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Abstract

We study distributions not depending on the-variable in an open seé2 ¢ RY. It is assumed
that{2 may be described through a very general funcfiom — R, wherew C RN-1js any open
set. We give a representation theorem for this kind of distributions and show how they are related
to distributions defined im. A direct application of this theorem is the derivation of a de Rham-
like lemma with a non-local constraint. These results can be applied to the analysis of hydrostatic
approximation of Navier—Stokes equations.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

AdistributionF € 2'(R") is said to be independentaf 1<i< N, (x1, ..., xy) € RY,
if 0F/dx; =0in 7' (RN). The structure of distributions independent of one of the variables
is well-known since the time they were introduced by Schwartz at the end of the 1940s
[12]. Indeed, ifF € Z'(R") does not depend on, say, the last variahlethen there exists
S € Z'"(RV71Y) such thatF = S ® 1,,, i.e. for allgp € 2(RV™1), for all y € Z(R),
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and¢(x1, ..., xN—1, Xn) = @(x1, ..., xy—D)¥(xn), the following equality holds:
(F, ¢)@/(RN)Q(RN) = (S, (p)g/(RN_l)Q(RN_l) A% Y(xy)dxy

and thus, according to Fubini’s theorem for distributions, forsad Z(R") one has

(F,(p)(;/ Ny G N =<S,/ go(xl,...,xN_l,xN)de> .
T RHZR™Y) R 7' RN-1) 9 (RNY)

This expression also applies to open cylind@rs w x (a, b) c RY, wherew c RN Lis

an open domain andoo< a < b< + oo: if F e 2/(Q) does not depend aty € (a, b),

then there exists € Z'(w) such that, for allp € 2(Q), one hag8]

b
(F, (P)Q’(Q)Q(Q) = <S, / QX1 ..., XN-1, XN) dXN> . (1)
a I (0)Z ()

We observe that expression (1) relates a distribiRiorthe cylinder2 with a distribution
Sdefined on the base of the cylinderunder the only assumption thiats independent of
the variable describing the axis of the cylinder.

The goal of this paper is to give a version of this result to a more general class of open
sets, i.e.

Q={(x",xy) e RV /x' € w, —D(x") <xy <0}, @)

wherew ¢ RY¥"1is an arbitrary open domaif): w +— R, x’ = (x1,...,xy—-1), and

D(x") >0, for allx” € w, and to apply it to the derivation of a de Rham-like lemma which
characterizes all distributions vanishing on the spaa€) c 2(2)V ! defined as

0

1(Q) = {q) e 9NV . (/

o(x', xn) de) =0in w} , 3)
—D(')

whereV’. is the divergence operator with respect to the variabjes xy_1. This kind of

results can be applied in the study of some mathematical models arising in oceanography,
for instance, in the analysis of the hydrostatic approximation of Navier—Stokes equations
[9,10]; in this caseN = 3, Q stands for a portion of the ocean or lakex {0} is the sea
surface, an® is the depth function describing the bathymetry of the sea bottom.

2. The representation theorem

We considers ¢ RY 1 an arbitrary open domain, and a measurable fundiion — R
such that the se® ¢ R" as defined in (2) is open. We will make the following assumption

onD:

D(x')>0in w, and for every compact sé C w, ess infg D > 0. 4)

Remark. In this setting, the functio® need not be continuous in. Indeed, it may have
jumps along some curves in.
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Remark. Notice that if ess inf, D > 0, thenQ has a sidewall all alongw. Under this
additional assumption, the analysis below simplifies. This was the case consid@id in

the analysis of the functional spaces involved in the study of the hydrostatic approximation.
Observe that (4) does not exclude the case essint0, leading to more general situations.

Letu e L1(Q). Owing to Fubini’s theorem, the function
0
X cwr / u(x', xy) dxy
—D(x')

is defined almost everywhere in and belongs td.(w). This allows us to introduce the
operatorM: LY(Q) — LY(w):

0
M) = / u(x', xy) dry. 5)

—D(x")

Obviously, if p € 2(Q) = {¢ € €°°(Q)/supp¢ is compact inR}, then we haveM (¢) €
D ().
Now we are ready to state the representation theorem.

