
Computational Statistics & Data Analysis 47 (2004) 745–756
www.elsevier.com/locate/csda

Comparing the asymptotic power of exact tests in
2 × 2 tables

A. Mart()n Andr(esa ;∗ , A. Silva Matob , J.M. Tapia Garc()aa ,
M.J. S(anchez Quevedoc

aBioestad	
stica, Facultad de Medicina, Universidad de Granada, Granada 18071, Spain
bBioestad	
stica, Facultad de Medicina, Universidad de Alcal	a, Madrid, Spain

cEstad	
stica, Universidad de C	adiz, C	adiz, Spain

Received 19 August 2003; received in revised form 18 November 2003

Abstract

A 2 × 2 table may arise from three types of sampling, depending on the number of previ-
ously 8xed marginals, and may yield three possible, di9ering, probabilistic models. From the
unconditional point of view each model requires a speci8c solution but, within each model,
the calculation time increases as the test procedure chosen is more powerful and, between the
models, the calculation time decreases in the number of marginals 8xed. Moreover, each model
yields a test which is generally more powerful than the test of any other model with a larger
number of marginals 8xed. The condition under which a less powerful test, of the same or a
di9erent model, can substitute a more powerful test with a loss of power lower than 2% is de-
termined. It is concluded that the Fisher exact test can be used as an approximation to Barnard’s
exact test for a table with 0 or 1 8xed marginals, when the sample size is ¿ 100 or when the
smaller sample size is ¿ 80, respectively. Similarly, Barnard’s exact test for a table with 1 8xed
marginal can be used as an approximation of the same test for a table with 0 8xed marginals,
when the sample size is ¿ 50.
c© 2003 Published by Elsevier B.V.
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1. Introduction

The test of independence in a 2× 2 table is a classic problem in statistics and about
which hundreds of articles have been published (Mart()n Andr(es, 1997). The test is very
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Table 1
Presentation of results in the form of a 2 × 2 table

Characteristic A

YES NO Total

Characteristic B
YES x1 y1 n1
NO x2 y2 n2

Total a1 a2 n

common in applied statistics, especially in the 8eld of clinical trials (the comparison of
the proportions of successes for two treatments) and of epidemiology (the analysis of
the inJuence of the presence of a risk factor in the presentation of an illness). Whatever
the case, one should apply the most powerful test possible, especially in clinical trials.
However, this is often diNcult to achieve, due to the existence of conceptual and
computational problems. For this reason we decided to analyze the problem in detail.

A 2×2 table is a presentation of results as seen in Table 1, but these may have been
obtained under three types of sampling (among others): Samplings I, II or III according
to whether the value of n, ni, or ni and ai respectively, has been 8xed. Each sampling
produces a di9erent possible model (Models I, II or III, respectively) based on the
fact that the sole random variable(s) (r.v. in the following) in the problem are (x1,
y1, x2), (x1, x2) or (x1), a multinomial, double-binomial or generalized hypergeometric
r.v., respectively. Therefore, the probability of obtaining results like those of Table 1
(for each model) will be:

P(x1; y1; x2) = C(n; x1; y1; x2; y2) × px1
11 p

y1
12 p

x2
21 p

y2
22;

P(x1; x2) = C(n1; x1) × C(n2; x2) × px1
1 (1 − p1)y1 px2

2 (1 − p2)y2 ;

P(x1) = C(n1; x1) × C(n2; x2)’x1

/
s∑
h=r

C(n1; h) × C(n2; a1 − h) × ’h ; (1)

where C(n; x1; y1; x2; y2)=n!={x1!y1!x2!y2!}, C(a; b)=a!={b!(a−b)!}; r=max(0; a1 −
n2), s= min (a1; n1), and pij, pi and ’ represent the parameters of each model.

