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A study on the variations in the density of nucleated particles with
the maximum crystallization rate and with the corresponding

temperature, by using differential scanning calorimetry
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Abstract

An analysis is carried out on two procedures which have been proposed for the determination of the temperature dependence of homogeneous
crystal nucleation rates in glassy solids by using differential scanning calorimetry (DSC) measurements. The first procedure is based upon the
hypothesis that the density of nucleated particles will increase monotonically as the reciprocal of the temperature corresponding to the maximum
crystallization rate increases. The second procedure is based on the observation that the maximum crystallization rate increases as the corre-
sponding temperature grows. The validity of both procedures is assessed for glassy solids by considering two specific crystal growth models.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge of amorphous materials is one of the most
active fields of research in the physics of condensed matter
today[1]. The great interest in these materials is largely due
to their ever increasing applications in modern technology.
Their possibilities in the immediate future are huge based on
characteristic properties such as electronic-excitation phe-
nomena, chemical reactivity and inertia, and superconductiv-
ity. Therefore, the advances that have been made in physics
and chemistry of the quoted materials during the last 40
years have been very appreciated within the research com-
munity. Among the different techniques used to the study of
the glassy solids, the differential thermal analysis (DTA) and
the differential scanning calorimetry (DSC) have promoted
an intense theoretical and practical interest. The quoted tech-
niques have been used extensively for the study of the ki-
netics of phase transformation processes and chemical re-
actions[2]. In the field of glass science, these experimen-
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tal procedures have been employed for the determination of
glass-forming ability of compositions, critical cooling rates
[3–5] and for the investigation of the crystallization kinetics
of glasses[6–8]. Also, DSC studies have been performed
for the purpose of measuring homogeneous crystal nucle-
ation rates in glasses[9,10]. The study of the glass-crystal
transformation has often been limited by the elaborate na-
ture of the experimental procedures that are employed. The
increasing use of the quoted thermoanalytical techniques
offers the promise of obtaining useful data with simple
methods.

The utilization of thermoanalytical techniques depends in
turn on the development of sound methods for analyzing
the experimental data. With this objective, a large number
of mathematical treatments have been proposed for analyz-
ing DTA and DSC data. These treatments have been fraught
with controversy and have led to the formulation of many
(slightly) different equations for the analysis of such data.
Several of these formulations have been reviewed and crit-
ically analyzed by Yinnon and Uhlmann[11]. In the last
decade, it has been indicated that the previous treatments
have assumed a reaction rate constant,K(T), of Arrhenius
type, and an analysis was given to delineate the conditions
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under which this assumption could be used for the interpre-
tation of certain simple crystallization processes[12].

In the present work are examined some of the standard
assumptions which have been used in the analysis of DSC
experiments performed for the purpose of measuring the
homogeneous crystal nucleation rates in the glasses. The
procedure, which can be used for the determination of nu-
cleation rates by means of DSC experiments, described in
the literature[9], it is essentially the following. A glass
is heated isothermally (in the DSC apparatus) for a given
time period at a low temperature to promote crystal nu-
cleation. Next, the glass is subjected to a non-isothermal
heating at a constant rate to crystallize the sample, and the
non-isothermal thermogram is recorded. The procedure is
subsequently repeated using identical nucleation tempera-
ture, but different time periods. This thermal treatment will
produce a family of thermograms exhibiting different peak
temperatures of maximum crystallization,Tp, and differ-
ent maximum crystallization rates,(dx/dt)|p. These varia-
tions in the quantitiesTp and(dx/dt)|p suggest an analysis
of the relationship between the quoted quantities and the
number of nuclei/length,N. In this work, the increase inN
with T−1

p and(dx/dt)|p is justified for two standard crystal
growth models, normal and screw dislocation growth, not
assuming a crystal growth rate of Arrhenius type, but under
more general conditions. Finally, as a verification example,
from data taken of literature[9], two good linear relation-
ships have been found, both between lnN andT−1

p and be-
tween ln(dx/dt)|p and lnN, for the lithium disilicate glass
nucleation.