Theorem 1. Assume hypothesd). Then the following assertions are equivalent

(1) F e Z'(Q)anddF /oxy = 0.
(2) There exists a unique distributidhe 2’ (w) such that

(F. 9) /)2 = (S M(@) g/ (). 2(w)» For all ¢ € Z(Q2). (6)

Proof. First assume assertion 2. It is straightforward that expression (6) defines a distri-
bution F € 2'(Q). To see tha®F/dxy = 0, observe that for alip € Z(Q) one has
M(0¢/0xy) =0 in w. Consequently, (6) gives

0 oF
] A
0xXN | 7/ @).9(Q) oxN |a@.9@

i.e.0F /oxy =0in2/'(Q).
The property 1= 2 is the tricky part, so we divide its proof into three steps.
Stepl: There exists € &' (w) such that for any compact skt C o

{ (F, (,D>h@/(g)’@(9) = (S, M((,D))h([/(w)!g(w), for all (OS] 9(9), (7)

with suppe C 12 x(—0g,0), Jx =essinfxk D>0

(here 0n,§ stands for the interior of a s@& c RV 1),

Let K C w be a compact set. Considg¢re Z(w) anda € Z(R) such that supp C Io<
and sup@ C (—dk, 0). Thus, the functiorp(x’, xy) = a(xy)¥(x) belongs toZ(Q). We
fix y and change; then, the linear mapping — (F, ay) is a distribution in%’' (-, 0),
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which is constant sinde does not depend upai;. Noting this constant aSx (1) we have
0
(F.a¥) g )9 = (/5 a(xN)dXN> Sk ().
—0K

Now, we fixa with fB(sK a(xy)dxy # 0, and changé. This yieldsSk € QZ’(I%), ie.

0
F, 74 7 - d S s o o .
(F.a¥) g )29 (/_5K a(xy) XN>( KV o a0

We can then apply Fubini’s theorem for distributiddg]: for any ¢ € 2(£2), such that
suppp C 1% x(—0k, 0) we have

0
<F, (p)@/(Q)’@(Q) = <SKa (/ 5 (p(xla XN) de)>
—O0K

7' (K).9(K)

It is easy to check that iK' C K then SK'@([?/) = Sk, this allows us to introduce the

distributionS € Z(w) defined bY(S, V) 5/ (1) () ={Sk » lﬁ)g,(l«%) g(é),where itisassumed

that supp) C 10< and this gives (7).

Step2: Proof of (6).

By repeating the same arguments given above, we easily find that (6) holds true whenever
Q€ 9(1% x(a, b)), wherelo( x(a,b) C Q, K C wis acompact set and||D| =) <a
< b <0 (the cas€| D|| 1= (w) = +oo being not excluded).

Now, letp € 2(Q) and consider the familyz c 2(2) of open cylinders irf2 given by

F ={B(x';r)x (a,b) C Q/x' € 0, r >0, —||D| ) <a<b<0},

whereB(x'; r) stands for the open ball of centered at’ with radiusr. SinceQ=|_Jg.~ F,
Z is an open covering of the compact set sgpphus suppy C UJJ-Zle, whereQ; =
B(x}; rj) x (aj, bj) € #,for someJ > 1,x;. € w,rj>0and—||D|rxw) <aj<bj<0.
We also puiq = RV \suppe. To the finite subfamiI){Qj}jf.zo we associate a partition of
unity of Q, {a,}]f.zo, i.e.[13]:

(1) «j € 2(RY),0<0;<1inRY, j=0,...,J;
(2) suppx; C Q;, j=0,...,J;
@) Yoz =1inQ.
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Notice thatxop = 0 in Q. Consequently, by applying expression (6) in every(@gt
j=1...,J, ityields

M\

(F,0) g @),22= 2 _{F:. %0)9'@),2@)

~.
Il
(=}

J
(F,0j®) g @),o0) = Z (S, M (2 P)) 5 (5. %(ew)

Il
.M\

~
Il
N

(S, M(%j0)) o' (), 7(w) = (s M(P)) 5/ (), 7(r)-

Il
AM\

~
I
o

Step3: The distributiorSis unique.

