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Abstract

T this paper we prove the basic matrix theorem of Antosik-Swartz under
weaker hypotheses than the ones they used. We obtain the converse result
for complete normed spaces and generalize Autosik’s interchange theorem for
double series in a normed space.  As a consequence, a nutnber of charac-
terizatious on” convergence in scveral spaces of vector sequences are derived.
Finally, we obtain a version of the Orliez-Pettis theorem for Banacl spaces

with a Schander basis.

1 Introduction

Let ()i be a matrix in a nonned space X such that: (1) For each 7 € N, the
sequence (@;;), 15 convergent (o some x; € X and (2) For each infinite set M C N
there exists an infinite set £ € M such that (X,y‘el’ :I7i]~)L is a Cauchy sequence. In
this setting, the Basic Matrix Theorem ([3]) asserts that the sequences (xy;); are
uniformly convergeut on § € N and (x;); converges to zero.

Many applications of the Basic Matrix Theorem in measure theory and Banach
spaces have been found since its appearance ([3], [14]), such as generalizations of
the uniform boundedness principle, the Banach-Steinhans theorem and the classical
Sclr and Phillips lenanas, [t shionld alse be noticed that the nsual conditions of
the Basic Matrix theorem imply that every row 7 = (z;5); is an element of co(X)
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(the space of null sequences in X endowed with the snpremum norn) and that this
theorem gives a sufficient condition for the convergence ol a sequence in co(X).

Florencio, Pail and Virués {7] established an improvement of the Mikusiiski-
Antosik diagonal theorem for topological gronps, dealing with the behavior of the
diagonal of certain infinite matrices whose elements belong to a topological group.
This improvement yields both the Basic Matrix Theorem and the Antosik diago-
nal lemma ({3]). Fleischer [6] generalized these two results for A-convergence in
topological groups by using “hump” techniques. One of the basic ideas in that gen-
eralization is the following: if A is an infinite matrix in a A-space such that for
some Infinite index set the rows converge to zero, then it is possible to obtain an
infinite subset for which these rows are absohtely summable. Traynor {13] gener-
alized the Mikusiiiski-Antosik theorem to noncommutative topological gronps, and
also gave some applications to the Schin lenima, the Nikodym convergence theorem,
the Phillips leinma and the Banach-Steinhaus theoren.

In this paper we iiuprove the Basic Matrix Theorem by nsing separation proper-
ties of natural families, those subfanilies of P(N) whicli contain the finite subsets,
with weaker hypotheses than those mentioned at the heginning of this introduction.
For complete spaces, the converse result will also be proved and, as a corollary, we
will obtain a characterization of convergence in ¢y(.X).

A result of Swarte’s [12] that generalizes the Antosik interchange theorem ([2])
will be improved in Theoreny 3.6. The technique we will use in the characterization
of convergence in ¢g{\') can be partially translated to ¢s{X), the space of conver-
gent series in X endowed with the norm [|(a;);]] = sup,, || 12, 2], This technigue,
together with the inmiprovement of the Swartz result, will allow us to obtain a char-
acterization of the convergence of sequences in cs{X). We can also cousider other
characterization from the isomorphisiu hetween ¢p(X) and es{X) (see Remark 3.9).
Analysis similar to that allows us to study two isomorphisis, the one from ¢ X), the
space of convergent sequences in X endowed with the supremmonn norin, to es(X) and
the other oue from (X)) to ¢ X), i order to extend the previous characierizations
to the space o(.X') {sce Section 4).

Our results will be applied to Banach spaces with a Schander basis, obtaining a
characterization of convergence and unconditional convergence ol series by means of
the weak topology a( X, Af). where A is the basic sequence in X associated with
the given Schauder basis. Therefore, we will also obtain a new version of the Orlice-
Pettis theorem and observe that this result gencralizes another result of Swartz's
{11].

Although this paper has been developed within the Iraanework of nornned space
theory, most of the results could he extended, with some precautions, to normed
groups by using the techniques followed in [10] and {14}, As the topology ol any
topological group is always generated by a family of quasinorms ({4]), our resnlts
could also be extendad to topological groups.



2 The Basic Matrix Theorem: convergence in c;(.X)

DEFINITION 2.1. We say that F is u natural family if go(N) € F C P(N), where
do(N} denotes the family of finite subsets uf N.

Let F be a natural family and let Y a; be a series in the normed space X. We
il

say that the series Z x; is F-convergent (resp. F-Cauchy, F-weakly convergent,

F-weakly Caucly) LfL @y s (()/LU(,I(]( nt (resp. Cauchy, weakly convergent, weakly

Cauchy), for cach A G .7:
{1 4s said that a netural family F has property SC if for every infinite set M C N
there caists an infinite sct P C M such that P € F.

In the literature, a family with property SC is also called a permeating family

(o).

The basic malrix theorem implies (hat, if F is a natural family with property SC

and (g;);; is a wmatrix in a Banach space X such that (Z T | 1s a convergent
JjEB

sequence for each B € F, then the sequences (x;;); are umtolmly convergent on

JjEN.

DeriNimion 2.2. We say that o netural fanaly F has property P, if there exists
a map f: N ~ N sucl thut for cvery pair of sequences (j,)r and (m,), in N with
Ji<nny < gy <y < -+ there exists an infinite set M C N and B € F that verify:

() (g v ) VB = {0}, Jor cach r € M.
(h) card([me_,m, ] BY < f(r), for each r € N\ M.

It is easily seen that each natural family with property SC also has property P ;
however, it will he shown that there exist natural families which have property P,
and lack property SC (see remark at the end of this section).

We now prove that the previous resull remains valid for natural families with prop-
erty £,

Tusorem 2.3, Lel (x,,),; be a matvic in the normed space X with the following
groperties:

1. o ench y € N, (), 15 @ Cuuchy sequence.

g2 There exists a map [+ N — N such that if (j,.), end (m,), are sequences of
natwral naanbers with ji <y <y <<y < -+ then there exist B C N and an
wfinite set M C N owidh the properties: (4 (my_y, my) N B = {4,} forr € M;
(it) card(fim,. om0 BY < f(r) for cach v € N\ M;

(iii) Z 1y | a Cauchy sequence.