2. Nucleation, crystal growth and volume fraction
transformed

The theoretical basis for interpreting DTA or DSC results
is provided by the formal theory of transformation kinetics
[13–20]. This theory is largely independent of the particular
models used in detailed descriptions of the transformation
mechanisms, and supposes that the crystal growth rate, in
general, is anisotropic. This rate in any direction can be then
represented in terms of the principal growth velocities,ui
(i = 1,2 and 3) in three mutually perpendicular directions
[21]. In these conditions the one dimensional growth in an
elemental time, dt′, can be expressed asui(t′) dt′, and this
growth for a finite time is

∫ t

τ
ui(t

′)dt′.The volume of a region
originating at timet = τ (τ being the nucleation period) is
then

vτ = g
∏
i

∫ t

τ

ui(t
′)dt′ (1)

where the expression
∏

i

∫ t

τ
ui(t

′)dt′condenses the product
of the integrals corresponding to the values of the above
quoted subscripti andg is a geometric factor, which depends
on the dimensionality and shape of the crystal growth, and

therefore its dimension equation can be expressed as

[g] = [L]3−i ([L] is the length)

Defining and extended volume of transformed material and
assuming spatially random nucleation[21,22], the elemental
extended volume fraction in terms of nucleation frequency
per unit volume,Iv(τ), is expressed as

dxe = vτIv(τ)dτ = gIv(τ)

(∏
i

∫ t

τ

ui(t
′)dt′

)
dτ (2)

bearing in mind the relation dx = (1−x)dxe and integrating
the resulting expression, one obtains

−ln(1 − x) = g

∫ t

0
Iv(τ)

[∏
i

∫ t

τ

ui(t
′)dt′

]
dτ (3)

wherex is the true volume fraction transformed.
When the crystal growth rate is isotropic,ui = u, an

assumption which is in agreement with the experimental
evidence, since in many transformations the reaction product
grows approximately as spherical nodules[23], Eq. (3)can
be written as

−ln(1 − x) = g

∫ t

0
Iv(τ)

[∫ t

τ

u(t′)dt′
]m

dτ (4)

wherem is an exponent, which depends on the dimension-
ality of the crystal growth.

With the aim of interpreting the thermal experiments used
for crystal nucleation rate determinations, two assumptions
must are made, which appear to be in accord with the exper-
imental conditions, which are used in the above-mentioned
experiments. First, it is considered that all nucleation is com-
pleted prior to crystal growth. If the temperature region in
which nucleation is non-negligible is narrow (which is usu-
ally the case for homogeneous crystal nucleation) and/or
sufficiently large non-isothermal heating rates are used, then
one can ensure that there is virtually no nucleation occur-
ring during the non-isothermal heating. Also, since in many
glass systems the crystal growth rates are extremely small at
nucleation temperatures, one can often assume that the vol-
ume fraction crystallized during the isothermal nucleation
step is virtually zero (seeFig. 1) [19]. Thus, the condition
of “site saturation”[24,25] is physically realistic.

Second, it is assumed that only one transformation mech-
anism occurs, namely, homogeneous crystal nucleation. It is
known that many glasses which exhibit homogeneous crys-
tal nucleation also surface crystallize. However, it can be
indicated, according to the literature[9], that by proper con-
trol of particle size one can suppress surface crystallization,
and thus one can study bulk nucleation.

When the first assumption is considered,Eq. (4) can be
written as

−ln(1 − x) = gNm

[∫ t

0
u(t′)dt′

]m
(5)
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Fig. 1. Schematic representation of the temperature-dependent rates of
nucleation and crystal growth, when the quoted processes occur in separate
stages.

Nm being the number of nuclei/(length)m and where the
integral has been evaluated between 0 andt, since there is
no nucleation period,τ = 0.

Bearing in mind that a linear heating rate,β, is usually
employed in non-isothermal experiments, thenT = T0+βt,
whereT0 is the initial temperature of the thermal treatment
and therefore dt = dT/β, and Eq. (5) can be rewritten in
exponential form as

x= 1 − exp

{
−g

[
r

∫ T

T0

u(T ′)dT ′
]m}

= 1 − exp
[−g(rI)m

]
(6)

with r = N/β, Nbeing the number of nuclei/length. It should
be noted thatEq. (6) is a general expression of the volume
fraction crystallized for all possible values of themexponent,
which, as is well known, depends on the dimensionality of
the crystal growth.

The crystallization rate is obtained by deriving the volume
fraction crystallized with respect to time, and substituting
in the resulting expression the exponential function by its
value given inEq. (6), results in

dx

dt
= gmβrm(1 − x)Im−1u(T) (7)

The maximum crystallization rate is found by making
d2x/dt2 = 0, yielding

(rIp)
m = 1

mg

(
m − 1 + u̇p

βu2
p
Ip

)
,

(
u̇ = du

dt

)
(8)

where the subscript p denotes the quantity values corre-
sponding to the maximum crystallization rate.