Let S1, S» € Z'(w) be two distributions satisfying (6), and pSt= S1 — S,. Then,
(S, M(9)) 5 (). 9y =0 forall o € 2(Q). Takey € 2(w) anda € Z(R) with suppa C
(=9,0), d =ess infyppy D, and [ a(xy) dxy = 1. Thus,ay € 2(Q), M(ay) = and

0=(S, M(ay)) 7 (), 7wy = (S V) 9 (), 2(cr)»  TOTAIY € ()
and therefores = 0. This ends the proof of Theorem 1]

Now, we study the regularity d8 with respect td-. To do that, we introduce the usual
first-order Sobolev spacég-7((Q), W&‘”(Q) given by

qu(m ={ve L‘f(Q)/w e L1(@QN}, 1<q< + oo,

‘f(Q) 7@ 1<y <+ oo,

~14'(Q) = dual space ofVg 4 (Q), 1/ +1/q' =1,
H1<Q) = Wh2(Q),

whereVuv = (0v/dx1, ..., dv/dxy)' is the gradient operator, all derivatives being taken

in the sense of d|str|but|ons It is well-known thml‘l(Q) Wl"(Q) are Banach spaces
provided with their standard norms, and al$6(Q), H (Q) are Hilbert spacefd].

Lemma 1. LetF € 2'(Q) and S € &' (w) satisfy(6). AssumeF € W—14'(Q). Then

S e W_l’q/(lg) for every compact set K C w. ©)

Moreover if w is bounded in some direction amgs inf, D > 0, thensS ¢ W*l*q/(w).

Proof. Let K C w be a compact sefx = ess infx D > 0. Takea € Z(R) such that
suppz C (—dg, 0) andfféK a(xy) dxy=1.Accordingto (6), forany € (w), suppy C

e}
K, we have
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whence,

|<S7 lp)g})’((g),g)((g)lg “F”W—lq/(Q)”al//“Wé-‘i(Q)

On the other hand,

q < \V/ q+/ 4 ‘Ig q / \v/ q+/ q
i, [ 10000+ [ <l ([, 19010+ [, 0

and owing to Poincaré’s inequality, we finally deduce
o
|<S7 lp);@’(w),g(a))lg CK”lp”qu ) for a'” 'ﬁb € 9’(I<)7
1K)

whereCg = Ak |lal| wioo®) | F llyy-1.4 @ (A is a constant coming from Poincaré’s inequal-

ity in 1?). From a density argument, we obtain the desired regulﬁr'ﬁnyl’q/(lg).

Finally, if v is bounded in some direction, then the constagtmay be taken independent
of Kand if we also assume that ess nb > 0, then the functioa can be taken independent
of K. These two facts give directly the global regulaty w4 (w).

Remark. Letm> 2 integer and put

Wmd(Q) = {v e W14(Q)/Vv e WL @)V}, 1< g< + oo,
_Wm.q

W (Q) = @(Q)W (Q), ISg <+ oo,

w4 (Q) = dual space oy 1(Q), 1/q+1/q'=1.

It is very easy to check the following generalization of Lemma ¥ & W—"-4'(Q) then

S e W*’”*q/(lo() for every compact sek C

and if w is bounded in some direction and ess,ji > 0, thenS ¢ W""vq’(w).

3. Some applications of the representation theorem

There are some mathematical models in which the unknowh— RV~ Q like in
(2), is subject to a non-local constraint of the fovihr M (1) =0 in w, whereM () is given
in (5), and the operatdv’ refers to th& N — 1)-gradient operator with respect to thie— 1
first variablesxy, ..., xy_1, and sovV’ - v =0 is the divergence with respect to théée- 1
variables. Though this is a non-local constraint, it is still linear and, therefore, it is quite
natural to search for solutions of such models in some space of théfaznX /V'- M (u)=0
in w}, whereXis a suitable Banach space. The hydrostatic approximation of Navier—Stokes
equations is an example of such a mofBl6,9-11,14] The hydrostatic approximation
is a general model arising in oceanography for the description of the circulation of water
in oceans and lakes. Taking into account only the essential unknowns, i.e. the horizontal
velocity fieldu: @ c R® — R? and the surface pressupg: @ C R? — R, the model, at
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climatic time scales, becomes

a ~2 .
(u-Vu + W(u)(%‘g —vidu =2y + w4+ Vps=f inQ,

J. U, 3
V' -M@u)=0 ino, 9)
u=0 onr}, Vo 9;‘3 =gs onls.

>
0

HereN = 3, W(u) represents the vertical velocity. It is given by

0
W (u)(x1, X2, x3) = / V' u(xg, x2, O dC.
X3
The constants; > 0 andv, > 0 are the horizontal and vertical viscosity coefficients, re-
spectively (in practice, <v1). Also, yu' stands for the Coriolis acceleration terprbe-
ing a function depending upon the angular velocity of the earth and the latitude, whereas
ut = (up, —u1)". The boundary of? is split into two parts,

