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The Volterra Operator is not Supercyclic
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Abstract. It is shown that the classical Volterra operator, which is cyclic, is
not supercyclic on any of the spaces L”[0,1], 1 < p < co. This solves a ques-
tion posed by Héctor Salas. This contrasts with the fact that the derivative
operator, the left inverse of the Volterra operator, although unbounded, is
hypercyclic on LP[0,1].
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1. Introduction

The space LP[0,1], 1 < p < oo, will denote the Banach space of complex measur-
able functions f on [0,1] for which the norm

nﬂu::(éﬂfunmm)

is finite. For each f € LP[0,1] the Volterra operator is defined by

viw = [ 0

Clearly, V is bounded on each of the LP[0,1] spaces. It is also compact and
quasinilpotent, (see [2], for instance). In addition, since the linear span of {V"1 =
x™/nl} is dense in LP[0,1], 1 < p < oo, the Volterra operator is cyclic with cyclic
vector the constant function 1. Actually, the functions that are different from zero
almost everywhere in a neighborhood of zero are cyclic vectors for V and V is
unicellular. Indeed, its only invariant subspaces are LP[3,1] with 0 < 8 < 1 (see
the paper by Sarason [13] and [7, p. 199-200]). A bounded linear operator T acting
on a Banach space B is said to be supercyclic if there is a vector f, also called
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supercyclic, such that the scalar multiples of the elements in the orbit {T™ f} are
dense in B. Salas [12] asked whether the Volterra operator is supercyclic or not.
Of course quasinilpotent operators can be supercyclic (see [12], for instance). In
this note we prove

Main Theorem. The Volterra operator is not supercyclic on any of the spaces
L?[0,1], 1 < p < c0.

Before proving the theorem above we will prove that the left inverse of the
Volterra operator, that is, the derivative operator, which is only defined on a dense
subset of LP[0, 1], is hypercyclic. This means that the orbit of some vector under
the operator, without the help of scalar multiples, is dense. This fact is in a strong
contrast with the situation for invertible bounded operators. It is well known that
an invertible operator is supercyclic (or hypercyclic) if and only if T~ is (see [5]).

2. The derivative operator

The derivative operator D assigns to each function f € C1([0,1]) c LP[0,1] its
derivative (Df)(z) = f/(x), which is in LP[0,1]. We have the following Theorem

Theorem 2.1. The derivative operator is hypercyclic on LP[0,1], 1 < p < oo.

Proof. By a result of Mclane [8] there is an entire function f such that {D" f}
is dense in H(C), the space of all entire functions endowed with the topology of
uniform convergence on compact subsets. Obviously, for each n, the restriction
of D™f to [0,1] that we still denote by D™f is in L?[0,1], 1 < p < oo. Since
the polynomials are dense in L”[0,1], 1 < p < oo, and each polynomial can be
approximated in the norm [|g|[cc = maxg 1) |g(z)| by D" f for some n, the result
follows. O

Remark 2.2. We could have also proved Theorem 2.1 following the lines of the proof
of Rolewicz [11] in which he showed that there are hypercyclic scalar multiples of
the backward shift on /P, 1 < p < oo. Indeed, some of the results for bounded
hypercyclic or supercyclic operators remain true for unbounded operators. For
instance, while for bounded hypercyclic (supercyclic) operators there is a residual
dense subset of hypercyclic (supercyclic) vectors, unbounded operators may only
have just a (non-residual) dense subset of hypercyclic (supercyclic) vectors.

3. Proof of the Main Theorem

Proof of the Main Theorem. Since the topology of LP[0,1], 1 < p < oo, is stronger
than the topology of L[0,1] and the former spaces are dense in the latter, we may
apply the comparison principle (see [12]) to conclude that it is enough to prove
that V is not supercyclic on L'[0, 1].
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In addition, we claim that if V' is supercyclic on L![0, 1], then so is on L2[0, 1].
To show this, suppose that f is a supercyclic vector for V acting on L'[0,1]. Then
V f is a continuous function and, in particular, it is in L?[0,1]. Now, we have

IV Fllz <NV Flleo < 1511

Therefore, V is a bounded operator from L![0,1] into L?[0,1] and it clearly has
dense range. Since the image of a dense set under a bounded operator with dense
range is itself dense, it follows that {A\V™f :n > 1 and X € C} is dense on L?[0, 1].
Thus V f is a supercyclic vector for V on L?[0,1] and the claim follows.

In summary, to obtain the statement of our main result it is enough to prove
that V is not supercyclic on L?[0, 1].

Now, upon performing a change of variables we may consider that the Volterra
operator is defined on L?[—1,1], that is,

V)= /ml ft)dt for each f € L*[—1,1].