By assuming an Arrhenian temperature dependence for
u(T), Eq. (8)becomes

(rIp)
m = 1

mg

(
m − 1 + E

RT2
p

Ip

up

)
(9)

whereIp = ∫ Tp
T0

u0 exp(−E/RT)dT , according toEq. (6).
By using the substitutiony = E/RT the integralIp can be
evaluated as the sum of the alternating series[26]

S(yp, y0) =
[
−e−yy−2

∞∑
k=0

(−1)k(k + 1)!

yk

]yp

y0

(10)

where it is possible to use only the first term, without making
any appreciable error, obtaining

Ip ≈ u0ER−1e−ypy−2
p = u0RT2

pE
−1 exp

(−E

RTp

)
(11)

if it is assumed thatT0 
 Tp, so thaty0 can be taken as
infinity. This assumption is justifiable for any heating treat-
ment that begins at a temperature where the crystal growth
is negligible, i.e., belowTg (glass transition temperature) for
most glass-forming systems[11].

SubstitutingEq. (11)into Eq. (9), the logarithmic form of
resulting expression may be written as

lnN = ln β − ln T 2
p + E

RTp
+ ln[E(u0Rg1/m)−1] (12)

Moreover, it should be noted that the change of lnT 2
p with

β is negligibly small compared with the change of lnβ, and
therefore it is possible to obtain

lnN = ln β + E

RTp
+ constant (13)

an identical expression to that given in the literature[10].
Thus, for constant heating rate, the logarithm of the num-
ber of nuclei should be inversely proportional to the tem-
perature corresponding to the maximum crystallization rate.
However, there is one potential difficulty with the use of this
development, since this method makes the assumption that
u(T) is of Arrhenius type, which may not be justified un-
der all conditions. Bearing in mind this fact we analyze the
relationships:N = f1(T

−1
p ) andN = f2[(dx/dt)|p)] under

more general conditions.

2.1. Analyzing the relationship between N andT−1
p

In this section it is analyzed whetherN must increase with
T−1

p in all cases. If the density of nucleated particles always

increases with increasingT−1
p , then dN/dT−1

p should always
be greater than zero. Bearing in mind thatr = N/β, results
in

dN

dT−1
p

= β
dr

dTp

dTp

dT−1
p

= −βT 2
p

dr

dTp

which imply that dr/dTp < 0 in general. Therefore, this lat-
ter hypothesis must be tested. First, with the aim of consid-
ering the bulk crystallizationEq. (8)becomes

(rIp)
3 = 1

4π

(
2 + u̇p

βu2
p
Ip

)
(14)
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by usingm = 3 and the geometric factorg = 4π/3. It should
be noted that by an inspection ofEq. (14)it is clear that the
specific temperature dependence of the crystal growth rate
will affect the conclusion. However, the choice of a specific
temperature dependence foru will be deferred until later.
Accordingly, taking the derivative ofEq. (14)with respect
to Tp, one obtains

3r2I3
p

dr

dTp
= 1

4πβ

[(
1 − u̇p

u2
p

Ip

β

)
u̇p

up
+
(
üp − u̇2

p

up

)
Ip

βu2
p

]

− 3r3I2
pup (15)

Given that Ip > 0,3r2I3
p > 0 and, therefore, dr/dTp

must be of equal sign that the right side ofEq. (15).The
above-mentioned right side one may write as the sum of
two terms:

A1 = 1

4πβ

(
1 − u̇p

u2
p

Ip

β

)
u̇p

up
− 3r3I2

pup (16)

and

A2 = 1

4πβ

(
üp − u̇2

p

up

)
Ip

βu2
p

(17)

It should be noted that the sign of both terms must be deter-
mined, and thus, the sign of the termA1 can be analyzed by
substituting inEq. (16) the values of terms(u̇p/u

2
p)(Ip/β)

andu̇p/up, given inEq. (14), yielding

A1 = −upI
−1
p

2π
(8π2v2

p − 4πvp + 3) (18)

wherevp = (rIp)
3. Given that bothIp and up are positive

quantities, and the quadratic form 8π2v2
p − 4πvp + 3 is pos-

itive for all real values ofvp, the termA1 is, in general,
negative.

The algebraic sign ofA2, however, depends on the specific
crystal growth model which is selected. Nevertheless, a fairly
general condition may be extracted for whichA2 < 0.The
termA2 can be written as follows:

A2 = 1

4πβ

Ip

up

üpup − u̇2
p

βu2
p

= 1

4πβ

Ip

up

d

dTp

(
u̇p

up

)
(19)

All three of the standard crystal growth models (normal
growth, screw dislocation growth, and surface nucleated
growth) are of the form[11]

u(T) = u0η
−1H (20)

whereu0 is a constant,η is the viscosity, andH is some func-
tion of temperature. By substitutingEq. (20)into Eq. (19),
one obtains

A2 = 1

4π

Ip

up

d

dTp

[
η−1

p (dHp/dTp) − η−2
p Hp(dηp/dTp)

η−1
p Hp

]

= 1

4π

Ip

up

(
d2(lnHp)

dT 2
p

− d2(ln ηp)

dT 2
p

)
(21)