If the aim of the experiment is to contrast hypothesis H: “the characteristics A and B
are independent” against an alternative (one- or two-tailed) hypothesis K , then, under
each model, H is pij =pi:p:j, p1 =p2 and ’= 1, respectively. Therefore, if we agree
that p1:= q; p:1 = p and p1 = p2 = p, then

P(x1; y1; x2|H) = C(n; x1; y1; x2; y2) × pa1 (1 − p)a2qn1 (1 − q)n2 ;

P(x1; x2|H) = C(n1; x1) × C(n2; x2) × pa1 (1 − p)a2 ;

P(x1|H) = C(n1; x1) × C(n2; x2)=C(n; a1): (2)



A. Mart	
n Andr	es et al. / Computational Statistics & Data Analysis 47 (2004) 745–756 747

In order to perform the test to an target error �, it is necessary to de8ne a critical
region (CR in the following). Let CR(�|I), CR(�|II) and CR(�|III) be the CR for each
model. The real error of the test will then be

�∗(p; q) =
∑

CR(�|I)
P(x1; y1; x2|H); �∗(p) =

∑
CR(�|II)

P(x1; x2|H);

�∗ =
∑

CR(�|III)
P(x1|H); (3)

where p and q are two nuisance parameters. One way of eliminating these is by
maximization (Barnard, 1947), which produces the unconditional test. Then, the size
of the test will be

�∗
I = max

p;q
�∗(p; q); �∗

II = max
p
�∗(p); �∗

III = �∗; (4)

where �∗
I , �∗

II, �
∗
III6 �. (As can be seen, maximization is not necessary in Model

III because there are no nuisance parameters, so size and real error coincide.) An-
other way of eliminating nuisance parameters is by conditioning in the really ob-
served marginals (Fisher, 1935), which produces the conditional test. Here, the three
models have the same solution (�∗

III): the well-known Fisher’s exact test. This is not
the place to argue the appropriateness of one solution or the other: the reader wish-
ing to know more may refer to the discussion in Yates (1984) and the review by
Mart()n Andr(es (1991).

In order to form the CR it is necessary to de8ne a criterion for ordering the points
in the sample space. To this end, it is suNcient to supply a direction-sensitive statistic
T = T (x1; y1; x2; y2), so that the points in the sample space are introduced into the CR
from the smallest to the largest value of T . If T0 is the value of T in the last point
introduced into the CR, then CR(�|I) = {x1; y1; x2|T6T0} and �∗

I is the p-value of
the table yielding the value T0. It is similarly for other cases.

Generally speaking, unconditional tests are more powerful than conditional ones:
generally �∗

I , �∗
II6 �∗

III. Unfortunately, the diNculties of calculation increase propor-
tionately as one goes down the models. Thus, today there is no problem in calcu-
lating �∗

III for any table (see the StatXact package for example), but �∗
II (�∗

I ) can
only be calculated in moderate (small) samples. What is more, for each of the mod-
els there are various possible T -statistics which give rise to tests that are either
more or less powerful; unfortunately, the more powerful a test is, the greater the
calculation diNculties it produces. (Although no UMP tests exist in these models,
“optimal” tests do exist in the sense that they are generally more powerful.) The
aim of this paper is to reply to the general question: when can a non-optimal test
be used without obtaining a excessive loss of power? The question must be an-
swered “within” each model (by evaluating the optimal T versions) and “between” the
models (by evaluating a totally or partially conditional test against an unconditional
one).
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2. Long-term power

Let there be two test procedures: O (the optimal or generally more powerful) and
A (the alternative or less powerful, but with fewer calculation diNculties). Let �(O)
and �(A) be their powers for a given alternative. The loss of power for not using the
optimal test will be V�(O; A) =�(O) −�(A). When V�(O; A)¿ 0 is small (6 2%,
for example) it will be understood that A can substitute O. The aim then is to determine
the circumstances where this can occur. Unfortunately the answer will be confusing
unless a simpler de8nition of power than the traditional one is adopted. In e9ect, given
an error �, the power � for each model and for a given alternative is

�(p11; p12; p21) =
∑

CR(�|I)
P(x1; y1; x2); �(p1; p2) =

∑
CR(�|II)

P(x1; x2);

�(’) =
∑

CR(�|III)
P(x1) (5)

with the probabilities P(·) given by expression (1). Because in Model II (for example),
� depends on (p1; p2), then V� will reach a di9erent value for each value of (p1; p2),
and this means the conclusions will be confused (because, as we have said, there are
no UMP tests).