The proof will be accomplished by applying the Angle Criterion (see [9] and
[3]). Assume that f is supercyclic for V. We will find a function g € L?*[—1,1],
with ||g|l2 = 1, and a positive integer ng such that

(V" f.9)]
sup L9 g (3.1)
n>ngo anf”Q

which would contradict the supercyclicity of f.
In order to obtain (3.1), we will first obtain a lower estimate for ||V f||2. To
this end, recall that the adjoint V* of the Volterra operator is given by

(V* () = / £(t) dt.

Now, we will use the Legendre polynomials. They are given by

Pa(z) = () n>0,
where ( ) )
T _ n
flo)=—or— nz0

(see [10, p. 162]). We set h,, = (—1)™ f,,. Since, for 0 < k < n — 1, the function f,’f)
vanishes at 1, one easily checks that
(V" P,)(x) = hy(z) n > 0.

Thus we have

n n — _ \V 277, —+ ].

IV fllz = KV, Pa)lllPallzt = (. V" Po)lllpally " = (£, hn>|T~

See [10, p. 175] for the expression of the norm of the Legendre polynomials.

We claim that

(3.2)

(2n 4 1)!

Tty e (120)
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is a positive summability kernel, see [6, pp. 9-10]. Therefore, if f is a continuous
function on [—1, 1], then

2n (2n +1)!
(2n:; ')<f; n = 2”':;71' / f n dt—)f() as n — OoQ. (33)

It is clear that, h,(x) > 0 for each = € [0,1] and for each n > 0. In addition,
performing the change of variables p(t) = 2¢ — 1 in the second equality below the
Beta function appears (see [10, p. 18-19]) and we find

Ot [ h@yar = 2D [0y

on+lp) 22n+1(nl)2 | |
@n+1)! [t n
= W/o t (1715) dt
(2n+1)!
= T Bn+1,n+1)
= 1.

It remains to prove that outside any interval [—4, 4], with 0 < § < 1,

2 1!
( :—:; [) / hn(m) dx — 0 as n — oo.
2rinl Jioiapn s

We have,

o +1)! o +1)! 1
I A=
2l Jisian(-a9) il Jisa s,y 20

<(1_62)n(2n+1)!/1 Lo

2n+lpl J_ 27n)
2n + 1)!
=(1-¢° n(Znt Dt 3.4
(1= 8)" G (3.4)
Upon applying Stirling’s formula one easily sees that
(2n +1)! 2

—_—— — — as n — 0o.
2n(n2/n /7 -
Thus (3.4) tends to zero as n — oo.

Now, for fixed a, with —1 < a < —1/2, we take the normalized characteristic
function

1
g(x) = ﬁx[—l,a]'
We have
— )" 1+a)"
v — la—=z)" i d  1IvV*"alls = (7
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Finally, upon replacing f by V f, if necessary, we may suppose from the beginning
that f is continuous. In addition, we claim that we can choose f(0) # 0. This
follows from the facts that the set of supercyclic vectors is dense in L?[—1,1] and
that V' defined from L?[—1, 1] into the space of continuous functions on [—1, 1] that
vanish at —1 endowed with the supremum norm has dense range. An alternative
argument is that if (V™ f)(0) = 0 for every n, then V™ f would be orthogonal to the
characteristic function x[_1 g for every n, that would contradict the supercyclicity
of f.

Now, we can apply the Angle Criterion. The first inequality bellow follows
from (3.2), the second is Cauchy Schwarz inequality.

. n o 2n+1)! (14a)™
Lol . WAVl WflelVrgle _ S s IS

IVASl2 = 1 fan) 2R ™ F 0l GEERI g 25

Applying Stirlying’s formula and (3.3), we see that the last quantity in the above
display is of the same order as

(L +a)"2" V2 /n | f
V| f(0)|(2n + 1)

Since 1 4 a < 1/2, the last quantity goes to zero as n — oo. Therefore, f cannot
be supercyclic; a contradiction. O

Remark 3.1. Tt cannot be used a sequence of functions like h,, = sin nmx to obtain a
lower estimate for ||[V™ f]|2. Although ¢, V*" sin nwa is again a summability kernel
for an appropriate sequence {c¢,}, it reproduces the value of f at —1. Thus we
would have (V f)(—1) = 0 for any f € L?, which makes impossible to control
[[V™f|l2. The Legendre polynomials do not play any crucial role in the proof and
it could be used other functions. But these polynomials come across in a natural
way. Observe that V*"1 = (1—x)", that attains its maximum at —1. If we multiply
by (1 + z)", we obtain (1 — 2%)" that attains its maximum at 0. Then one looks
for the preimage of (1 — 22?)™ under V*™. The proof can, of course, be carried out
directly on L.

Remark 3.2. Since V and V* are similar, the adjoint V* is not supercyclic either.

Remark 3.3. Bourdon [1] proved that no hyponormal operator can be supercyclic.
The Volterra operator is a perturbation by a one rank operator of a hyponormal
operator (see Halmos Problem book [4]). The general question, posed by Salas
[12], that remains unsolved, is whether a finite rank perturbation of a hyponormal
operator can be supercyclic or not.
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