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The Volterra Operator is not Supercyclic
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Abstract. It is shown that the classical Volterra operator, which is cyclic, is
not supercyclic on any of the spaces Lp[0, 1], 1 ≤ p < ∞. This solves a ques-
tion posed by Héctor Salas. This contrasts with the fact that the derivative
operator, the left inverse of the Volterra operator, although unbounded, is
hypercyclic on Lp[0, 1].
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1. Introduction

The space Lp[0, 1], 1 ≤ p < ∞, will denote the Banach space of complex measur-
able functions f on [0, 1] for which the norm

‖f‖p =
(∫ 1

0

|f(x)|p dx

)1/p

is finite. For each f ∈ Lp[0, 1] the Volterra operator is defined by

V f(x) =
∫ x

0

f(t) dt.

Clearly, V is bounded on each of the Lp[0, 1] spaces. It is also compact and
quasinilpotent, (see [2], for instance). In addition, since the linear span of {V n1 =
xn/n!} is dense in Lp[0, 1], 1 ≤ p < ∞, the Volterra operator is cyclic with cyclic
vector the constant function 1. Actually, the functions that are different from zero
almost everywhere in a neighborhood of zero are cyclic vectors for V and V is
unicellular. Indeed, its only invariant subspaces are Lp[β, 1] with 0 ≤ β ≤ 1 (see
the paper by Sarason [13] and [7, p. 199-200]). A bounded linear operator T acting
on a Banach space B is said to be supercyclic if there is a vector f , also called
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supercyclic, such that the scalar multiples of the elements in the orbit {Tnf} are
dense in B. Salas [12] asked whether the Volterra operator is supercyclic or not.
Of course quasinilpotent operators can be supercyclic (see [12], for instance). In
this note we prove

Main Theorem. The Volterra operator is not supercyclic on any of the spaces
Lp[0, 1], 1 ≤ p < ∞.

Before proving the theorem above we will prove that the left inverse of the
Volterra operator, that is, the derivative operator, which is only defined on a dense
subset of Lp[0, 1], is hypercyclic. This means that the orbit of some vector under
the operator, without the help of scalar multiples, is dense. This fact is in a strong
contrast with the situation for invertible bounded operators. It is well known that
an invertible operator is supercyclic (or hypercyclic) if and only if T−1 is (see [5]).

2. The derivative operator

The derivative operator D assigns to each function f ∈ C1([0, 1]) ⊂ Lp[0, 1] its
derivative (Df)(x) = f ′(x), which is in Lp[0, 1]. We have the following Theorem

Theorem 2.1. The derivative operator is hypercyclic on Lp[0, 1], 1 ≤ p < ∞.

Proof. By a result of Mclane [8] there is an entire function f such that {Dnf}
is dense in H(C), the space of all entire functions endowed with the topology of
uniform convergence on compact subsets. Obviously, for each n, the restriction
of Dnf to [0, 1] that we still denote by Dnf is in Lp[0, 1], 1 ≤ p < ∞. Since
the polynomials are dense in Lp[0, 1], 1 ≤ p < ∞, and each polynomial can be
approximated in the norm ‖g‖∞ = max[0,1] |g(x)| by Dnf for some n, the result
follows. �

Remark 2.2. We could have also proved Theorem 2.1 following the lines of the proof
of Rolewicz [11] in which he showed that there are hypercyclic scalar multiples of
the backward shift on �p, 1 ≤ p < ∞. Indeed, some of the results for bounded
hypercyclic or supercyclic operators remain true for unbounded operators. For
instance, while for bounded hypercyclic (supercyclic) operators there is a residual
dense subset of hypercyclic (supercyclic) vectors, unbounded operators may only
have just a (non-residual) dense subset of hypercyclic (supercyclic) vectors.

3. Proof of the Main Theorem

Proof of the Main Theorem. Since the topology of Lp[0, 1], 1 ≤ p < ∞, is stronger
than the topology of L1[0, 1] and the former spaces are dense in the latter, we may
apply the comparison principle (see [12]) to conclude that it is enough to prove
that V is not supercyclic on L1[0, 1].
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In addition, we claim that if V is supercyclic on L1[0, 1], then so is on L2[0, 1].
To show this, suppose that f is a supercyclic vector for V acting on L1[0, 1]. Then
V f is a continuous function and, in particular, it is in L2[0, 1]. Now, we have

‖V f‖2 ≤ ‖V f‖∞ ≤ ‖f‖1.

Therefore, V is a bounded operator from L1[0, 1] into L2[0, 1] and it clearly has
dense range. Since the image of a dense set under a bounded operator with dense
range is itself dense, it follows that {λV nf : n ≥ 1 and λ ∈ C} is dense on L2[0, 1].
Thus V f is a supercyclic vector for V on L2[0, 1] and the claim follows.

In summary, to obtain the statement of our main result it is enough to prove
that V is not supercyclic on L2[0, 1].

Now, upon performing a change of variables we may consider that the Volterra
operator is defined on L2[−1, 1], that is,

(V f)(x) =
∫ x

−1

f(t) dt for each f ∈ L2[−1, 1].

The proof will be accomplished by applying the Angle Criterion (see [9] and
[3]). Assume that f is supercyclic for V . We will find a function g ∈ L2[−1, 1],
with ‖g‖2 = 1, and a positive integer n0 such that

sup
n≥n0

|〈V nf, g〉|
‖V nf‖2

< 1, (3.1)

which would contradict the supercyclicity of f .
In order to obtain (3.1), we will first obtain a lower estimate for ‖V nf‖2. To

this end, recall that the adjoint V � of the Volterra operator is given by

(V �f)(x) =
∫ 1

x

f(t) dt.