Jj€n i

Then (vy,); wre Cauchy sequences uniformly on j € N.
17 ! 3 !



Proof. We first prove that (x;;), converges to zero for each ¢ € N. On the contrary,
suppose that there exist € > 0, iy € N and a strictly increasing sequence of natural
numbers (j,), with j. +1 < jupq such that |a,;, || > € for r € N,

Define m, = j. + 1 for r € N. Applying our hypothesis, the sequences (j,.), and
{m.)r allow us to obtain two sets, B and M, as in 2. From the former inequality it
is obvious that, for each r € Al

[ |
‘ >_‘ Tigg | =

B
l Jelm, i)

- “Ilnlw “ > £,

which contradicts that Z Xy, 15 a Cauchy series.
JjeB
Having proved this preliminary step, we can now obtain our result. Suppose,
contrary to our claim, that there exists £ > 0 such that for every k € N we can
choose ¢ € N, i > k, and j € N which verify the inequality |2 — 2y, || > €. We now
proceed by induction. The following argmuent, which gives us the first step, can
then be applied to obtain the remaining inductive steps:

(i) Define k; = 1. By the previous assumption there exist £, > &y and jy such
that “-Tl‘)_h - ‘ltk‘ljlli > &

(ii) Sinee (x;;); converge to zero for eacli ¢ € N, consider my € N which verifics
for each i € {1,2,... i1} and j > my. Let

the inequality |l.u;]] < 47—2)—-]7(-2—)

us observe that i, > j).

for

-3

(ii1) Since (wy;); are Cauchy sequences, let ky be such that Z(;L'U — ;z:k_,-‘){ <
jec i
LkZ ke and CC{1,2,....m} Itis clear that ks > iy,

Tn the second step, we apply this argum(‘nt again, with the difference that by has

been already defined and we cousider :_W 3 to obtain iy,
7

We continue in this fashiou to complete this inductive arguent and obtain four
sequences (k). () (Jr)r and (), with by < @) < by <ida <o Jp <y < gy <
ms < ... such that, for r > 1.

() iy = v dl > €

!

> (e = ) L <

jeC j

e,
=)
2
=
=
)

—_
ls“
bnd

——

for each ¢ € {1,2,...,4,.} and J > m,.

eIl < rj:f’j:}-(j"Jr 0

Let B and A/ be the sets that vesult frow (), and (i), in hypothesis 2. We
are now in a position to obtain a contradiction. Conmbining (a) and (b), we have



that for each » € M, r > 1,

Z(”’m =k )| 2 g — Tl — Z (24,7 — k) —

Jen JEB
J<mp_y
Z “w - "I'krj) > & % - Z Z {lxs5)) — Z Z ”zer”-
Jjen k>r JEB JEB
Jzmy o 1€ Mgy ) ;e[m‘. my 1)
2
Fromn ((i) we ()l)ld]l] f()]/k S N k > T, ; ”l'lrj” < m It

JG[ka,mk_',l)
is suffices to notice that 4, € {1,2,...4} and j > my;. The same inequality holds if
i, is replaced by k., and thus

\ 3 3 e e 1 4.

Z(Il,]~ilfk,] >5—?_2'Z——kl—.—_>5'7_7' Z 5% 7 T
JER kz,-7'2 * 'f(]”*l) k2r+12 7

which contradicts that L x| is a Cauchy sequence. [ ]

JEB

If F is a natural family w1th property F,, the result above remains valid if

hypotheses 1. and 2. are replaced by the condition: Z zu) is a Cauchy sequence
JjeB i
for cach B € F.
From Theoremn 2.3 we uext characterize the convergence of a sequence in ¢o(X),
and so we prove thie converse ol the Basic Matrix Theorem for Banach spaces.

COROLLARY 24. Let X be a Banach space and let (T4); be a sequence in ¢o(X),
T = (xy;); for i € N. The following statements are equivalent:

1. There exists a natural family F with property SC such that (Z Ty | isa
i€B/;
convergent scquence for each B € F.

2. There crists o natural fumily Fowith property 1%, such that (Z zi;| isa

JjeB i
convergent sequence for cach B € F.

3. The sequence (£ 1s convergent to some T € eo( X).

Proof. 1L i3 clear that we need only prove that 3.=1. Let F be the family of all

subsets 3 C Nosuch that | 3wy | s convergent and denote Z° = (z;);. It is
jeb

obvious that ¢ (N) C F.

First we ¢laim that there exists a subsequence (ny ), sugh that Z [|Zin, || converges

k
for cach i & N or, equivalently, that there exists an infinite set M C N such that



> Myl converges for each ¢ € N.
JEM
Since (i;;), converges to zero, it is well known that the above property holds for each

sequence (ay;); with i € N fixed. Therefore, lel us consider an infinite set M; € N
with Z [ler;ll < oo. The sequence (a9;)jear, Is also convergent to zero, so let

JEA
My € Ay be an infinite set, with inf Afy > inf Al;, such that Z Zy; is absolutely
JEM,
colvergent.

Completing this inductive argument, we obtain a sequence (Af ), of infinite

subsets of N with A,y C Ay, inf Al > inf AL, and Z [zl < oo for k € N,
JCAM

Detine My = {miyy, e, myy .} where g is the first element of My Tt is

casy to verify that Z ryy is absolutely convergent for 4 € No Since (&)); is also
JC My
convergent to zero, there exists an infinite set AL € Afy with Y |loy]] < oo and
JeM

Z lvij] < o¢ for every i € N, which establishes the validity of owr claim.
JEM

Next we prove the desired implication. In order to show that our family F has
property SC. it is cnough to construct an infinite set 2 € N such that lin Z €y =
' ojep
>y We can inductively construct three strictly increasing sequences (i )e, (1),
jep
and (), ol natural muubers snch that, for r > 1,

1 . .
(2) |7 =Y < ————~ - for cach ¢ > ¢,

(r+ 1)

]

1 r o .
®) >yl < Sy and Sl < 57 dor each @ € {1,2,...,4;} and
jeBrar = jEBNM =

BC{my...}.

