
Abstract. We provide a new proof for the representation of Cramér-von
Mises statistics under (known) gamma and normal distributions. The new
method uses orthogonal polynomials and provides an explicit form of the
statistics from which the asymptotic distribution can be calculated.
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1 Introduction

In general, the term goodness of fit is associated with the statistical testing of
hypothetical models with data. Examples of such tests abound and are to be
found in most discussions on inference, least-squares theory and multivariate
analysis. The classical test for the goodness of fit problem is the v2 test which
is well adapted for the case when F0ðxÞ represents a discrete distribution.
Another important class of goodness of fit statistics are the EDF statistics, so
called because they are measures of the discrepancy between the empirical
distribution function (EDF) and a given distribution function. They are based
on their vertical differences and they are conveniently divided in two classes,
the supremum class (the Kolmogorov-Smirnov family) and the quadratic
class (the Cramér-von Mises family). In D’Agostino and Stephens (1986) we
can find a wide presentation and discussion of goodness of fit techniques.

In this work we will study certain statistics of the Cramér-von Mises
family. If FnðxÞ is the empirical distribution function and wðtÞ is some non-
negative weight function, we consider the generalized Cramér-von Mises
statistic:

W 2
n ðWÞ ¼ n

Z 1
�1
ðFnðxÞ � F0ðxÞÞ2WðF0ðxÞÞdF0ðxÞ; ð1Þ
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that includes for different weight functions among others the Cramér-von
Mises statistic (W ¼ 1), the Anderson Darling statistic (WðtÞ ¼ ftð1� tÞg�1),
etc. When F0 is completely specified and continuous these statistics are dis-
tribution free. Their asymptotic distributions have been obtained in the lit-
erature using the theory of empirical processes and the technique of Kac and
Siegert (1947), see Durbin (1973) as well as using an approach based on
U -statistics, see Gregory (1977).

Pettitt (1978) studied generalized Cramér-von Mises statistics for testing
the gamma distribution with known parameters. He showed that the statistics
can be written as an infinite sum of uncorrelated components which are
polynomial functions of the original function and studied its asymptotic
distribution by a method that is analogous to the technique of Kac and
Siegert and requiring the solution of integral equations and the theory of
differential equations. In a similar way it is studied the case for the normal
distribution, see Pettitt (1977) and Gregory (1977).

We will derive the same expressions for the generalized Cramér-von
Mises statistics under the null hypothesis in case of gamma and normal by
another procedure. This is contained in sections 2 and 3, respectively . The
method that we propose consists of expanding the empirical distribution in
terms of the orthogonal polynomials with respect to a convenient density
function. Hence, we determine certain constants, not given in the literature
before, that are necessary to derive their asymptotic distributions and apply
these tests.

We also get, in section 4, using the same method a well-known expression
for the asymptotic Cramér-von Mises statistic as a weighted infinite sum of v21
independent variables. This expression was derived, among others, by Durbin
and Knott (1972) who used empirical process approaches.

2 Generalized Cramér-von Mises statistics for the gamma distribution

Let X1;X2; . . . ;Xn be iid observations from a population with continuous
distribution function F ðxÞ. To test the null hypothesis that F ðxÞ ¼ F0ðxÞ,
where F0ðxÞ is completely known, the Cramér-von Mises statistic given in (1)
can be used.

In this section, we consider F0 as the gamma distribution with known
parameters, a and 1=h, denoted Gaðx; 1=hÞ. So we will consider the null
hypothesis H0 : F ðxÞ ¼ Gaðx=hÞ with Ga the gamma distribution with shape
parameter a and scale parameter 1, whose density function is

gaðxÞ ¼
xa�1

CðaÞ e
�x; x > 0:

Obviously the density function of Gaðx; 1=hÞ, denoted gaðx; 1=hÞ verifies that
gaðx; 1=hÞ ¼ 1=hgaðx=hÞ.

The weight function W that we consider in (1) was suggested by De Wet
and Venter (1973), i.e.

WðtÞ ¼ G�1a ðtÞðgaðG�1a ðtÞÞÞ
2

h i�1
:

The asymptotic distribution of W 2
n ðWÞ has been studied by diverse authors,

De Wet and Venter (1973), Pettitt (1978) using the classic procedure of
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partitioning the statistic into principal components, see Durbin and Knott
(1972), and in a similar way to Kac and Siegert (1947).

