence, the determination of the

wavelength from the surface signature or from data

taken at any depth, together with the small amount of

data usually available, is not a trivial problem and it

must be done carefully. A consequence of this is that

the use of classical spectral analysis on XBT or

velocity data could lead to biased results and modern

techniques, as Maximum Entropy Spectral Analysis

(Konyaev, 1990) has to be used. In case no surface

manifestation be observed, the spectral analysis of

surface signatures is not possible and must be done

from ship-mounted ADCP data after a careful

selection of the depth (see case d). In addition,

different and contradictory results can be reached

depending on the data for a selected depth to be

spectrally analyzed. These reconstructions are in

agreement with Bruno et al. (2002) and Alonso et

al. (2003).

4.3. First order linear solution

The first order linear solution can be strictly

reached by solving the Sturm–Liouville problem of

Eq. (11). This can be done in terms of a Green’s

function (Courant and Hilbert, 1989a,b) with a very

complicate numerical scheme. However, for this case

it is not necessary because the first order linear

contribution is computed for a given wavelength

determined in the solution of the linear case. Hence a

second order ordinary differential equation must be

solved for the amplitude of the stream function. The

resulting wavelength of the linear problem and the

linear solution are used for the construction of the

forcing function, Q(z) (Eq. (12)). The stability of

the solution is guaranteed by the verification of

several theorems on stability detailed in Hayashi

(1985). The vertical structure of the forcing function

for the selected cases (Table 1) is presented in Fig. 5.

Integration of Eq. (11) for all cases was carried out

by the Runge–Kutta–Felbergh method and the sol-

ution was to the selected depth levels following the

algorithms found in Press et al. (1986). Fig. 6a and b

presents the contribution to the horizontal velocity

field of the first order linear solution for the two

wavelengths detailed in Table 1. In Fig. 6, c and d are

the same for the vertical velocity field. Fig. 7a

presents the synthetic horizontal velocity field of the
three acting modes for case b. Fig. 7b is the same for

the vertical velocity. Fig. 8a and b has the same

reading as that of Fig. 6, but for case c and Fig. 9 is

the same as that of Fig. 7 but for case d. For the

correct reading of the figures, the values must be

multiplied for the power expansion parameter e in

order to obtain velocities expressed in m/s. It is not

possible to predict a priori the structure of the first

order linear solution for the horizontal and vertical

velocity fields. Hence they must be computed and the

researcher can find very small contributions (as it

happens in the vertical velocity solution). Depending

on the non-linear interaction between the modes

which were taken into account in the forcing function,

the first order linear solution will be concentrated at

the bottom, at mid-water column or will spread in the

whole water column.

From the numerical computations, the influence of

the first order linear solution, having considered the

non-linear interaction between modes, is very impor-

tant and it is the main contribution to the horizontal

velocity field induced by the ILWs. We have found

that this contribution can have maximum values up to

0.5 m/s (about 25% for a single mode).

In practice, the high order contributions to the

vertical velocity must be taken till the first linear

contribution for each mode computed in the lowest

order approach. Depending on the amplitude, up to



Fig. 6. First order linear solution. Figure a represents the first order linear solution for the horizontal velocity first mode of case a (Table 1).

Figure b is the same for the second mode. Figures c and d are the same for the vertical velocity. The values must be multiplied by e to be

expressed in m/s.
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Fig. 7. Same legend as Fig. 6 for case b. Now three modes are available. Figure a is for the horizontal velocity and figure b for the vertical velocity. The values must be multiplied by e
to be expressed in m/s.
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Fig. 8. Same legend as Fig. 6 for case c. The values must be multiplied by e to be expressed in m/s.
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the third mode can be necessary for the horizontal

velocity field.

4.4. Second order linear solution

Although the formalism for the second order

contribution has been presented, computed and

analyzed for all cases, they have no influence on the

final solution (less than 2%). So for practical
purposes, the computation of the lowest and first

order linear solutions is enough.

4.5. Final velocity field

The final velocity field is obtained from Eq. (3).

For the horizontal velocity field, it is necessary to add

the background velocity profile, and for the vertical

velocity field, Eq. (3) stands.
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Fig. 10. Final horizontal velocity fields. Figures are presented in the same order as that of Table 1. Units are m/s.
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Fig. 11. Final vertical velocity fields. Figures are presented in the same order as that of Table 1. Units are m/s.
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The resulting horizontal velocity fields for the four

cases are presented in Fig. 10a–d and for the vertical

velocity fields in Fig. 11a–d. The high order linear

part contributes about 25% for each single mode. The

effect of adding them is translated in an intensification

of the currents. Recalling Section 2, the maximum

values of the background current are about 4 m/s;

when adding the contribution of each mode of the

lowest order solution, the values of the horizontal

velocity raise to more than 5 m/s. For more energetic

processes, it is possible to obtain velocities higher

than 8 m/s. For the vertical component, the velocities

are up to 1 m/s for vertical velocities, and more

chaotic internal velocity field can be observed. These

are in very good agreement with the conclusions of

Echevarrı́a et al. (2002) and with the observed fields

presented in Bruno et al. (2002) and Alonso et al.

(2003).

We hope that further measurements when the

internal events act confirm these theoretical results.
5. Conclusions

A linear second order formulation for the explan-

ation of the spatial structure of the physical fields due

to ILW in a water column is developed and applied to

the main sill of the Strait of Gibraltar. By an analytical

method based on perturbation and normal mode

procedures, the Taylor–Goldstein equation is obtained

as the lowest order, the highest orders are second

order linear ordinary differential equations. All the

problems are numerically solved. After the computa-

tion of the lowest order solution, the eigenfunctions

are used to compute the forcing function needed to

solve high order approach. The forcing terms take into

account the non-linear interaction between modes.

The first order linear approach represents up to the

25% of the lowest order solution for a single mode.

When all the first order contributions are taken into

account, high values of the horizontal velocity field

are obtained, reaching maxima of about 10 m/s.

Although the second order linear solution is

computed for all cases, they contribute about 2%

and they can be neglected. With this, a first order

model is enough for a very good description of the

near field velocity close to the main sill of the Strait of

Gibraltar.
Although the presented model is quite powerful

and zero viscosity has been considered, there are two

main directions for further works. The first is the

inclusion of the viscosity in the model in order to

investigate its effect, and the second is the use of a full

non-linear numerical model for the main sill of the

Strait of Gibraltar in order to explain the finest details

of the velocity field and to scope in the fine structure

of the phenomenon.
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