(¢) m, < 4 <y and j, € Al for r € N

Let P = {j, : r € N}. Wenext prove that limg Y, == > oy

jer jel
Consider £ > 0 and + € N with 53¢ < 2. Combining (a) and (b) we obtain, for each
ie N>,

Z Ly — Z Tl = Z (i — &) + Z lheall ~
Jjepr jebl jep jer
DS e J2wiy
3
Dl < 57 <2 "
jeP ol
12w

Remark 2.5 Fleischer [6] proved the following result: Let (x5);; be a matrix from a
quasi-normed group whose columus are Cauchy and every infinite subsct of indices



has, for every € > (), an infinite subset J for which

linesup lmsup  sup Z Tiy — Tiy| < E.
i'ed  Afinile F1J finite F'CJ JEFNF

Then the cohmnns are nniforinly Cauchy.

Let (;;)i; be a matTik in a Banach space X whose rows are convergent to zero.
Under the assumptions Of Fleischer’s result above, there exists T° = (z;); such that
lim; 25 = 2 wiifornily on j € N, Define 7* = (24;); € ¢o(X) for each i € N, it follows
that (7), converges to 7 in oo(X). If we consider a matrix (zi);; in X which does
not verify Fleischer’s assuimptions, then it is easy to check that (Z); is not a Cauchy
sequence in cg(X). Thus it can be seen that properties 1., 2. and 3. in Corollary 2.4
are equivalent to the following: 4. The matrix (z;;); ; verifies Fleischer’s assnmptions.

Woe are interested in matrix results which are based on separation and supremim
properties of natural frunilies. Let us observe that the natural families we consider
in this paper have cstablished their own properties previously. Hence, Fleischer’s
technignes are not strongly connected with ours. [ ]

in the following remark we give some examples of natural families with property
2, which are not SC'.

Remark 2.6 We now introduce a suprenmmm property for natural families which
implies Fy,.

We say that a natural family F has property £7 if for every pair (4.),, (m;); of
sequences I N with j < my < ja < mg < ... there exist an infinite set M C N,
AMCM, BeFand {l, . re€ M} CNsuchthat B= {j.: r€ MYu{l,: re M'}
and, for ecach r € A’ and h € M with r < h, m, <1, < my_1.

If F denotes a natural family with property P7, let us prove that F has also
property Po,. Let f N -» N be the map given by f(¢) = 1 for i € N. For every -
pair of sequences (), and (m,), in N with j; <my < ja<ma<...,let M CN,
M C A, B e Fand {l, : r € M} be the sets which verify the properties that
appear in the definition of 7.

We prove that M and B satisfy properties (a) and (b) in Definition 2.2. It suffices
to show that:

(i) (m,—m)N{l: s€ M} isempty if r € M
(i) precasn] N4l 0 s € M} is empty or a singleton if r € N\ M.

First, in order to prove (i), let us consider » € Af and k € M’ such that I, €
(rreey oy and g < g (according to the above definition). We distinguish three

CASOS:

(a.1) If & > », then we have m, <y < 1, which contradicts the previous assump-
tion.
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(b.1) If & = », then we have m, =y < Iy <, and so I, = m,, which is impossible.

(c.1) If &k < » it follows that my < Iy < myoy and so & = m,_.;, which is also
impossible.

We now prove (ii). Let & € A" and r € N\ A be such that Iy € |m,_y,m,)
and A is the largest possible in Af" satisfying the previous property.  Consider
ky = inf{h" € M : & > k}. Then we have my < I < my, .1, and consequently,
Me_y < e <migy -1, My < I < e From this, we obtain & < < k. If there exists
Ly € [my—y,m,} with & < &, we will have my < Iy < ny—y, which contradicts the
inequality & < r. This completes the proof.

The following example shows that there exist natural families with property P,
that lack property SC. Let B be the family of sets 2 © N with the followiug
properties:

(a) B and B¢ coutain infinitcly mauy even mmbers and odd numbers.

(b) {neN:{in ~1,4n} C B} is finite.
Let 7, = By Ugu(IN). It order to prove that ) has the property £, let us consider
the map f : N — N given by f(i) =1 for ¢ € N and let (j,). and (n,), be two
sequences in N with j) < < jy<mg <.... Define A = {4.}, By={2n:ne
Ny-{dnneN}, By={tm:neNL O/ ={2n-1:neN}-{in-1: neN}
and Oy = {dn —1: n € N}. I order to coustruct the infiuite set Af € N and
B € F, which verify () and (b) in Definition 2.2, we distinguish between two cases
aud proceed by induction in each of thenn:

(A) An{2n: n € N} is infinite.

In the first step of our inductive arguent, we consider:

(i.1) ry; € N such that j,,, is an even number.
(ii.1) riy € Norjy >y satisfying [myg _me ) 0B By) # @ Let 4y be
an even mnuber which belongs to the previous intersection set.
(11.1) ri2 € N, rpp > 0y, which verifies {m, o0, m,,,) N C) # O, Let &y, be an
element which belongs to this intersection set.