We obtain the same result expanding the expression under the integral
sign of (1) in terms of the generalized Laguerre polynomials. These polyno-
mials are orthogonal with respect to the gamma density function. In the next
proposition we give some of the properties that these polynomials verify.

Proposition 2.1 Let L
ðaÞ
k be the kth generalized Laguerre polynomial that is

given by the following expression:

L
ðaÞ
k ¼

Xk

m¼0

k þ a
k � m

� �
ð�xÞm

m!
; a > 0:

The generalized Laguerre polynomials have the following properties:

1. Recurrence relationship:

jLðaÞj ðxÞ ¼ ð2jþ a� 1� xÞLðaÞj�1ðxÞ � ðjþ a� 1ÞLðaÞj�2ðxÞ; j � 1;

L
ðaÞ
�1ðxÞ ¼ 0; L

ðaÞ
0 ðxÞ ¼ 1:

2. Orthogonality relationship:Z 1
0

L
ðaÞ
k ðxÞL

ðaÞ
j ðxÞxae�xdx ¼ dk;j

Cðk þ aþ 1Þ
k!

; ð2Þ

with dk;j the Kronecker delta.
3. Rodrigues formula:

L
ðaÞ
k ðxÞ ¼

x�aex

k!

dk

dxk
ðxkþae�xÞ: ð3Þ

4. Differentiation rule:
d
dx

L
ðaÞ
k ðxÞ ¼ �L

ðaþ1Þ
k�1 ðxÞ: ð4Þ

The above properties can be found in Chihara (1978).
The following result gives us an expression of the generalized Cramér-von

Mises statistics for the gamma distribution.

Theorem 2.1 Under H0 the statistics W 2
n ðWÞ given in (1) has the following

expansion:

W 2
n ðWÞ ¼

X1
j¼1

Z2
n;j

j
; ð5Þ

with

Zn;j ¼
j!CðaÞ

Cðaþ jÞ

� �1=2Xn

i¼1

L
ða�1Þ
j ðXi=hÞffiffiffi

n
p : ð6Þ

Proof. Let

ynðxÞ ¼
ffiffiffi
n
p
ðFnðxÞ � F0ðxÞÞ; ð7Þ
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which we want to expand in terms of the Laguerre polynomials. As

FnðxÞ ¼
1

n

Xn

i¼1
Ið�1;x�ðXiÞ; ð8Þ

in the first place we will get an expansion for the indicator function Ið0;x�ðXiÞ
with Xi a variable from F0ð�Þ. Since it is a bounded function it admits the
following Fourier expansion:

Ið0;x�ðsÞ ¼
X1
k¼0

akðxÞLða�1Þk
s
h

� �
: ð9Þ

The Fourier coefficients are:

akðxÞ ¼
R x
0 L
ða�1Þ
k ðshÞgaðs; 1=hÞds

L
ða�1Þ
k ðshÞ

���
���2
2

; k � 1;

a0ðxÞ ¼ F0ðxÞ;

ð10Þ

with

L
ða�1Þ
k

s
h

� ����
���2
2
¼
Z 1
0

L
a�1ð Þ

k
s
h

� �� �2
gaðs; 1=hÞds

¼ Cðaþ kÞ
CðaÞk!

;

ð11Þ

which is deduced from (2).
To determine the numerator of (10), we use the Rodrigues fomula given in

(3),Z x

0

L
ða�1Þ
k

s
h

� �
gaðs; 1=hÞds ¼ ðk � 1Þ!

k!CðaÞ ðx=hÞ
ae�x=hL

ðaÞ
k�1ðx=hÞ; k � 1: ð12Þ

So, from (12) and (11):

akðxÞ ¼
ðk � 1Þ!
Cðk þ aÞ ðx=hÞ

ae�x=hL
ðaÞ
k�1ðx=hÞ; k � 1: ð13Þ

The indicator function in terms of Laguerre polynomials will be obtained by
substituting (13) in (9):

Ið0;x�ðsÞ ¼ F0ðxÞ þ x=hð Þae�x=h
X1
k¼1

ðk � 1Þ!
Cðk þ aÞL

ðaÞ
k�1

x
h

� �
L
ða�1Þ
k

s
h

� �
: ð14Þ

In this way we get the following expansion for the empirical distribution
function from (8) and (14):

FnðxÞ ¼ F0ðxÞ þ
x
h

� �a
e�x=h

X1
k¼1

ðk � 1Þ!
Cðk þ aÞL

ðaÞ
k�1

x
h

� �Xn

i¼1

L
ða�1Þ
k Xi=hð Þ

n
:

As a consequence from (7) it follows that

ynðxÞ ¼
x
h

� �a
e�x=h

X1
k¼1

ðk � 1Þ!
Cðk þ aÞL

ðaÞ
k�1

x
h

� �Xn

i¼1

L
ða�1Þ
k Xi=hð Þffiffiffi

n
p :
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Obviously, ½u ¼ x=h�:

W 2
n ðWÞ ¼

Z 1
�1
ðynðxÞÞ2WðF0ðxÞÞdF0ðxÞ

¼
Z 1
0

X1
k¼1

CðaÞðk � 1Þ!
Cðk þ aÞ L

ðaÞ
k�1ðuÞ

Xn

i¼1

L
ða�1Þ
k Xi=hð Þffiffiffi

n
p

( )2
uae�u

CðaÞ du:

Since L
ðaÞ
k�1ðuÞ

n o
k�1

are orthogonal with respect to the function: uae�u and

due to the relationship (2), we have easily (5), what we wanted to show, with
Zn;k given in (6). j

The random variables Zn;k have the following properties as a consequence
of the orthogonality of the Laguerre polynomials:

� EðZn;kÞ =0, varðZn;kÞ ¼ 1.
� They are uncorrelated variables.
� By the central limit theorem we have:

Zn;k �!
L

Zk; n!1; ð15Þ

with Zk iid random variables Nð0; 1Þ.
We are interested in studying the asymptotic behaviour of W 2

n ðWÞ. It can
be shown that W 2

n ðWÞ given in (5) tends to infinity as n!1, see De Wet and
Venter (1973), Gregory (1980), and so as suggested Pettitt (1978) the statistic
has to be recentered to obtain a limiting distribution.

It is straightforward to show that W 2
n ðWÞ has infinite mean but using the

results of Gregory (1977) it is possible to show there exist constants flng so that

lim
n!1
ðW 2

n ðWÞ � lnÞ¼
d X1

j¼1

Z2
j � 1

j
; ð16Þ

with the distribution of the left hand side of (16) tabulated in De Wet and
Venter (1972).

In the literature these constants are only mentioned, they are not explicitly
known. In the next, we explicitly determine these constants in a recursive way,
using the results given by Gregory (1977) and the weak law of large numbers,
see Feller (1966), page 232.

By the weak law of large numbers

ln ¼
Z n

�n
Y1ðsÞdF0ðsÞ; ð17Þ

with

Y1ðsÞ ¼
Z 1
�1

Ið0;x�ðsÞ � F0ðxÞ
� �2

WðF0ðxÞÞdF0ðxÞ: ð18Þ

To calculate the integral (18) we use the expression in terms of Laguerre
polynomials for the indicator function given in (9). It follows that

Y1ðsÞ ¼
X1
k¼1

1

k
CðaÞk!

Cðaþ kÞ L
ða�1Þ
k

s
h

� �� �2
;
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so

ln ¼
X1
k¼1

1

k
k!

Cðaþ kÞ Ikða� 1; n=hÞ; ð19Þ

where

Ikða� 1; nÞ ¼
Z n

0

L
ða�1Þ
k ðxÞ

� �2
xa�1e�xdx: ð20Þ

Using the relation (4) it is easy to show that:

Ikða� 1; nÞ ¼ nae�n

k
L
ða�1Þ
k ðnÞLðaÞk�1ðnÞ þ

1

k
Ik�1ða; nÞ; k � 1;

I0ða� 1þ k; nÞ ¼ Cðaþ kÞGaþkðnÞ:
ð21Þ

So we have obtained the constants ln that are computable from the recur-
rence relation (19).

3 The generalized Cramér-von Mises statistic for the normal distribution

In this section, we consider F0 as the standard normal distribution, denoted U,
whose density function is given by

uðxÞ ¼ e�x2=2ffiffiffiffiffiffi
2p
p ; x 2 R:

So we will consider the null hypothesis H0 : F ðxÞ ¼ UðxÞ, and the generalized
Cramér-von Mises statistic with the following weight function, suggested by
Gregory (1977):

WðtÞ ¼ u U�1ðtÞ
	 
� ��2

:

We obtain the analogous result expanding the empirical distribution function
in terms of the Hermite polynomials.