If the viscosity is of Fulcher formη = exp[α+γ/(T −T0)],
whereα andγ are constants, then [d2(ln ηp)]/dT 2

p ≤ 0, and

a sufficient condition forA2 < 0 is that [d2(lnHp)]/dT 2
p >

0. However, the latter condition is not generally valid, and
thus one must examine specific crystal growth models. For
normal growth

H = 1 − exp

[−S(Tm − T)

T

]
= 1 − eSe−STm/T

= 1 − Aexp

(
−B

T

)
(22)

whereS is the entropy of fusion in units of the gas constant
andTm is the melting temperature. One may easily obtain
that

d2(lnHp)

dT 2
p

= −H−1
p

[
H−1

p

(
dHp

dTp

)2

− d2Hp

dT 2
p

]
(23)

Taking the first and second derivative of the functionHp,
with respect toTp, gives

dHp

dTp
= BT−2

p (Hp − 1) (24)

and

d2Hp

dT 2
p

= BT−3
p (Hp − 1)(BT−1

p − 2) (25)

SubstitutingEqs. (24) and (25)into Eq. (23)the following
expression is obtained

d2(lnHp)

dT 2
p

= BT−3
p H−2

p (Hp − 1)(BT−1
p − 2Hp)

= −ABT−3
p H−2

p

[
exp

(
− B

Tp

)]

×
{
B

Tp
−2

[
1 − Aexp

(
− B

Tp

)]}
(26)

Moreover, by defining the quantity within braces inEq. (26)
asg(zp) = g(B/Tp), theng(zp) has a minimum value atz′

p =
S+ ln 2, and also, one finds that the above-mentioned mini-
mum value isg(z′

p) = S − 1+ ln 2 = S − 0.307. According

to Eq. (26), if S > 0.307, [d2(lnHp)]/dT 2
p < 0, which in

turn proves that the termA2 < 0. Hence, one may affirm
that, for a material with viscosity of Fulcher form, and nor-
mal crystal growth, the term dr/dTp is negative, and there-
fore dN/dT−1

p will be positive and the density of nucleated

particles will increase withT−1
p .

Nevertheless, most of the non-metallic materials withS >

0.307 exhibit normal crystal growth behavior, but do not ex-
hibit homogeneous crystal nucleation behavior. As examples
we quote, according to the literature[27], SiO2 and GeO2,
which haveS values of 0.9 and 1.31, respectively. On the
other hand, it has been observed that the reduced homoge-
neous crystal nucleation temperatures,Tr = T/Tm, of all in-
organic glasses which nucleate homogeneously are in excess
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of 0.5. From the definition of the quantityzp = STm/Tp, ac-
cording toEq. (26), and considering thez′

p value for which
the functiong(zp) takes the minimum value, one concludes
that

T ′
r,p = S

z′
p

= S

S + ln 2
> 0.5 (27)

or S > 0.69. In other words, ifS < 0.69, then the minimum
value ofg(zp) would fall well below the nucleation regime.
Hence, it appears that for those inorganic materials which
exhibit normal crystal growth one can anticipate that the
density of nucleated particles will indeed increase withT−1

p .
Furthermore, it should be noted that many of the glassy

systems which nucleate homogeneously do not obey a nor-
mal crystal growth law, but a screw dislocation growth mech-
anism, as lithium disilacate glass[28], and for this type of
mechanism the sign of the function [d2(lnH1p)]/dT 2

p must
be analyzed. Aside from a constant factor, which may be
ignored, one has

H1 = ($T)H (28)

whereH1 andH, are the temperature-dependent terms in the
growth rate expressions for screw dislocation and normal
growth, respectively, and$T = Tm − T . Taking the second
derivative of the logarithmic form ofEq. (28)with respect
to Tp, bearing in mindEq. (23), and substitutingEq. (28)
into the resulting expression, one obtains

H1p
d2H1p

dT 2
p

−
(

dH1p

dTp

)2

= ($Tp)
2

[
Hp

d2Hp

dT 2
p

−
(

dHp

dTp

)2
]

− H2
p (29)

which, according toEq. (23), may be rewritten as

H2
1p

d2(lnH1p)

dT 2
p

= H2
p

[
($Tp)

2 d2(lnHp)

dT 2
p

− 1

]
(30)

and given that the term [d2(lnHp)]/dT 2
p has been proved to

be negative, then it follows that [d2(lnH1p)]/dT 2
p < 0 and

therefore the termA2 < 0 for a screw dislocation growth
mechanism.

Finally, as a summary of the present analysis one may af-
firm that the materials with normal crystal growth or screw
dislocation growth, which fulfill the appointed conditions,
verify dr/dTp < 0, accordingly dN/dT−1

p > 0 and, there-
fore, the density of nucleated particles will increase with
increasingT−1

p .