In order to avoid this, in what follows the de8nition of long-term power by Mart()n
Andr(es and Tapia Garcia (1999) and Mart()n Andr(es and Silva Mato (1994) will be
adopted for the case of Models I and II, respectively (for a more detailed justi8cation
of this concept, see the articles cited). The de8nition is based on the assumption that
the unknown parameters (pi or pij) are distributed in the long term as a uniform r.v.
at [0,1]. In the case of a two-tailed test, this makes the de8nition of long-term power
very “intuitive”:“number of points in the CR”/ “number of points in the sample space
(SS)”. Written in symbols, if X is the test procedure that has been chosen, then

�(X ) = Card CR(X )=Card SS (two-tailed test); (6)

where CR(X ) refers to the CR which yields procedure X and Card SS = (n+ 1)(n+
2)(n + 3)=6 in Model I or Card SS = (n1 + 1)(n2 + 1) in Model II. In the case of
a one-tailed test for the alternative with positive association (K : odds-ratio ¿ 1), the
expression is more complicated, so now

�(X ) = 2 ×
∑

CR(X )

P ZF(x1; y1; x2; y2)=Card SS (one-tailed test); (7)

where P ZF (x1; y1; x2; y2)=
∑x1

h=r C(n1+1; h)×C(n2+1; a1+1−h)=C(n+2; a1+1) is the
p-value of Fisher’s exact test for the alternative with negative association (K : p1¡p2)
in the table of frequencies x1, y1 +1; x2 +1; y2. Finally, the increase in power obtained
by using method O in place of method A will be

V�(O; A) = {Card CR(O) − Card CR(A)}=Card SS (two-tailed);
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V�(O; A) = 2 ×



∑
CR(O)−CR(A)

P ZF(x1; y1; x2; y2) −
∑

CR(A)−CR(O)

P ZF(x1; y1; x2; y2)




/
Card SS (one-tailed) : (8)

For the following, the comparisons of power will always be e9ected for the classic
error �= 5%. The results for �= 1% and 10% may be requested from the authors.

3. Analysis within Model III

The most usual ordering statistic in the case of Model III is T=P(x1|H). This yields
the generally most powerful two-tailed test, although there are other statistics which
are almost equally as powerful (Mart()n Andr(es and Herranz Tejedor, 1995); for tests
with one tail, all the non-randomized de8nitions yield the same solution. Given that
in the present model the intensity of the calculation is the same for any de8nition of
T , for the following it will be understood that Model III is applied under the previous
de8nition (which we shall call procedure P).

4. Analysis within Model II

Mart()n Andr(es et al. (1998) showed that the T statistics which are generally more
powerful in Model II are, in order from best to worst, those we shall call B, B′ and
FM. Order B refers to the original order of Barnard (1947): B = �∗

II, where �∗
II refers

to the p-value of the table (the property of convexity which will be mentioned later
means that the starting point must be x1 = 0 and x2 = n2 in the one-tailed test for the
negative association alternative). Order B′ is an approximation to the order of Barnard
because B′ = �∗(p̂), with p̂= a1=n. Order FM = �∗

III (p-mid) refers to the mid-p-value
of the Fisher exact test: the value �∗ of expression (3) less half the probability of the
last point introduced. Unfortunately, calculation times are very high for B, high for B′

and moderate for FM. When can B′ or FM be used instead of B?
It has been shown (Mart()n Andr(es and Silva Mato, 1994) that �(X ) varies strongly

with the values of n1, K=n2=n1¿ 1, � and with the number of tails in the test. Because
of this V�(B; A) has been calculated—where A= B′ or A= FM—for n1 = 10(10)80,
K = 1(0:5)3 and 4, � = 5%, and one- (two-) tailed test. Table 2 gives the value of
V� for the case of � = 5%. It can be seen that the methods B′ and FM can be used
always, because the loss of power is small (V�6 2%, frequently quite smaller).