Define A' = {j,,,, k-, } and MY = {7}, let us observe that j,,, < my, <
o Sl < <y S ke, <y,

In the second step we apply a similar argument. Let us consider:

(1.2} roy € N, vgy > 149 such that j,,, 18 an even number,
(ii.2) 5, € N. vy, > ry verifying [m,./ﬂ_,_l,m,‘gu) N (B, UBy) # 0, so we can
consider {,:  which helongs to this intersection set.
2%

(iiL2) 9 € N, ryp > 15, such that there exists ky,, € Nwith Ky, € [Mirgy—1, 129,)0
Cy.
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Define A% = {4, kyyyt and M? = {1y}, it is clear that m,, < M, <
Jray <My gy 0 Sl <myy Snpy, 1 S kg < My, :

We continue in this fashion to comnplete this inductive argument and so obtain
three strictly inc reasing sequernces: (Jre )i (i"il)i’ two sequences of even num-
bers, and (b, )i, whése glements belong to C, with j,, < m,, < My o1 <
I: < S S ke, < ey <ot < e fori € N. Let us
dofine A% = (o hnod M7 = {ra}, B = U, A® and M = U, M®. Tt is
obvious that {2 and Af wufy properties (a) and (b) in Definition 2.2 and also
Be .7'—1

(B) An{2n—1: n e N} is infinite.
This can be proved hy nsing an argnment similar to that in the previous case,
with the following differences: for each ¢ € N 4, and [, r, must be odd numbers
and (A, )i must be a sequence in By, This completes the proof

To see that F; does not have property SC, it is sufficient to observe that there
is 1o infinite subset of the sel, of all multiples of 4 that belongs to F).

As in the analysis of the previous family, it can be shown that the following
families have property P, and lack property SC. It is enough to consider an induc-
tive argmuent, casier than the previons one. The same notation used in the above
arginent will be followed. Let Q) be an infinite subset of N whose complementary
set i also infinite. Let (Qy and (Jy be two lnfinite subsets of N such that at least one

of them has an infinite complement. We consider and study the following families:

¢ F.={BCN:BNQ is infinite} U ¢y(N). We can distinguish between two
cases: (1) if AN Qy is infinite (according to the previous notation, we have
A=, {7-}), an casier inductive argument, allows us to construct the sequence
{jr, )i i1 Q. We need only consider (4.1), (i.2),...; (i) if AN@Q, is a finite
set, we need only construct the sequences (jr, )i in 4 and (kr,); in Q1.
The complenient of ¢ allows us to show that F, does not have property SC.

o Fy={BCN:Bn@ and B'NQ, are infinite} U ¢o(N). If ANQ, is infinite,
it is cuouglt to constroct the sequences (G, }; and (l"h)" whose elements belong
to (. I ANQ, is a finite set, we can coustruct (jr, }; in A and the sequences
(Lr Jin (Rr )i i0 Q1
Then we can observe that there is no infinite subset of Q¢ which belongs to
Fy and so this family does not have property SC.

o F,={B CN:BnQyand BN Qy are infinite} U ¢o(N). If either A NG,
or AN Qy is infinite, the sequences (), and (k,;); can be constructed so
that j,, € Q» or @y, respectively., and k., € (J3 or (3, respectively, for i € N.
If AnN@Qy and AN Qy are both finite sets, a similar argument allows us to
obtain two sequences: (jr,, )i in A and (k,,); whose even terms belong to @
and whose odd termms belong to Q.

(2% and Qf are not botli finite sets and therefore F, lacks property SC.



e Fo={BCN:BNQy;BNQs,B°NQ, and BN Qy are nfinite} U ¢ (N).
If either AN Q, or AN Q3 is infinite, the sequences (., ); and (k,,); can
be constructed so that j,, € Qo or Qy, respectively, and k,, € Qy or @y,
respectively, for ¢ € N. Also, we must obtain the sequence (l - )z whose even
terms belong to @3 aud whose odd terms helong to Q. If ANQy and ANQ;y
are both finite sets, we can proceed analogously to the above case with the
difference that j,,, € A for i € N and the sequence (k,,); verifies k,, € @, if 4
is an even mumber and &,, € @y if @ is an odd mnuber.

It is clear that Fy does not have property SC.

3 Convergence in cs(X)

Let X be a Banach space and let ¢s(:Y) be the space

T = (x;); 1 »_ 2y is convergent p

J
1)l = sup{ } :
It is clear that cs( \’) is complete and that a sequence (), with T = (&) for cach
i € N, converges to T = (x;); in es(X) if and ouly if hm Z X = Z;lr‘,- uniformly
jeF JEF

endowed with the norm

pod

=1

on the family /o(N) of the finite intervals £ in N.

Analysis shmilar to that in the previous section allows us to characterize the
convergence of a sequence (T'); in ¢s(X). The result of Swartz’s [12] we mentioned
in the introduction can be improved in order to obtain a suflicient condition for the
above convergence. This matrix result, which we will study later, is based on the
following suprenmm property ([9]): A natural family F is called an 1€} o-family if,
for every sequence (£}); of intervals in N such that sup £ < inf £}, for cach 7 € N,
there exists an infinite set A/ € N such that B = U Fe F.

ieM
In order to establish not only the abovementioned improvement, bhut also better
matrix results and a necessary condition for the convergence of a sequence i es(X),
we consider the following separation properties of natural families;

DEerINITION 3.1. Let F be a natwral family. We say that F has property Py if for
every sequence (F;); in Io(N) with sup F; < inf £y, for each i € N, there cxists an
infinite set Ml C N and B € F salisfying F; C B for each i € M

The following result can be easily verified:
LEMMA 3.2, Let F be a natural family with property Iy and let Z 2 be a F-Caawchy

series in the normed space X. Then Z*f'i s a Cauchy series.

i



DeEFINITION 3.3. We say that o notural fomily F has property Py if there exists a
map [ N = N such that for coery pair (Fp)y, (m), of sequences in Ip(N) and N,
respeckively, with mn, < ind F. < sup £, < 1,y for cach r € N, there exist B € F
and an inpinite set M C N such that:

(a) Forv e M, B0, me) = F,.

(b) Forr € N\ M aadr > 1, B0 (mn,, 1mep1) is either empty or can be written as

the union of at most f(r;— 1) intervals.

ft is obvions that cach natiwral fawmily with property P, has property Fy, and
also that cach 1Q) o-family has property Pp. However, it will be shown in the last
remark of Chis seetion that these two properties are not equivalent.