2.2. A study on the variation in N with (dx/dt)|p

It is pointed out in the literature[9] that the quantity
(dx/dt)|p increases with the number of particles nucleated.
Therefore, it is interesting to research if this fact is a general
result of merely a consequence of the specific systems, which
have been studied.

First, the behavior ofx(Tp) = xp will be analyzed asTp
increases. This result will be used in subsequent studies.
By considering bulk crystallization andT = Tp, Eq. (5)
becomes

h(xp) = [−ln(1 − xp)]
1/3 =

(
4π

3

)1/3

r

∫ Tp

T0

u(T)dT (31)

Taking the derivative ofEq. (31) with respect toTp, and
assuming thatTp depends onr, gives

dxp

dTp
=
(

4π

3

)1/3 [dh(xp)

dxp

]−1 [
Ip

dr

dTp
+ ru(Tp)

]
(32)

If one substitutes intoEq. (32) the expression of dr/dTp,
given inEq. (15), one obtains

dxp

dTp
= (36π)−2/3

[
dh(xp)

dxp

]−1 1

βr2I2
p

×
[(

1 − u̇p

u2
p

Ip

β

)
u̇p

up
+
(
üp − u̇2

p

up

)
Ip

βu2
p

]
(33)

It should be noted that, as it has been demonstrated in
Section 2.1, the second term in the square brackets on the
right side ofEq. (33)is always negative (for normal or screw
dislocation growth). Regarding the first term in the brack-
ets one substitutes into the quoted term the expression of
u̇pIp/βu

2
p given inEq. (14)and consideringEq. (31), one has

u̇p

up

(
1 − u̇p

u2
p

Ip

β

)
= 3u̇p

up

[
1 − 4π

3
(rIp)

3
]

= 3u̇p

up
[1 − h3(xp)] (34)

By analyzing the sign ofEq. (33)it is clear that dxp/dTp <

0 whenu̇p < 0. However, foru̇p > 0, the algebraic sign of
the first term in the square brackets ofEq. (33)depends on
whetherh(xp) is greater than or less than unity, according
to Eq. (34). By consideringEq. (6) and the relationship
dN/dT−1

p > 0 it is clear thatxp is a decreasing function of
Tp (i.e., an increasing function ofr) in order to show that
(dx/dt)|p increases as the parameterr increases. By means
of considerations ofEqs. (33) and (34), it will be demon-
strated thath(x) can never exceed unity for anyTp values,
regardless of whether or not dxp/dTp < 0. First, it must be
considered the smallest possible value ofTp (i.e.,Tp → T0)
and taking limits inEq. (34),yields

3

{
1 −

[
lim

Tp→T0
(h(Tp))

]3
}

= 1 − 1

β

(
lim

Tp→T0

Ip

up

)(
lim

Tp→T0

u̇p

up

)
(35)

bearing in mind that for sufficiently smallT0, u(T0) → 0,
then, by using L’Hospital’s rule, one obtains

lim
Tp→T0

Ip

up
= β lim

Tp→T0

up

u̇p
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and according toEq. (35), limTp→T0 [h(Tp)] = 1. Thus,h(x)
initially does not exceed unity. Hence, 1− h(xp) is initially
zero, and consideringEq. (33), dxp/dTp is negative initially.
Sinceh(xp) decreases asxp decreases and bearing in mind
the above-mentioned decrease ofxp with the increase of
Tp it is clear thath(xp) will become less than unity. There-
fore, h(xp) has a maximum value of unity, and according to
Eq. (31)the largest value ofxp is 1− e−1 ≈ 0.632. Once
having established thath(xp) ≤ 1, it is relatively simple to
demonstrate that(dx/dt)|p must increase withr. Taking the
derivative ofEq. (31)with respect to an arbitraryT, then one
finds

dx

dT
=
(

4π

3

)1/3 ru

h′ with h′ ≡ dh(x)

dx

or

ẋ = dx

dt
=
(

4π

3

)1/3

β
ru

h′ (36)

Now by consideringEq. (36)for T = Tp, allowingTp to be
a function ofr, and taking the derivative ofEq. (36)with
respect tor, one obtains

dẋp

dr
=
(

4π

3

)1/3{βup

h′ +
[
ru̇p

h′ − ruph
′′

h′2
dxp

dt

]
dTp

dr

}
(37)

By substituting intoEq. (37) the value of dxp/dt given in
Eq. (32), yields

dẋp

dr
=
(

4π

3

)1/3
{
βup

h′ +
[
ru̇p

h′ −
(

4π

3

)1/3

×β
ruph

′′

h′3

(
Ip

dr

dTp
+ rup

)]
dTp

dr

}
(38)