5Q=FSUF|3, FSZUJX{O}, szag\rs,

so thatl's is the sea surface ard, is the bottom basin together with (possible) sidewalls
or taluses. The right-hand sifles a forcing term taking into account the effects of salinity,
density or temperature, which are considered here decoupled from the governing equations
of the flow (9). Finally,gs is the wind stress.

As one can readily see, the natural space to search for the horizontal velocityi§eld

V={ve H(Q?/v=00nT}p, V' - M(v)=0inw},

which yields the following regularity for the vertical convection teldi7, 10}

W) ou o w4 (@2, forallg <2
0x3
Consequently, if the data are smooth enough, g.¢. H 1(Q)? andgs € H Y2(I's)?,
one may expect the regularipg € L9 (Q), for all ¢’ < 2[6,10]. Indeed, putting

2
d 0
F=f—@ V=W +vidu+ vy —g — yu*,
0x3 0x3

it can be shown thak € W=14'(Q)2 for all q' <2 and

(F, go)W_lwq/(Q)zYW&,q(Q)z =0 forallgp e v (Q),

where 7"(Q) is defined in (3). Therefore, in order to retrieve the surface pressure term
V’ ps, we have to show thais is the Lagrange multiplier related to the non-local constraint
V'-M(¢)=0inw. Thisis equivalent to the derivation of a de Rham-like lemma involving this
non-local constraint. The next result gives the answer to this question. It is a generalization
of the one given if9] to more general domairfg, without the assumption on the existence

of a sidewall all alonglw, together with a non-Hilbert setting.
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We will make use of the spade"D/(w), 1<q’ <+ o0, given as

L‘g(w)={h:w+—> R// D|h|4’<+oo}.

Observe that € L‘g(w) if and only if 6h/0xy = 0 andh € L9 (Q) (in this contexth as
defined inQ2 is understood as the functign’, xy) € Q — h(x")).

Lemma 2. Letw be a connected and bounded sefifi 1, D € L>(w) satisfying(4),
andQ c R as given in(2). Let F € W14 (Q)¥~1. Then the following conditions are
equivalent

(1) (F, ¢>W_Lq/(Q)N_l,W&’q(.Q)N_l = Ofor all (NS V(Q)

(2) F does not depend upon theg-variable and there existgs € qu(;c(a)) (unigue up to
an additive constaftsuch thatF = V' ps. Moreover

(a) If wis Lipschitz continuous aness inf, D > 0 thenps € LY ().
(b) If Qis Lipschitz continuous theps € L%(w).

Proof. 2= 1. Letps € Ll’{;c(w) andg € 7 (Q), thenps € L%C(Q). Therefore,

(V'ps, @) w-Ld' (@N-1 wy (@M1

0
=—/QPSV/'(P=—/PS/ V"(/)(x’,xN)de.
0] —D(x")

Sincep € 7(Q), we have in particulap = 0 nearl', = 0Q\w x {0}, which yields
0 0
/ VoG xy)diy =V (/ p(x', xn) de) =V'-M(p)=0
—D(x’) —D(x’)

and thus
<V/Ps’ (/)> W—l,q’ (,Q)N*]-’Wél’q (Q)Nfl - 0

1 = 2. First of all, we show th&t is independent of ;. To do that we follow[9]: observe
that for allp € 2(@)¥ = one hasv’ - M(¢) = M(V’ - ¢). Now letp € 2(2)V~1, then
M(0¢/0xy) =0inw so thatop/dxy € ¥ (Q); consequently,

F
o2}
(%CN (’5xN
i.e.0F/0xy = 0. This means that th&¥ — 1 components of are under the conditions of
Theorem 1 and Lemma 1: there exists a uni§ue Z'(Q)N ! satisfying (6) and (8).