LENMMA 3.4, Assunie that F is a naturval fanily with property Py and (3):; 5 a

malriv in the Banach space X such that (Z i} s a convergent sequence for each
jen

e F. Then Z./ru) is convergent,
N

Proof. On the contrary, consider £ > 0 such that for every k € N there exists ¢ > &
.
. - — .. , .
with L:[.‘U - L £yl > £ Since F has property Py, we can choose a map f as in

J J
Definition 3.3, The proof is based on the following inductive argument:
We establish the fivst inductive step, to which the following steps are very similar:

Consider &; = 1, the above assumption allows us to consider 7; > k, with

) ¢

(i

(i) From Lemnia 3.2, let w1y € N be such that : Z :::,-]-5 < —?5f(1), for F' € Ih(N),
JeF
mf F zag andie {1,240}, and so

i

— )
“ L kr,,,i < gppy- Define £y = [1,my), then by (i) and the previous in-
PRIty

!
} 6=
cquality we have J Z (3 — ax ) > -

e

i) Since () is a Cauchy sequence, there exists by € N, &y > ), satisfyin
J ‘ ¥ing
fem :
iL(‘“m — el < 5, for pog z hy and ¢ C {1,2,...,my}.
iec ;

In the second step, we apply this argiinent again, except that kp; has already

been defined, we consider 7T (D) to obtain mg (from (iii) we have my > my)
7.2t
and F, denotes the interval Tmy, my).
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It is now easy to complete this inductive argument and to obtain three strictly
lncreasing sequences of natural munbers (k. )., (i), and (m,), with k) <1, < ky <
iy < ... such that, for r > 1, the following properties hold:

(a) Z (i — x| > )7 where F, denotes the intevval in N [rn,_;, m,).
JE£

(bY 1D Crpy — )| < & for CC{1,2, 0. ) and pog > ke

(c) Z Il < .—;—,TT(‘—), for i € {1,2,..., 4} and F € LH(N), il F > o,

For the sequences (7)), and (i )esy, there exist 13 € F and an infinite set,
A C N with the properties (a) and (b) i1 Definition 3.3. An analysis similar to thal

at the end of the proof of Theorem 2.3 shows that Z a5 | camot be a Cauchy
JEB
sequence. which contradicts our hypothesis. a

LEMMA 3.5. Let F be o natural family with property Py and let (i) 5 be @ matriz in

the Banach spacc X such that the sequence Z i | is eonvergent for cach B € F.
es /),
Then Z ;1 are untformly convergent onm & N, where A, = (m,+oo) N N.

JEAm i

Proof. The proof is based on an inductive argunient similar to that in the proof of
Lemma 3.4, so we only sketch our argument.

If the result is false, consider £ > 0 such that for every b, € N there exist

PEN >k and k€ N h+1 > m, with ||D (i = )| > <. Lemma 3.4 gives

J>h

that Z“'u aud Z 2y ], for e € N, are Cauchy sequences,
J

J>me i

i . o ;

Since F has property Py, we can choose a map f as in Definition 3.3, The
following argument, which gives us the first step, is very similar to that in the
remaining inductive steps:

(i) Choose ky € N such that Z(.z’,j =) < 5 fori k> k.
i
(i1) Consider m = 1. By the previous assumption there exist ¢, > Ay and by > my,
with Z (i = xx, )| > €. Define £y = [my, hy), by (i) and the previous in-

Jzhy

equality it follows that
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Z Liyy — 'I"ku) Z("‘l.il.j - ‘rku') - Z (Ilu - Ilil)

'
'

Jjek i Jj2h -
™ . P ~ £
” DGy — w2 = ag)l| > 5
jzhy y)
(iil) Cousider my € N, muf> hy, such that Zzij < 8-2 , for F € I4(N),
JEF

inf £ 2> my and i e {1,2,...,4,}.
In the second skep we apply this argunient. again, except that 7y has already

been defined, (i) nses thal Z xi; | is a Cauchy sequence, & is chosen satisfying
,‘/m, i

hy = 4, and we consider - to obtain ;.
) 821 f(2)
We continue in this fashion to complete this inductive argument. As in the proof
of Lenina 3.4, we can now consider the sequences (£,),>1, (m,),>) and analyse our

hypothesis in order to obtain a contradiction which proves the lemma. ]

Tueorim 3.6. Assume thal F is o naturel famwely with property Py and (zi5)i; s

V' such that Z i | 18 a convergent sequence for
JEB .

cach B € F. If &; denotes the limit of the sequence (x;);, for j € N, then we have

« matric i the Banach space 2

Lodi (D e ) =Dy
i T
J J

11111 L EE Z ) wndformly on 17 € I, (N).

Jer Jer

S M for every B € F the series Z Z @iy | ts convergent, then the serics
i jEen

L L @i oand Z Z vy converge and their sums are equal.
[ g

Proof. 1vom Lemmas 3.4 and 3.5 and the inequality

Z(lﬁu — ) = Y (g~ aig)|| <

m

Z(:L’U ~ )| <

=1 q>m
L('“u — )+ Z('l‘u — )
3 J>m
m
it. follows that Z,z:,_, are uniformly convergent on m € N. Let a denote the
Jl i

hmnit of the sequence ZJ:,-',)) . For every € > 0 there exist iy, mqg € N verifying:

J i
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< g, for e Z uy.