Moreover, the maximum crystallization rate is found by
making d2x/dt2 = 0, and, therefore, taking the derivative
of Eq. (36)with respect to time and makingT = Tp leads to

h′′ = d2h

dx2
= h′2u̇p

(4π/3)1/3βru2
p

(39)

If this expression ofh′′ is substituted inEq. (38)one may
write that

dẋp

dr
= 3

(
4π

3

)1/3

β
up

h′ [1 − h3(xp)] (40)

Since h′ > 0 for all Tp, and it has been shown that
1 − h3(xp) > 0, then ḋxp/dr > 0, the result which was to
be demonstrated. Thus, it has been demonstrated that one
expects(dx/dt)|p to be an increasing function ofN for most
systems. By considering bulk crystallization and taking the
derivative ofEq. (5)with respect to time forT = Tp gives a
relationship between(dx/dt)|p and r of which logarithmic

form one may write as

ln (dx/dt)|p = ln 4πβ + 3 ln r + ln up + 2 ln
∫ Tp

T0

u(T)dT

− 4π

3

[
r

∫ Tp

T0

u(T)dT

]3

(41)

If one substitutes intoEq. (41) the value of the term

[r
∫ Tp
T0

u(T)dT ]3, given in Eq. (14), the following relation-
ship is obtained

ln

(
dx

dt

)∣∣∣∣
p
= ln 4π − 2 lnβ + 3 lnN + ln up + 2 lnIp

− 1

3

(
2 + u̇pIp

βu2
p

)
(42)

where it should be noted that ln(dx/dt)|p is a function of
the logarithm of the density of nuclei.

3. Justifying by an example the variations in NNN with
T−1

pT
−1
pT
−1
p and (dx/dt)|p(dx/dt)|p(dx/dt)|p

Although Eq. (13)predicts a linear increase of the loga-
rithm of the density of nucleated particles withT−1

p , how-
ever, from an inspection ofEq. (14), such a simple relation-
ship is not at all apparent. In order to assess the dependence
of N uponT−1

p , Eq. (14)has been applied to the nucleation
and crystallization of Li2O·2SiO2 glass in the temperature
region quoted in the literature[9]. In this sense, the loga-
rithmic form of Eq. (14)may be written in the explicit form
of ln N as

lnN = ln β − 1

3
ln 4π − ln Ip + 1

3
ln

[
2 − d(u−1)

dT

∣∣∣∣
p
Ip

]

(43)

By considering the maximum peak temperature,T1p, for
samples nucleated at identical temperature, but different
times, the logarithm of the density of nucleated particles
(normalized) can be expressed as

ln

(
N

N1

)
= ln(I1p/Ip) + 1

3
ln

2 − [d(u−1)/dT ]|pIp

2 − [d(u−1)/dT ]|1pI1p
(44)

whereN1andI1p are, respectively, the values ofN andIp for
above-mentioned maximum peak temperature.

Bearing in mindEq. (20) where the viscosity,η, is of
Fulcher form andH is a function of temperature given by
Eq. (22), one obtains

Ip = u0

∫ Tp

T0

η−1H dT = u0e−α

∫ Tp

T0

e−γ/(T−T0)(1 − Ae−BT )

dT = u0e−α(I1 − AI2) (45)

If it is assumed thatT0 
 T , T − T0 ≈ T , then the integral
I2 becomes
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I2 =
∫ Tp

T0

e−(γ+B)/(T−T0) dT

By using the substitutionsy1 = γ/(T − T0) and y2 =
(γ +B)/(T − T0), and by consideringEq. (10)with the re-
strictions imposed to this equation, the integralsI1 and I2
can be written as

I1 = (Tp − T0)
2

γ
exp

[ −γ

Tp − T0

]

and

I2 = (Tp − T0)
2

γ + B
exp

[−(γ + B)

Tp − T0

]
,

respectively, and accordinglyEq. (45)becomes

Ip = u0e−α(Tp − T0)
2

×
{

1

γ
exp

[ −γ

Tp − T0

]
− A

γ + B
exp

[−(γ + B)

Tp − T0

]}

= u0e−α(Tp − T0)
2(Fp − Gp), with

Gp = A

γ + B
exp

[−(γ + B)

Tp − T0

]
(46)

On the other hand, by considering the reciprocal quantity of
crystal growth rate,u−1 = u−1

0 ηH−1, the term d(u−1)/dT
is written as

d(u−1)

dT
= u−1

0 H−1
(

dη

dT
− ηH−1 dH

dT

)

and bearing in mind the above-mentioned Fulcher form for
the viscosity and the functionH given byEq. (22), the last
expression becomes

d(u−1)

dT

∣∣∣∣
p

= u−1
0 ηpH

−1
p (Tp − T0)