5. Analysis within Model I

Here something similar to Model II occurs: Mart()n Andr(es and Tapia Garcia (1999)
showed that the generally most powerful statistics T are, in order from best to worst,
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Table 2
Model II vs. Models II and III

One tail Two Tails

n1 K = 1:0 K = 1:5 K = 2:0 K = 2:5 K = 3:0 K = 4:0 n1 K = 1:0 K = 1:5 K = 2:0 K = 2:5 K = 3:0 K = 4:0

10 45.76 49.54 52.33 53.39 54.68 56.31 10 38.02 43.18 45.89 48.25 49.27 51.00
0 0 0.84 0 0.57 0 0 0 0 0 0 0
1.57 0 0.81 −0.02 0.55 0.84 0 0 1.60 0.70 1.18 0.89
7.94 9.91 7.50 7.42 6.78 6.40 9.92 4.54 4.33 5.59 5.28 3.55

20 60.32 63.2 65.34 66.29 67.23 68.19 20 53.97 58.06 60.16 61.44 62.45 63.49
0 −0.29 0.23 0.36 1.19 0.79 0 0 0 0 0 −0.12
0.85 0.87 0.22 −0.01 0.30 0.12 0 0.30 1.16 0.19 0.47 0.59
6.54 5.62 5.13 4.85 4.50 3.95 5.44 2.45 2.78 3.36 2.81 2.11

30 67.05 69.78 71.37 72.26 72.85 73.91 30 61.60 65.08 66.84 68.00 68.70 69.74
0 −0.13 0 0.81 0.74 0.61 0 0.28 0 0 0 0

−0.01 0 0.30 0.16 0.20 0.16 1.04 0.56 0.53 0.94 0.36 0.43
5.21 3.64 3.65 3.35 3.13 3.18 4.78 2.53 1.69 2.04 1.99 1.76

40 71.4 73.59 75.04 75.88 76.44 77.23 40 66.39 69.49 71.06 72.01 72.69 73.53
0.22 −0.07 0.80 0.60 0.54 0.41 0 0.16 0.06 0 0 −0.03
0.45 0.38 0.23 0.18 0.12 0.06 0.71 0.48 0.66 0.43 0.33 0.60
4.00 2.77 2.71 2.69 2.36 2.38 3.33 1.68 1.62 1.64 1.29 1.33

50 74.28 76.34 77.58 78.39 78.85 79.57 50 69.9 72.5 73.97 74.82 75.42 76.19
0 −0.05 0.63 0.57 0.37 0.24 0 0 0 −0.03 0 0
0.37 0.24 0.11 0.33 0.42 0.08 0.54 0.21 0.51 0.37 0.23 0.43
3.32 2.27 2.19 2.24 2.04 2.00 3.00 1.19 1.36 1.21 0.99 1.15

60 76.47 78.43 79.5 80.17 80.68 81.3 60 72.29 74.87 76.11 76.95 77.47 78.21
0 −0.03 0.49 0.36 0.34 0.22 0 0.04 0 0 0 0
0.31 0.21 0.26 0 0.31 0.20 0.21 0.22 0.35 0.26 0.39 0.31
2.27 2.11 2.00 1.79 1.73 1.62 2.58 1.19 1.19 0.93 0.99 1

70 78.09 80.01 81.00 81.66 82.1 82.67 70 74.35 76.64 77.83 78.62 79.10 79.78
0 0 0.46 0.40 0.32 0.18 0 0.03 0 0.02 −0.01 0
0.41 0.17 0.13 0.02 0.22 0.09 0.52 0.19 0.34 0.26 0.33 0.31
2.16 1.88 1.72 1.60 1.52 1.50 2.26 0.98 1.01 0.82 0.92 0.79