Now, we show the following assertion: There exigtse Ll’{)c(w), uniguely determined
up to an additive constant, such that= V’ps. To do that, we consider the increasing
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sequence of compact sets
! H / 1
Cpn= {x € w/dist(x’, dw)> —} ., m>=mo,
m

wheremop> 1 is chosen so thaf,, # ¢ and is connected (this is possible sinoeis
connected). Sinc€,, may not bear a regular boundary, we consider another sequence of
compact setgk ;) ,,> m, sSuch that

Cn C Km C Cpy1, and
K, is connected and Lipschitz-continuous, formalk mg.

For everym > mo, we take), suppy C Igm thenaas in the proof of Lemma 1, and assume
also thatV’ -y =0 in . Then,ay € 77 (2) and owing to (6) and the hypothesis Bnpwe
have

0= (F, alp)acz/(Q)N—lqg(Q)N—l = (S, lp>9/((u)N—1’g(w)N—l

and consequently,
(S W) gVt g1 =0, forally € Z(K)N1, suchthatv’ -y =0in K .

We can then apply de Rham'’s lemmasae W‘l’q/(ltém)j"‘1 [2]: there exists a function
Pm € L‘/([‘%m) such that§ = V'p,, in Io{m. SinceK,, is connected, thip,, is uniquely
determined up to an additive constant, and we can choose it sg,thap,,,1 in Io(m forall

m> mg. This allows us to defings € Lf’o/c(w) so thatps = p,, in fém and clearlyS = V' pg
in w.
Now letp € Z2(2)"~1; owing to (6), we have

<F, (P)g/(Q)Nfl’g(Q)N*l:<v/p59 M(@))Q’(w)Nfl,g/}(w)Nil

0
= —/ psV' - </ w(x’,XN)dXN)
—D(x")

w
0
= - Ps/ V'@, xy) dxy
o J-DuH

0
= —// psV' - o(x', xy) dxy
wJ—D(x')

= — /Q PsV/ : (P(x/» xn)dxy = (V/Ps, QD)B@’(Q)N—]-’D(Z(Q)N—L

whenceF = V' ps in the sense of distributions.
In order to show 2(a), observe that if ess i > 0 then, according to Lemma §,

W14 ()N 1, Therefore ps € quo,c(w) is such thats =V’ ps € W~14"(w)¥~1; and since

we also assume that is a connected, bounded and Lipschitz-continuous set, we deduce
the global regularityps € LY (w) [2].
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Finally, assume tha® is Lipschitz continuous. Sincgs Lf’o/c(cu), it is straightforward

thatps € Ll‘{)/C(Q).This property together with’ ps=F € W14 (Q)¥N~1 and the regularity
of Qimplies thatf2] ps € L4 (), and sinceps does not depend upany, this is equivalent
tops e L%(w). This shows 2(b) and ends the proof of Lemma 2]

Remark. If wis Lipschitz continuous and has a sidewall all alongu, i.e. ess inf, D > 0,
then Lemma 2 tells us that € L7 (w), and this is true even R is not Lipschitz continuous.
Therefore, Lemma 2 is a generalization of the result appearifd] imhere it was assumed
thatg’ = 2 andQ is Lipschitz continuous.

Remark. Inthe case of adomai@thatis Lipschitz continuous (with or without a sidewall),
Lemma 2 is equivalent to the following reduced inf-sup condition: there efist® such
that

;/)pV-M(v)

q/
IIPIIL%D((U)é B sup , forallpeL?,.

UEWOLII(Q) ”v”W(:JLq(Q)

whereL%’0 ={g e L%(w)/ /., Dg=0}. This reduced inf-sup condition was already shown
in [6], and its proof is based in the application of a version of de Rham’s lemnta in
Notice that we have applied de Rham’s lemmaiafter deriving the relation (6) linking a
distribution inQ with one inw.

Remark. The results described in this work have been applied @} in the study of a
modified version of the hydrostatic approximation: the differential equations for the hori-
zontal velocity are perturbed with certain monotone expressions; this approach has led to
another proof of the existence of a solution to problem (9), and to analyze a one-equation
hydrostatic turbulence model.
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