(l) Z.li,‘j — (X

J |

|

(i) Z(J',} —)l < 5. fori > iy and m e N
j=1 |

m

() S i = Dy ' < 5. for m > ni.
=1 |

J

. (
m I

- P . N . N
From this it is obvious that %" r, — el < ¢ for cach e 2 ang, and so o= Sy

41 i J
B . . - —, . - -— -
It is casily scen that l]}n L ri o= L s Irgn L i o= Z‘ 2 uniformly on
JEF JEF J¢F J¢F
= . -l . .
FelL(N)andlim | Y ;) =) x; miformly on m € N.
! Jj2m Jj>m

Let ns prove 3. If welet z; = le"u, then the natrix (), verifies the hypoth-
<!

esis of this theorem and therefore
. S
S Yy =i Y - Y
Lo J Joi
This completes the proof, n
Remark 3.7

a) Let (@;;);; be a matrix in the Banacl space X such that }: Z Xy = Z Z:x:lj.

i i
As a consequence of Moore's letama ([5]), it can be deduced that the net
u m
ZZ*"U converges if we consider, on N x N| the order relation:
=1 j=1

(rianyeNxN
(nom) < (0, n) it and only if n < 2/ and e < m’. We also have thal

noom

D Dy =2 3wy =323

=] j=1 i J :

b) Let (ry5);; be a matrix in the Banach space X such that:

(1) Z.L‘ij converges for each 7 € N.
&
(2) 3" 2y converges for each i € N,
J
(3) For every sequence (F)), of intervals in N, F. = {p,,q] with p, <
qr < pryr for cach v € N, there exists a subsequence (F), ), such that

zz Z 3 CONVErges.

ik jeFy
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Then, Li Ronglu and Shin Min Kang {10] proved that the series Y x5, > ) @y
) i
and Z Z #;; converge and their sums are equal. Proceeding as in the proofs

(2
of L(Bl./lllll‘d. 3.4, Lemma 3.5 and Theorem 3.6, it is easily shown that the result
above remains valid if (3) is replaced by the condition: there exists a map
J N = Nsuch that for.eyery pair (F.)r, (my), of sequences in Iy(N) and N,
respectively, with m, §,an < sup Fp < 1,4 for each r € N, there exist
B € F and an infinite set A € N as in Definition 3.3 such that the series
Z Z xyy; converges. Hence, for Banach spaces, we obtain a generalization of
i JED
l;lm}ﬂ&n'mn(ml‘i(nn\,(l result.

¢} We have already referred to the matrix result ebtained by Swartz [12], which
cousiders an 1) a-fmnily and generalizes Antosik nterchange theorem ([2]).
Ior Banach spaces, this result is similar to onr Theorem 3.6 (without 2.), but
we consider a family with properly P instead of an 7@ o-family.

Theorem 3.6 cnables us to give a chavacterization of the convergence in the space
cs(N).

COROLLARY 3.8. Let X be o Bunach spuce and let (), be a sequence in cs(X).
The followning statements ere equivalent:

1. There crists an 1Q) o-fumily F such that { Y ;| is convergent, for each
i€B

e F.

2. There exists a natural fumily F with property Py such that | >z | s con-

jeB i
vergent, for cach B &€ F.
3. The sequenee (T); s convergent to some T = (a5); € es(X).
Proef. It is sufficient to prove that 1. is a consequence of 3. Write = (x;5); for
i € N ln order Lo construct the /@ o-famnily F deline
F={BCN: Z @ | isconvergent p and lel us consider a sequence (£5); in

JER i
I,(N) with sup I < inf F,; ) for each i € N. Tt is enongh to show that there exists a

subseqnence (£, )y such that Z 2y ) s convergent for B = U Fy,.

Let gy = Z 2y and y = Z 1J Ior l e N The sequences T = (yy); and T° = ()
€k Jek;
belong 1o co( X} and, in this space, limﬁ‘ = 5. As in the proof of Corollary 2.4, we

can construct an nfinite set Af € N such that hm Z Y = Z y. Let B = U F.
teM leM len

It is obvious that Z Yil = L Iy and Z y = z ;. Therefore hm z Ty = Z T

Ichr JEDB lenr jen Jj€B jeB



Remark 3.9 Let X be a Banach space. Corvollary 2.4 aund the isomorphisi hetween
es(X) and ¢p(X) allows us to obtain another characterization of the convergence of
a sequence in es(X'). We will first describe the isomorphisim which will be considered
in this argnment.

Let ¢ : es(X)} — ¢(X) be giveu by ¢((xy, 29, ..., &, ... )) = (21,21 + 22, ..,

SRy Tk, - ) for T = (2); € es(X). For an element § = (y;); € ¢(X) we can con-
sider the sequence (Y1, 42 — Y1, -+, Un - J,, - ) = ¢7H(F) which belongs to es(X),
aud s0 it is enongh to observe Hmt [lo(@) = |IZ|| to conchude that ¢(X) and cs(X)
are linearly isometric.

Let v be the isomorphism from ¢(X) to co{.X) given by ¢ ((y ),
Yor---) for 7 = (y))i € (X)) and yo = lim;y. Also, o7 (
21y ey 2ngl 21, ) for each T = (z;); € cp(X).

)= (v0:4 Jl—Un coyYn-1—
( ) — ") + 21y 2y +

£ (7); denotes a sequence in es{X) {or ¢(X) or op( X)) we will write 7 = (w@;);
for ¢+ € N. Using the above notation, we obtain the fullowing characterization:

Let X be a Banach space and let (T'); be a sequence in cs(X). The following
conditions are equivalent:

L. There crists a natural family F with property SC such that Z Z ) dsa
keB >k i

convergent scquence for cach B € F.

2. There exists « natwral fanidy F with property P, such that Z Zari‘,— 8 a
JEB j2k
convergent sequence for cach B € F.

3. The sequence (T'); is convergent to some T = (1;); € es(X).

Proof.
It is sufficient. to prove that properties 2. and 3. are cquivalent. In the same
manner we can establish the equivalence between . and 3.