80 79.52 81.23 82.22 82.84 83.23 83.97 80 76.02 78.11 79.24 79.95 80.42 81.04
0.05 0.52 0.43 0.34 0.27 0.18 0.06 0.02 −0.02 0.03 0 0
0.17 0.05 0.12 0.29 0.08 0.08 0.18 0.22 0.35 0.23 0.29 0.23
2.04 1.62 1.52 1.44 1.35 1.37 2.13 0.95 0.90 0.73 0.81 0.70

Long-term power (�) for method B in Model II (1st entry) and absolute increase of power of the same one (V�)
regarding the methods B′ (2nd entry) and FM (3rd entry) in Model II and regarding the method FC in Model III (4th
entry) for � = 5%.

B=�∗
I ; B

′ =�∗
I (p̂; q̂)—where p̂=a1=n and q̂=n1=n—, and FM=�∗

III (p-mid). However
the calculation diNculties are now much more serious, and this means we can only
study the cases where n = 10(10)50. Again B is much slower than B′, which in turn
is slower than FM. Table 3 shows the values of V�(B; X ) for X = B′ and X = FM.
It can be seen that for n = 50, V�(B; B′) continues to be ¿ 2% in the one-tailed
test, and continues to grow in the two-tailed test, for which reason it is diNcult to
say when it will perform acceptably. On the other hand, and also for n = 50, the
growth of V�(B;FM) has slowed and is very small for the one-tailed test, while in
the two-tailed test it actually decreases, and in both cases V�(B;FM)�2%. Therefore
one can tentatively conclude that in the one- (two-) tailed test method FM can always
be used (if n¿ 50) with a loss of power lower than 2%.
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Table 3
Model I vs. Models I, II and III

n 10 20 30 40 50

One tail 21.90 39.21 49.16 55.17 59.14
−2.61 0.24 1.84 2.32 2.22
−1.40 1.04 1.17 1.28 1.34

3.27 2.12 2.75 2.22 1.79
11.47 11.00 9.62 8.37 7.24

Two tails 16.80 34.90 43.73 49.59 53.87
−2.08 1.36 1.83 1.52 2.47

0.02 2.49 2.27 2.61 1.18
2.11 2.26 2.20 1.83 1.47
5.59 8.81 6.89 5.79 4.45

Long-term power (�) for method B in Model I (1st entry) and absolute increase of power of the same
one (V�) regarding the methods B′ (2nd entry) and FM (3rd entry) in Model I, regarding the method BC
in Model II (4th entry) and regarding the method FC in Model III (5th entry) for � = 5%.

6. Model II vs. Model III

It is usually said that the Fisher exact test (Model III), from the unconditional point
of view, is a valid but conservative test. From the perspective of Model II, this was
justi8ed by Pearson (1947), Mart()n Andr(es (1991) and Silva Mato and Mart()n Andr(es
(1995), but here the problem will again be analyzed, with some modi8cations.

The SS of Model II is formed by all the tables (x1; x2) where 06 xi6 ni. For each
value 06 a16 n, the Fisher exact test (to target error �) yields a CR(�|II) = CR(a1)
with a real error given by expression (4) and which, because it varies with a1, we shall
call �∗

III(a1)6 �. Let CR(FC) =
⋃
a1

CR(a1) and �∗
III = maxa1 �

∗
III(a1)6 �. The aim is

to demonstrate that CR(FC) is a valid CR for Model II. The proof is based on the
fact that P(x1; x2|H) = P(a1|H) × P(x1|H), where P(a1|H) = C(n; a1) × pa1 (1 − p)a2 .
The real error �∗(p) for the previous CR(FC) will be, using expression (3):

�∗(p) =
∑

a1∈CR(FC)

P(a1|H)
∑

x1∈CR(a1)

P(x1|H) =
∑

a1∈CR(FC)

P(a1|H)�∗
III(a1)

6 �∗
III

∑
a1∈CR(FC)