−2[−γ + B(H−1
p − 1)]

thus the product [d(u−1)/dT ]|pIp in Eq. (44) can be ex-
pressed as

d(u−1)

dT

∣∣∣∣
p
Ip = eγ/(Tp−T0)H−1

p

×[−γ + B(H−1
p − 1)](Fp − Gp) (47)

According to Eqs. (22) and (46)if B is largeH−1
p ≈ 1,

therefore−γ+B(H−1
p −1) ≈ −γ andFp � Gp, which en-

tailsFp −Gp ≈ Fp and accordingly [d(u−1)/dT ]pIp = −1.
Bearing in mind this fact, the second term on the right side
of Eq. (44)is zero, and according toEq. (46)the logarithm
of the density of nucleated particles (normalized) is written
as

ln

(
N

N1

)
= 2 ln

T1p − T0

Tp − T0

+ γ[(Tp − T0)
−1 − (T1p − T0)

−1] (48)

This expression, obtained fromEq. (14), allows to evaluate
ln(N/N1) for different peak temperatures and by means of
a representation ln(N/N1) versus the reciprocal of reduced
peak temperature to verify the variation inN with T−1

p .
Also it is possible to assesses the dependence ofN upon

(dx/dt)|p In this sense, if the density of nuclei,N2, corre-
sponds to a maximum peak temperature,T2p, according to
Eq. (42), the logarithm of the maximum crystallization rate
(normalized) can be written as

ln
(dx/dt)|p
(dx/dt)|2p

= 3 ln
N

N2
+ ln

up

u2p
+ 2 ln

Ip

I2p

− 1

3β

(
u̇pIp

u2
p

− u̇2pI2p

u2
2p

)
(49)

Bearing in mindEq. (20), the above quoted expressions of
the functionsη(T), andH(T) and the hypothesis of largeB,
the term ln(up/u2p) of Eq. (49)becomes

ln
up

u2p
= γ[(T2p − T0)

−1 − (Tp − T0)
−1] (50)

Moreover, according toEq. (46), the third term ofEq. (49)
is written as

2 ln
Ip

I2p
= 2 ln

(Tp − T0)
2Fp

(T2p − T0)2F2p

= 4 ln
Tp − T0

T2p − T0
+ 2γ[(T2p − T0)

−1 − (Tp − T0)
−1]

(51)

On the other hand, given thatu̇ = du/dt = −u2 d(u−1)/dt,
the termu̇pIp/βu

2
p of Eq. (49)can be expressed as

u̇pIp

βu2
p

= −Ip
d(u−1)

dT

∣∣∣∣
p

and consideringEq. (47), if B is large (above-mentioned
hypothesis) the fourth term on the right side ofEq. (49)is
zero, according to the following expression

1

3β

(
u̇pIp

u2
p

− u̇2pI2p

u2
2p

)

= 1

3
γ[eγ/(Tp−T0)Fp − eγ/(T2p−T0)F2p] = 0 (52)

Finally, bearing in mindEqs. (50)–(52)the logarithm of the
maximum crystallization rate (normalized) becomes

ln
(dx/dt)|p
(dx/dt)|2p

= 3 ln
N

N2
+ 3γ[(T2p − T0)

−1 − (Tp − T0)
−1]

+ 4 ln
Tp − T0

T2p − T0
(53)

when theB parameter is large. This expression, obtained
from Eq. (14), permits to evaluate ln[(dx/dt)|p/(dx/dt)|2p]
for different peak temperatures and by means of a repre-
sentation of logarithm of the maximum crystallization rate
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Table 1
Values normalized corresponding to the functions lnN and ln(dx/dt)|p for LiO2·2SiO2 glass, calculated from the peak temperatures, by usingEqs. (48)
and (53), respectively

Variation in N with T−1
r Variation in N with (dx/dt)|p

Tp (K) T−1
r ln(N/N1) Tp (K) T−1

r ln(N/N2) ln
(dx/dt)|p
(dx/dt)|2p

958.0 1.3644 0 918.0 1.4237 0 0
953.1 1.3713 0.07796 911.4 1.4341 0.12828 0.04129
948.1 1.3785 0.15934 904.8 1.4445 0.26114 0.08346
943.3 1.3856 0.23929 898.2 1.4551 0.39885 0.12651
938.2 1.3932 0.32626 891.7 1.4657 0.53952 0.16986
933.1 1.4008 0.41541 885.0 1.4768 0.69009 0.21554
928.1 1.4082 0.50501 878.6 1.4876 0.83954 0.26016
922.9 1.4163 0.60060 872.0 1.4989 0.99981 0.30728

(normalized) versus ln(N/N2), also to verify the variation
in N with (dx/dt)|p.