Some useful properties of Hermite polynomials are given in the following
proposition:

Proposition 3.1 Let Hek be the kth Hermite polynomial that is defined by:

Hek ðxÞ ¼ k!
X½k=2�
m¼0

ð�1Þmxk�2m

2mðk � 2mÞ!m!
; ð22Þ

The Hermite polynomials verify the following relations, see Chihara (1978):

[1] Recurrence relation:
Hekþ1ðxÞ ¼ xHek ðxÞ � kHek�1ðxÞ; k � 0;

He�1ðxÞ ¼ 0; He0ðxÞ ¼ 1:

[2] Orthogonality:
Z 1
�1

Hek ðxÞHejðxÞuðxÞdx ¼ dk;jk!: ð23Þ

216 F. López-Bl�azquez and A. Castaño-Martı́nez



[3] Rodrigues formula:

Hek ðxÞ ¼ ð�1Þ
kex2=2 dk

dxk
e�x2=2: ð24Þ

[4] Differentiation rule:
d
dx

Hek ðxÞ ¼ kHek�1ðxÞ:

An expression for the generalized Cramér-von Mises statistic for the normal
distribution will be given in the following theorem.

Theorem 3.1 The statistic W 2
n Wð Þ given in (1), with the above notation, admits

the following expression under the null hypothesis:

W 2
n Wð Þ ¼

X1
k¼1

Z2
n;k

k
; ð25Þ

with

Zn;k ¼ �
Xn

i¼1

HekðXiÞffiffiffiffi
k!
p ffiffiffi

n
p : ð26Þ

Proof. The proof is analogous to the above case. j

Hence the random variables Zn;k verify the same properties of those in the
gamma case. Of course the limiting distribution of W 2

n Wð Þ presents the same
problem, so it is necessary to determine the constants ln, so that

lim
n!1

W 2
n Wð Þ � ln

	 

¼d
X1
j¼1

Z2
j � 1

j
:

Again, these constants are not known explicitely in the literature, but we can
obtain them using similar arguments as in the gamma case.

So, from (17) we have

ln ¼
X1
k¼1

1

kk!
IkðnÞ; ð27Þ

with

IkðnÞ ¼
Z n

�n
H2

ekðxÞuðxÞdx;

that satisfies

IkðnÞ ¼ �2HekðnÞHek�1ðnÞuðnÞ þ kIk�1ðnÞ; k � 1;

I0ðnÞ ¼ 2UðnÞ � 1:

4. The Cramér-von Mises statistic

In this section we get, using the same technique, a very well-known expression
for the asymptotic Cramér-von Mises statistic. The classic Cramér-von Mises
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statistic is obtained from (1) with W ¼ 1. It has been studied by many authors,
such as Anderson and Darling (1952), Durbin and Knott (1972). They ex-
pressed this statistic as a weighted infinite sum of v21 variables, using the
stochastic process theory. We will get the same result expanding the empirical
distribution function in terms of Jacobi polynomials.

We present in the following result some properties of these polynomials,
see Chihara (1978):

Proposition 4.1 Consider the Jacobi polynomials explicitly for a; b > �1;:

P ða;bÞn ðxÞ ¼ 2�n
Xn

j¼0

nþ a
j

� �
nþ b
n� j

� �
ðx� 1Þn�jðxþ 1Þj; n � 0; ð28Þ

These polynomials satisfy the following properties:

1. Rodrigues formula:

P ða;bÞn ðxÞ ¼ ð�1Þ
n

2nn!
ð1� xÞ�að1þ xÞ�b dn

dxn
ð1� xÞnþað1þ xÞnþb
h i

: ð29Þ

2. Orthogonality:

Z 1

�1
P ða;bÞn ðxÞP ða;bÞm ðxÞwðaþ1;bþ1ÞðxÞdx ¼ dn;m

ðaþ 1Þnðbþ 1Þnðnþ aþ bþ 1Þ
n!ðaþ bþ 2Þnð2nþ aþ bþ 1Þ ;

ð30Þ

with wðaþ1;bþ1ÞðxÞ the beta density with parameters aþ 1; bþ 1, in the
interval ð�1; 1Þ given by

wðaþ1;bþ1ÞðxÞ ¼
2�1�a�b

bðaþ 1; bþ 1Þ ð1� xÞað1þ xÞb; x 2 ð�1; 1Þ; ð31Þ

ðaÞ0 ¼ 1; ðaÞn ¼ aðaþ 1Þ . . . ðaþ n� 1Þ and dn;m the Kronecker delta.