P(a1|H)6 �∗
III6 � (∀p) ⇒ �∗

II6 �∗
III6 �; (9)

so implying that CR(FC) is a valid CR for Model II (because �∗
II6 �). On the other

hand, let a∗
1 be the value of a1 in which �∗

III(a
∗
1) = �∗

III, and let x∗1 be the last point
introduced into CR(a∗

1) (it is also the last point introduced into CR(FC)). The p-value
for the said point is �∗

III (�∗
II) according to Model III (II), and �∗

II6 �∗
III according to

expression (9). Hence the Fisher exact test is conservative. But the result needs to be
modi8ed:

(1) The way to build the previous CR(FC) gives rise to an ordering method which
we shall call FC. A classic order in Model II (Boschloo, 1970) is given by the
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statistic F=�∗
III (order from the smallest to the largest p-value of the Fisher exact

test). As CR(FC) is licit, then CR(F)⊂CR(FC)—where CR(F) is the CR which
produces the order F—and therefore F will produce a uniformly more powerful
test than the one produced by the order FC. Consequently, it can be said that the
unconditional test F for Model II is UMP with regard to the one-tailed Fisher
exact test (excluding the two-tailed test for the reason given below).

(2) However, the above result is not correct for any other order in Model II (not even
for B, which is generally the most powerful), because the order which induces B
(for example) is not the one which induces FC, and so CR(FC) and CR(B) are
not in an inclusion relation. Hence, it can only be stated that B is generally more
powerful than FC (because B is generally more powerful than F and the latter is
UMP with regard to FC).

(3) Moreover, the conclusion obtained in (1) is only valid for the one-tailed test. The
reason is that for a test to be valid in Model II, it must be inferentially logical.
Barnard (1947) indicated that the test should respect the properties of:

Symmetry : if (x1; x2) ∈ CR ⇒ (y1; y2) ∈ CR (for K : p1 �= p2);

Convexity : if (x1; x2) ∈ CR ⇒ (x1; x2 + 1); (x1 − 1; x2) ∈ CR

(for K :p1¡p2):

As a one-tailed test, order FC respects convexity (Hajek and Havranek, 1978),
but not as a two-tailed test (there are counter examples to that e9ect), and so the
two-tailed Fisher exact test is not only generally conservative, but is also incoherent
(from the perspective of Model II). Precisely for this reason, the condition of
convexity is previously imposed on order F (as a two-tailed test). However order
F as a two-tailed test (and thus, the method FC it induces) respects the new (and
desirable) property of:

Diagonality : if (x1|a1; n1) ∈ CR ⇒ (x1 − 1|a1; n1) ∈ CR (for p̂1¡p̂2);

if (x1|a1; n1) ∈ CR ⇒ (x1 + 1|a1; n1) ∈ CR (for p̂1¿p̂2);

which is a consequence of the fact that order P for Model III does respect the
property of convexity. This indicates that the CR which they produce does not
present gaps (even when it is not convex).

In order to evaluate how much power is lost by using test FC instead of test B,
one proceeds as in Section 4. Table 2 shows the results. It can be seen that the
increase in power decreases when n1 increases, and that the case of K = n2=n1 = 1
behaves worse than the others (especially in the two-tailed test). If a loss of power
of approximately 2% or less is considered irrelevant, then method FC can substitute B
where n1¿ 80 (n1¿ 70 if K ¿ 1) in the one-tailed test, or where n1¿ 80 (n1¿ 40
if K ¿ 1) in the two-tailed test.
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7. Model I vs. Model III

For each value 06 n16 n, in the previous section the Fisher exact test produced
a CR(FC) and an error �∗

III6 �. Given that they both vary with n1, let us note
them here as CR(n1) and �∗

III (n1)6 �. For the present Model I, the new CR will
be CR(FC) =

⋃
n1

CR(n1) with error �∗
III = maxn1 �

∗
III(n1). Pearson (1947) indicated

that P(x1; y1; x2|H) = P(n1|H) × P(x1; x2|H), where P(n1|H) = C(n; n1) × qn1 (1 − q)n2 ,
so that the error �∗(p; q) for the new CR(FC), using expression (3),
will be

�∗(p; q) =
∑

n1∈CR(FC)