We first prove 2. = 3. Define =¥ = L Eify — :,,, =D Ty,
3

"2 PN

=2y, | € (X)) and write 38 = (zp)p with 2 =y and

iZn J

e = — ZJ:,-} for & > 1. From 2. it follows that z zi ] 18 convergent for each
ik keH ;

B € F, where F has property P, and so the sequence (24); and the family F

verify condition 2. in Corollary 2.4. We can observe that if 1 € B we obtain the

same concinsion as Z @y | is convergent. Then we can denote by 2 € ¢(X) the

J
limit of (z');. Define 7 = ¢! 0 o 1{z") € es(X), it is obvious that lim, T = 7.



Conversely, define 20 = v o ¢(7°) and ' = p o ¢(Z') for each i € N. Corollary

2.4 allows us to consider a natural family F with property P, such that (z zij)
JEB i
is convergent for B € F. From the definition of ¢ and ¢ it is easy to complete this

argument. .

For Bauach spaces with a Schauder basis, the following corollary asserts that
every series which is F-conv 1;,0111 in the topology o(X, M), where M denotes the
sct of associated coordinate functionals, is actually convergent in X

COROLLARY 3.10. Let X be a Banach space with a Schauder basis {a; : i € N} and
coordinate func {mnals M = {y; i € N} and let F be a natural family with property
Pt L.zﬁ', is « series in X such that Z x; s o(X, M) convergent for B € F,
J jes
then Z @y s convergent dn X
K

Proof. 1t is suflicient to observe that the matrix (g;(z;)a;);; verifies the condition

3. in Theorem 3.6. .

Swartz [11] established the following result, which is based on the Antosik inter-
change theorem ([21): Let X be a Hansdorff topological vector space with a Schander
basis {a; : i € N} and coordinate functionals M = {g; : i € N}. If ¥_z; is o(X, M)

J

subgeries convergent, Lhen 2: x; is subseries convergent in the original topology of
) J
X.
For Banach spaces, the following property ([1]) allows us to improve the above
result:

DERINITION 3.11. We say that a natural family F has property S\ if for every pair
[(A), (Bi)i] of disjoint sequences of mutually disjoint sets in ¢o(N) there exists an
infinite set M CN and B € F satisfying A; © B and B; C B¢ for each i € M.

THEOREM 3.12. Lel X be a Bunach space with o Schauder basis {a; : i € N} and
coordinate functionals M = {g; : i € N} and let F be a natural family with property
St Af> wjus aseries in X such that Y xj is a(X, M) convergent for each B € F,

J JEDR
then Z € s unconditionally convergent {uco).
J
k
Proof. Far k,j € N, let zi; =Y gi(w;)a;. 1t is easy to check that the matrix (zk; )k ;

i=1
is such that:

(i) (Z 2y | I convergent for each 3 € F.
JEB It

(ii) >z is uco ([1) for each k € N,

J
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Then Y z; are uco uniformly on & € N ([1]). The rest of the proof is obvious.

J
a

Remark 3.13 We now give some examples of natural families with property Py that
are not 1Q o-failies. Define F = By U ¢y(N), where B, is the tamily of the sets
A € N such that both 4 and 4¢ contain infinitely many even nmubers and odd
numbers. Analysis similar to that in Remark 2.6 shows that F5 has property P,
Let f : N — N be the map given by f(i) = 1 for i € N. If (¥.), and (i), are
two sequences in o(N) aud N, respectively, with m, <inf F, <sup F. < m,.4,; for
r € N, we now prove that there exist B € F, and an infinite set. M C N which verify
properties (a) and (b) in Definition 3.3.

Define 4 = J, £y, B={2n: n € N} and C = {2n - 1: n € N}. We consider two

cases and proceed by induction in cach of them:
(A) AN B is an infinite set. In the first step we consider:

(1.1} 1y, r2 € N, with 1) < rpa, such that F,, and F,,, have at least oue even

iz
mumber.
(ii.1) riz € N, iy 2 rg, satisfying [, 0, ) NC £ B Let 4 be an clement
which belongs to the previous intersection set.
(ii.1) riy € N, riy 2 ri3, which verifies that there exists an odd number 1y > 1)
which belongs to [, me, 1)

Define A' = F,, , u{li} aud A" = {r;}. Let us observe that m,, <inf £, <
sup Fryy <o iy, <oy, < Uy and so 1y & [ o, ).

We now apply this argument again with the diflerence that g st ver-
ify the tuequality ryy > oy Hence, the second step allows us (o obtain
Fap, oay oy, oy € N, with o) < rog S 1oz S a1, such that:

(1.2) F,., and F., have at least an even nuber.
21 22
(11.2) 1 € [y ) O C

(1i.2) na > b andd ey € [y o0, ) N C.

Define A% = F., UL} and A7 = {ro} 10 is clear that 4 < oy <
Ml S ey and so Loy @ i, gy ). Also, il can be checked that

Lo @ [Py gy g1).

The induetive argiment we have sketehed above gives us four strictly increas-
ing sequences (1), ()i (ra)sand (i) i Np with ryp << <oy <oy <
Y11 for 1 € N which verify the properties:

(a) F,

vy o Fo Tiave at least one even mnuber.
(b) For each i € N, there exist two odd munbers I; and n; with n; > 1,

L€ [ty ity 1) and ng € [ny it 40 ).
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It can be checked that I < ng < my,,, for each ¢ € N, ¢ > 1, and k €
{1,2,...,0— 1}, and & > m, 41 for i € N

Define A* = £, U{l,} and M" = {11} for n € N and let us consider
B=U, A" and M = U, M". It is easily seen that B and M verify properties
(@) and () in Definition 3.3 and also B € F,.
J

(B) AN DB is a finite set and AN C s infinite. The proof is very similar to that
in the previous case with the following differences, for each 7 € N (@)
and st verily that £, and £, have at least one odd munber instead of
one even mber; (#) ¢ and 1, nst be even numbers instead of odd numbers.

Let ns observe that the union of the members of each subsequence of ([2n, 2n)),
does not belong to Fy, and so this family is not au 7€) a-family.