With the aim of representing the above-mentioned vari-
ations inN with T−1

p and (dx/dt)|p, the data correspond-
ing for the viscosity of Fulcher form and for the func-
tion of temperature,H, of the Li2O·2SiO2 glass have been
taken from the literature[9], namely:α = 1.81, γ = 1347
for the viscosity;A = e5.27 and B = 5.27Tm (Tm =
1307 K) for the functionH. Also, the initial temperature of
the process,T0 = 595 K, and two sets of peak tempera-
tures, which appear inTable 1, were taken from the litera-
ture [9]. By using the above-mentioned data and by means
of Eqs. (48) and (53)the corresponding values of ln(N/N1)
and ln[(dx/dt)|p/(dx/dt)|2p], shown inTable 1,were calcu-
lated. Moreover, the reciprocal values of the reduced peak
temperatures are also listed in the quotedTable 1. The data
of the logarithm of the density of nucleated particles (nor-
malized) are plotted against the reciprocal of the reduced
peak temperatures inFig. 2. It is observed that ln(N/N1)

can be represented as a linear function ofT−1
p to a good ap-

proximation. The corresponding regression straight line has

Tr
-1

1.36 1.37 1.38 1.39 1.40 1.41 1.42

ln
(N

/N
1)

0.0

0.2

0.4

0.6

Fig. 2. Plot of the logarithm of the density of nucleated particles (nor-
malized) vs. reciprocal of the reduced peak temperature and the corre-
sponding regression straight line for Li2O·2SiO2 glass.N1 is the density
of nuclei corresponding to a peak temperature of 958 K. The values of
ln(N/N1) have calculated by usingEq. (48).

the following equation

ln

(
N

N1

)
= 11.5641

Tr
− 15.7812

with a correlation coefficientr = 0.9991. Thus, the linear
variation inN with T−1

p appears to be justified for the study
of the nucleation behavior of lithium disilicate. It is impor-
tant to note that the present conclusion has been drawn with-
out making the usual and unjustified assumption thatu(T) is
of Arrhenius type.

On the other hand, the logarithm of the maximum crys-
tallization rate is plotted as a function of the logarithm of
the density of nuclei, both normalized, inFig. 3. It should
be noted that a nearly linear relationship is obtained, which
has the following equation

ln
(dx/dt)|p
(dx/dt)|2p

= 0.3074 ln

(
N

N2

)
+ 2.3178× 10−3

with a correlation coefficientr = 0.9998. This fact demon-
strates that a linear variation in lnN with ln(dx/dt)|p also

ln(N/N2)

0.0 0.2 0.4 0.6 0.8 1.0

ln
[(

dx
/d

t)
p/

(d
x/

dt
) 2

p]

0.0

0.1

0.2

0.3

Fig. 3. Plot of the logarithm of the maximum crystallization rate vs. the
logarithm of the density of nucleated particles, both normalized, and the
corresponding regression straight line for the lithium disilicate glass.N2

is the density of nuclei corresponding to a peak temperature of 918 K.
The values of ln[(dx/dt)|p/(dx/dt)|2p)] have been calculated by using
Eq. (53).
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appears to be adequated for the analysis of the nucleation
process of Li2O·2SiO2 glass.

4. Conclusions

The present work considers the use of DSC experiments
for the determination of the temperature dependence of ho-
mogeneous crystal nucleation rates of glassy solids. The
variations in the density of nuclei both with the reciprocal
of the peak temperature and with the maximum crystalliza-
tion rate, which has been employed for this purpose, were
analyzed.

The variation inN with T−1
p is based upon the increase in

the density of nuclei with the reciprocal of peak temperature.
Its use had been justified in the last decades by arguments
which did not consider realistic expressions for the temper-
ature dependence of the crystal growth rate. Herein, it has
been demonstrated for two standard crystal growth models,
normal and screw dislocation growth, that the density of nu-
clei will increase withT−1

p in most systems. Furthermore,
the growth model appropriate for lithium disilicate crystal
growth, was used to find the change inN with T−1

p . A lin-

ear relationship between lnN and T−1
p was found to be a

good approximation forN = f1 (T−1
p ) for LiO2·2SiO2 nu-

cleation.
The variation inN with (dx/dt)|p, according to literature

[9], is based upon the observation that the maximum crys-
tallization rate increases with the density of nucleated par-
ticles. In the present work, it was shown that(dx/dt)|p is
expected to increase withN for glassy systems which ex-
hibit normal or screw dislocation growth. Also, calculations
performed for nucleation of Li2O·2SiO2 glass indicate that
a linear relationship there is between the logarithm forms of
(dx/dt)|p andN.
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