3. Special case: for a ¼ b ¼ �1=2 the right hand side of (30) is

n 1
2

	 

n

1
2

	 

n

n!ð1Þn2n
¼ 1

2

1

4n

2n
n

� �� �2

; ð32Þ

and for a ¼ b ¼ 1=2:

ðnþ 2Þ 3
2

	 

n

3
2

	 

n

n!ð3Þnð2nþ 2Þ ¼
1

4n

2nþ 1
n

� � �2
: ð33Þ

Consider the classical Cramér-von Mises statistic:

W 2
n ¼ n

Z 1
�1
ðFnðxÞ � F0ðxÞÞ2dF0ðxÞ: ð34Þ
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As another application of the technique that we present in this work, the
following theorem shows an expansion for the statistic W 2

n as well as for the
asymptotic statistic denoted W 2

1.

Theorem 4.1 Under the null hypothesis the statistics W 2
n satisfies:

W 2
n ¼

1

p2

X1
k¼1

Z2
n;k

k2
; ð35Þ

with

Zn;k ¼
ffiffiffi
2

n

r Xn

i¼1

P ð�1=2;�1=2Þk ðXiÞ4k

2k
k

� � : ð36Þ

Hence

W 2
1 ¼

1

p2

X1
k¼1

Z2
k

k2
; ð37Þ

where the Zk are iid random variables Nð0; 1Þ.

Proof. As it is known the Cramér-von Mises statistic is distribution free when
the distribution function F0 is continuous. So we can consider F0ðxÞ ¼ F

1=2;1=2
ðxÞ

the beta distribution with parameters 1=2; 1=2, (a ¼ b ¼ �1=2).
In a similar way to the above cases, we expand the indicator function in

terms of the Jacobi polynomials:

Ið�1;x�ðsÞ ¼
X
k�0

akðxÞP ð�1=2;�1=2Þk ðsÞ;

with

akðxÞ ¼ 2
4k

2k
k

� �
8>><
>>:

9>>=
>>;

2Z x

�1
P ð�1=2;�1=2Þk ðsÞwð1=2;1=2ÞðsÞds ¼

¼ � 16k

2k
k

� �2

1

kbð1=2; 1=2Þ ð1� xÞ1=2ð1þ xÞ1=2P ð1=2;1=2Þk�1 ðxÞ;

ð38Þ

for k � 1 and a0ðxÞ ¼ Fð1=2;1=2ÞðxÞ.
As a consequence, we have an orthogonal expansion for the empirical

distribution function:

FnðxÞ ¼Fð1=2;1=2ÞðxÞ �
ð1� xÞ1=2ð1þ xÞ1=2

bð1=2; 1=2Þ �

�
X1
k¼1

16k

2k

k

� �2

1

k
P ð1=2;1=2Þk�1 ðxÞ

Xn

i¼1

P ð�1=2;�1=2Þk ðXiÞ
n

:
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In this way

ffiffiffi
n
p

FnðxÞ � Fð�1=2;�1=2ÞðxÞ
	 


¼� ð1� xÞ1=2ð1þ xÞ1=2

bð1=2; 1=2Þ �

�
X1
k¼1

4k

2k

k

� � 1ffiffiffi
2
p

k
P ð1=2;1=2Þk�1 ðxÞZn;k;

ð39Þ

with the Zn;k given in (36) having the same properties as the variables above:
they have null mean, unit variance, they are uncorrelated and by the central
limit theorem, satisfy

Zn;k �!
L

Zk; n!1;
with Zk iid Nð0; 1Þ.

Following with the proof, from (39) we easily get

W 2
n ¼

1

b3ð1=2; 1=2Þ

Z 1

�1

X1
k¼1

4k

2k

k

� � 1ffiffiffi
2
p

k
Zn;kP ð1=2;1=2Þk�1 ðxÞ

8>>><
>>>:

9>>>=
>>>;

2

�

� ð1� xÞ1=2ð1þ xÞ1=2dx:

Since the Jacobi polynomials P ð1=2;1=2Þk�1

n o
k�1

are orthogonal with respect to
the weight function wð3=2;3=2Þ,

wð3=2;3=2Þ ¼
2�2

bð3=2; 3=2Þ ð1� xÞ1=2ð1þ xÞ1=2;

we arrive at the orthogonality relation given in (33). So

W 2
n ¼

4bð3=2; 3=2Þ
b3ð1=2; 1=2Þ

X1
k¼1

16k

2k

k

� �2

2k � 1

k � 1

� �2

2k216k�1 Z2
n;k

¼ 1

p2

X1
k¼1

Z2
n;k

k2
:

Taking limit in the above expression when n!1 we obtain (37). j
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