Morcover, if @) is an infinite subset of N whose complement is also infinite,
an analysis simmilar to that in Remark 2.6 allows us to adapt the above inductive
argument in order to show that the following families have property Py:

o F,={BCN: BNQ is infinite} U ¢g(N)
e Fy={BCN: BNQ and BN, are infinite} U ¢o(N).
Let {j-} be a strictly increasing sequence such that @Qf = {7 : r € N} and define

F, = {j,}, for cach » € N. Considering the sequence (£}),, we conclude that F,
and Fy arc not 1Q o-families.

Let Qu and (@3 he two infinite subsets of N with the property that at least one
of them has an infinite complement. Similarly, the following families have property
) but are not {() o-families.

o F.o={BCN: BNQ,and Briy are infinite} U ¢y(N).

o Fy={BCN: BrQ, BNQy, B NQ,and BN Qy are infinite } U ¢p(N).

4 Convergence in ¢(X)

Let X be a Banach space and let ¢(X) be the space of convergent sequences in X,
cidowed with the norm
[l = sup Jjeall-
n

This space is Hnearly isometric 1o ¢s(X). Let ¢ be the isometry from cs(X)

to ¢(X) (sce Remark 3.9). H (7)), denotes a sequence in ¢(X) (or es(X)) we will
# = (245);. From Corollary 3.8 we can now characterize the convergence of a
sequence in ¢ X}, using the above notation.
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THEOREM 4.1. Let X be a Banach space and let (T1); be a sequence in ¢(X). The
following statements arve equivalent:

1. Assume that (m;)}; and (n;); are twomse(ﬂwnccs in N with nj < my; < njqy, for
each j € N. Then there exists an infinite set Al C N such that

( Z (J'imj - ‘1;11” ))
jeM i

is a convergent scquence.

2. There exists a natural family with property Py such that (Z(;I:U - ;zri(j,”))
jets ;
is convergent for each B € F (let us consider xy = 0).

3. The sequence (1°); converges lo some T = (1;); € o(X).

Proof. Tt is sufficient to establish the equivalence hetween properties 1. and 3.
Similarly, it can be shown that 2. and 3. are equivalent.

We first prove that 1. = 3. For every i € N, write 7' = (vy;); and ¥ = (y); =
¢~ 1(@). Tt is sufficient to show that the family

F = {B CN: (Z y,j> is convergent} is an /@ o-family (see Corollary 3.8).
jeB ;

Suppose that (F)); is a sequence of intervals with sup F; < inf Fj; and let p; =

inf F; and ¢; = sup F}, for j € N. Applying our hypothesis, the sequences (p; — 1);

and {g;); allow us to abtain aun infinite set A/ C Nsnch that Z (Pigy — i) | =
LeAl ;

(Z y,-j) , where B = U £1, is convergent. We can certainly assume that

jes ;

inf Fy > 1, for, if not, we replace (F}); by (£));51. Let us observe that 3 5ep vi; =

Lig — Tigp—1y It ot # 1 and ¥jep 4y = g for Fy = [1,q]. This proves that (7');

converges to some J’ € es(X) (Corollary 3.8), and so that lim & = 7, where

¥ = ¢(7°).

Conversely, for every { € N take 7' = (yyy); = ¢71(@) = ¢ 1((w;;);) and 7° =
(y;); = o7 1(@). IF (my)y and (nj); are two sequences satistying n; < m; < njp
and Fj denotes the interval in N [n; + 1, ], for each j € N, from Corollary 3.8 it

follows that there exists an infinite set A/ C N such that (Z i‘/ij> is convergent,
jeB ;

where B = U £ Obviously, Z(lm” Zim,) | also converges. [ ]
leM leAl ;

Remark 4.2 From Corollary 2.4 and the isomorphism ¢ between ¢(z) and cp(X)
(see Remark 3.9) we cun obtain another characterization of the convergence of a
sequence in ¢{X). Let (T'); be a sequence in ¢(X), we will denote T = (x45); and
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Ciw = lin;ay; for ¢ € N . Analysis similar to that in the previous argument allows
us 1o consider and prove the following result:

Let X be a Banach space and let (T*); be a sequence in ¢(X). The following
statements are equivalent:

1. There exist xp = 1‘1111,',4'."’;,,;o and a natural family F with property SC such that

D (o) ~ o) | is @ convergent sequence for each B € F (let us consider
J€B
@i =0).

2. There exist xg = liny i and @ noturael farnily F with property P, such that

(Z(:z:,ukl, — I ) | 18 a convergent sequence for each B € F (let us consider
jen

@ = 0).

: he seauence (VY is ¢ A€l some T = (2:): .
3. The sequence (T*), s convergent to some T° = (2;); € ¢ X).

Proof.

It is sufficienl to prove that propertics 2. and 3. are equivalent. In the same
manner we can establish the equivalence between 1. and 3.

We first prave that 2. = 3. Let us consider 7* = o(T*) = (Zico, Lit —Ticos - - - » Lifn—1)—
Lino -+ ). From 2. it is casy Lo check that (7*); and the family F verify condition 2.
in Corollary 2.4, and so there exists 7° € ¢o(X) such that the sequence (7*); con-
verges to this clement. We can abserve that if 1 € B we obtain the same conclusion
as (b )i 15 4 convergent sequence. Tt is enough to consider 28 = p~1(7%), which

satisfies Z° = lim; T in ¢(X), in order to complete this argument.

Conversely, if property 3. is verified we will denote by zp the limit of the sequence
(;); = 7. It need ouly be shown that Him, 2, = 7, as from Corollary 2.4 it is easy
to complete the proof. For each e > 0 let us cousider 7g € N satisfying [|7° —7° < §
for & > 4y, Fix ¢ € N, i > ig, and let m; € N be such that ||Zim, — Tieo|| < § and
i, — ]| < §- We are now in a position to check the following inequalities:

H-“lm - ‘1:1]“ S H‘/Uloc - -Tim,“ + “-’“m, - -Tm1|| + "1:111, - IO” <€ for ] Z iO- ]
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