Now, we will use the Legendre polynomials. They are given by

Pn(x) = fn)
n (x) n ≥ 0,

where

fn(x) =
(x2 − 1)n

2nn!
n ≥ 0,

(see [10, p. 162]). We set hn = (−1)nfn. Since, for 0 ≤ k ≤ n− 1, the function f
k)
n

vanishes at 1, one easily checks that

(V �nPn)(x) = hn(x) n ≥ 0.

Thus we have

‖V nf‖2 ≥ |〈V nf, Pn〉|‖Pn‖−1
2 = |〈f, V �nPn〉|‖pn‖−1

2 = |〈f, hn〉|
√

2n + 1√
2

. (3.2)

See [10, p. 175] for the expression of the norm of the Legendre polynomials.
We claim that

(2n + 1)!
2n+1n!

hn (n ≥ 0)
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is a positive summability kernel, see [6, pp. 9-10]. Therefore, if f is a continuous
function on [−1, 1], then

(2n + 1)!
2n+1n!

〈f, hn〉 =
(2n + 1)!
2n+1n!

∫ 1

−1

f(x)hn(x) dt → f(0) as n → ∞. (3.3)

It is clear that, hn(x) ≥ 0 for each x ∈ [0, 1] and for each n ≥ 0. In addition,
performing the change of variables ϕ(t) = 2t − 1 in the second equality below the
Beta function appears (see [10, p. 18-19]) and we find

(2n + 1)!
2n+1n!

∫ 1

−1

hn(x) dx =
(2n + 1)!

22n+1(n!)2

∫ 1

−1

(1 − x2)n dx

=
(2n + 1)!

(n!)2

∫ 1

0

tn(1 − t)n dt

=
(2n + 1)!

(n!)2
β(n + 1, n + 1)

= 1.

It remains to prove that outside any interval [−δ, δ], with 0 < δ < 1,

(2n + 1)!
2n+1n!

∫
[−1,1]\(−δ,δ)

hn(x) dx → 0 as n → ∞.

We have,

(2n + 1)!
2n+1n!

∫
[−1,1]\(−δ,δ)

hn(x) dx ≤ (1 − δ2)n (2n + 1)!
2n+1n!

∫
[−1,1]\(−δ,δ)

1
2nn!

dx

< (1 − δ2)n (2n + 1)!
2n+1n!

∫ 1

−1

1
2nn!

dx

= (1 − δ2)n (2n + 1)!
22n(n!)2

. (3.4)

Upon applying Stirling’s formula one easily sees that

(2n + 1)!
22n(n!)2

√
n
→ 2√

π
as n → ∞.

Thus (3.4) tends to zero as n → ∞.
Now, for fixed a, with −1 < a ≤ −1/2, we take the normalized characteristic

function

g(x) =
1√

1 + a
χ[−1,a].

We have

(V �ng)(x) =
(a − x)n

n!
√

1 + a
χ[−1,a] and ‖V �ng‖2 =

(1 + a)n

n!
√

2n + 1
.
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Finally, upon replacing f by V f , if necessary, we may suppose from the beginning
that f is continuous. In addition, we claim that we can choose f(0) �= 0. This
follows from the facts that the set of supercyclic vectors is dense in L2[−1, 1] and
that V defined from L2[−1, 1] into the space of continuous functions on [−1, 1] that
vanish at −1 endowed with the supremum norm has dense range. An alternative
argument is that if (V nf)(0) = 0 for every n, then V nf would be orthogonal to the
characteristic function χ[−1,0] for every n, that would contradict the supercyclicity
of f .

Now, we can apply the Angle Criterion. The first inequality bellow follows
from (3.2), the second is Cauchy Schwarz inequality.

|〈V nf, g〉|
‖V nf‖2

≤ |〈f, V �ng〉|
|〈f, gn〉|

√
2n+1√

2

≤ ‖f‖2‖V �ng‖2

|〈f, gn〉|
√

2n+1√
2

=
(2n+1)!
2n+1n!

(1+a)n

n!
√

2n+1
‖f‖2

(2n+1)!
2n+1n! |〈f, gn〉|

√
2n+1√

2

.

Applying Stirlying’s formula and (3.3), we see that the last quantity in the above
display is of the same order as

(1 + a)n2n+1/2
√

n ‖f‖2√
π|f(0)|(2n + 1)

.

Since 1 + a ≤ 1/2, the last quantity goes to zero as n → ∞. Therefore, f cannot
be supercyclic; a contradiction. �

Remark 3.1. It cannot be used a sequence of functions like hn = sin nπx to obtain a
lower estimate for ‖V nf‖2. Although cnV �n sin nπx is again a summability kernel
for an appropriate sequence {cn}, it reproduces the value of f at −1. Thus we
would have (V f)(−1) = 0 for any f ∈ L2, which makes impossible to control
‖V nf‖2. The Legendre polynomials do not play any crucial role in the proof and
it could be used other functions. But these polynomials come across in a natural
way. Observe that V �n1 = (1−x)n, that attains its maximum at −1. If we multiply
by (1 + x)n, we obtain (1 − x2)n that attains its maximum at 0. Then one looks
for the preimage of (1− x2)n under V �n. The proof can, of course, be carried out
directly on L1.

Remark 3.2. Since V and V � are similar, the adjoint V � is not supercyclic either.

Remark 3.3. Bourdon [1] proved that no hyponormal operator can be supercyclic.
The Volterra operator is a perturbation by a one rank operator of a hyponormal
operator (see Halmos Problem book [4]). The general question, posed by Salas
[12], that remains unsolved, is whether a finite rank perturbation of a hyponormal
operator can be supercyclic or not.
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