P(n1|H)
∑

(x1 ;x2)∈CR(n1)

P(x1; x2|H) =
∑

n1∈CR(FC)

P(n1|H)�∗(p|n1)

6
∑

n1∈CR(FC)

P(n1|H)�∗
III(n1)6 �∗

III6 � (∀p) ⇒ �∗
I 6 �∗

III6 �; (10)

where �∗(p|n1) refers to expression (9). Therefore, as in the previous section, the
CR(FC) is a licit CR (because �∗

I 6 �) and the Fischer exact test is conservative
(because �∗

1 6 �∗
III). The rest of the observations for Section 6 can also be applied

here. In fact, the properties to be veri8ed by the CR of Model I are more numerous
(Mart()n Andr(es and Tapia Garcia, 1998).

Table 3 also yields the values of V�(B;FC), which are obtained similarly to those
of Section 5. It can be seen that, even for n = 50, the absolute increase in power
(V�) is of the order of 7.2% (one tail) and 4.5% (two tails), while the relative
increase—V�=�(B)—is 12.2% and 8.3%, respectively, quantities that are too high to
be assumed. Let us accept that the loss V� = 2% is reasonable. As V� decreases
in n = 50, the extrapolation of the results (which is the only thing feasible with our
present calculation capacity) allows one to deduce that for n = 100 (one-tailed test)
or n= 70 (two-tailed test) the Fisher exact test is acceptable (although as a two-tailed
test it performs incoherently by not verifying the property of convexity).

8. Model I vs. Model II

It has already been said that the exact test for Model I is much more complex
to calculate than the exact test for Model II. It is therefore advisable to study un-
der what conditions the latter can substitute the former (without excessive loss of
power). To this end, let us look at test B for Model II (which is generally the more
powerful).

For each value 06 n16 n, the test B for Model II (to the target error �) gives
a CR(�|II) = CR(n1) with a real error given by expression (4) and which, because
it varies with n1, we shall call �∗

II (n1)6 �. Let CR(BC) =
⋃
n1

CR(n1) and �∗
II =

maxn1 �
∗
II (n1)6 �. The aim is to demonstrate that CR(BC) is a valid CR for Model I.

From the previous section, P(x1; y1; x2|H) = P(n1|H) × P(x1; x2|H), and so the real
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error �∗(p; q) for CR(BC) will be, using expression (3):

�∗(p; q) =
∑

n1∈CR(BC)

P(n1|H)
∑

(x1 ;x2)∈CR(n1)

P(x1; x2|H)6
∑

n1∈CR(BC)

P(n1|H)�∗
II(n1)

6 �∗
II

∑
n1∈CR(BC)

P(n1|H)6 �∗
II ⇒ �∗

I 6 �∗
II6 �; (11)

which implies that CR(BC) is a valid CR for Model I (because �∗
I 6 �) and that the

Barnard test for model II is conservative from the perspective of Model I (because
�∗

I 6 �∗
II). For this reason, Barnard (1947) proposed using �∗

II (n1) as a handy solution
to Model I, adding that not much is lost by doing so. Boschloo (1970) was of the
same opinion, but modi8ed this by saying that one could condition in n1 (as before) or
in a1, so that there are really two possible sizes �∗

II(n1) and �∗
II(a1); hence he proposed

that the value to be used should be

�∗
II (a1; n1) = min{�∗

II(a1); �∗
II(n1)}: (12)

In reality Boschloo proposed expression (12) for the case where order F is used, and
Mart()n and Silva (1995) proposed this for the order B.

The proof for expression (11) is correct, but conclusion (12) is not necessarily so.
To see this, let us look at a table with a value n1. In it, expression (12) will have
yielded a CR formed by the points in CR(n1)—because, in these points �∗

II(n1)6 �
and thus �∗

II(a1; n1)6 �—with a few extras: those where �∗
II(n1)¿� but �∗

II(a1)6 � or
the set CR(+|n1). By moving this to the boundaries of expression (11):

�∗(p; q)6 �∗
II +

∑
n1

P(n1|H)
∑

(x1 ;x2)∈CR(+|n1)

P(x1; x2|H) (13)

and so there is no guarantee that �∗(p; q)6 � and the test in expression (12) can be
liberal.

The result for expression (11) is thus valid if one conditions in the rows or in the
columns, that is, if one always uses �∗

II(n1) or if one always uses �∗
II(a1). However, in

Model I there is no pre-arrangement as to what characteristic is situated in the rows,
and so the researcher may choose �∗

II(n1) or �∗
II(a1) as he/she prefers. The only way

to avoid this is to propose the solution:

�∗
II(a1; n1) = max{�∗

II(a1); �∗
II(n1)}; (14)

which guarantees that the CR obtained consists of a few points less than CR(n1) and so
expression (11) will be valid (although a more conservative test is obtained). We shall
call the resulting method BC. Mart()n Andr(es and Tapia Garcia (1998) indicated that
every order de8ned in Model I should verify the properties of equivalence, convexity
and symmetry (the last in the case of a two-tailed test). It is easy to see that order BC
respects the 8rst and last properties, but it has no need to respect the second, and so the
outcome is the same with BC as with FC: it yields an incoherent test. However, order
BC (again like FC) does respect the property of diagonality described in Section 6
(S(anchez Quevedo, 2002).
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Table 3 also contains the values of V�(B;BC) under the present Model I and with
the criteria of Section 5. From this it can be deduced that the BC method can substitute
B, with a loss of power lower than 2%, when n¿ 50 (n¿ 40) in the one- (two-) tailed
test.

9. Conclusions

A 2 × 2 table may have been obtained under three di9erent sampling schemes (only
the total size is previously 8xed; the totals for the rows are previously 8xed; the totals
for rows and for columns are previously 8xed) resulting in three possible di9erent
models (Models I, II and III, respectively). From the unconditional perspective, each
model requires a di9erent analysis: the maximization tests for Models I and II; the
Fischer exact test for Model III. Unfortunately, each successive model presents greater
calculation diNculties; in fact the generally most powerful test for Model I is imprac-
ticable today for n¿ 50. Fortunately, each model can be solved conservatively using a
higher model (by conditioning in the 8rst), although this is at the expense of accepting
some inferential incoherence in the two-tailed tests: these do not verify the property of
convexity (although they do verify the property of diagonality, which guarantees that
the critical regions show no gaps).

On the other hand, within each model there are several possible procedures for test-
ing. Unfortunately, the more powerful the procedure, the more diNcult the calculation
becomes.

Whatever the case, in this paper we analyze when a conservative method can be used
without losing too much power. Table 4 gives a summary of the conclusions arrived
at. It can be seen that, very generally, the Fischer exact test can be used as an approx-
imation to Barnard’s exact test for Model I (Model II) when n¿ 100 (min ni¿ 80).
Similarly, Barnard’s exact test for Model II can be used as an approximation of the
same test for Model I when n¿ 50.

Table 4
Alternatives model and method to the optimal for use in a 2 × 2 table and conditions for this

Alternative model

I II III

Real model
I FM always B by (14) if n¿ 50 P if n¿ 100∗

FM if n¿ 50 B by (14) if n¿ 40 P if n¿ 70∗
II Model I is B′ and FM always P if n1¿ 80 and K = 1

more complex than Model II or if n1¿ 70 and K ¿ 1
P if n1¿ 80 and K = 1
or if n1¿ 40 and K ¿ 1

Note: (1) In the upper (lower) part of each cell are given the results for the one- (two-) tailed test. (2)
The notation for the method (inside each cell) is that used in the text in the corresponding section. (3)
When the real Model is III, there are no calculation diNculties (use method P). (4) K = n2=n1¿ 1.

∗Result obtained by extrapolation.
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The programs for the exact unconditional tests may be copied from
http://www.ugr.es/∼bioest/Software.htm (programs TMP.EXE for Model I and
SMP.EXE for Model II).
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