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Abstract

We study distributions not depending on thexN -variable in an open set� ⊂ RN . It is assumed
that� may be described through a very general functionD:� �→ R, where� ⊂ RN−1 is any open
set. We give a representation theorem for this kind of distributions and show how they are related
to distributions defined in�. A direct application of this theorem is the derivation of a de Rham-
like lemma with a non-local constraint. These results can be applied to the analysis of hydrostatic
approximation of Navier–Stokes equations.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

AdistributionF ∈ D′(RN) is said to be independent ofxi , 1� i�N , (x1, . . . , xN) ∈ RN ,
if �F/�xi =0 inD′(RN). The structure of distributions independent of one of the variables
is well-known since the time they were introduced by Schwartz at the end of the 1940s
[12]. Indeed, ifF ∈ D′(RN) does not depend on, say, the last variablexN , then there exists
S ∈ D′(RN−1) such thatF = S ⊗ 1xN , i.e. for all � ∈ D(RN−1), for all � ∈ D(R),
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and�(x1, . . . , xN−1, xN) = �(x1, . . . , xN−1)�(xN), the following equality holds:

〈F,�〉D′(RN)D(RN)
= 〈S,�〉D′(RN−1)D(RN−1)

∫
R

�(xN)dxN

and thus, according to Fubini’s theorem for distributions, for all� ∈ D(RN) one has

〈F,�〉D′(RN)D(RN)
=

〈
S,

∫
R

�(x1, . . . , xN−1, xN)dxN

〉
D′(RN−1)D(RN−1)

.

This expression also applies to open cylinders� = � × (a, b) ⊂ RN , where� ⊂ RN−1 is
an open domain and−∞� a <b� + ∞: if F ∈ D′(�) does not depend onxN ∈ (a, b),
then there existsS ∈ D′(�) such that, for all� ∈ D(�), one has[8]

〈F,�〉D′(�)D(�) =
〈
S,

∫ b

a

�(x1, . . . , xN−1, xN)dxN

〉
D′(�)D(�)

. (1)

Weobserve that expression (1) relates a distributionF in the cylinder�with a distribution
Sdefined on the base of the cylinder� under the only assumption thatF is independent of
the variable describing the axis of the cylinder.
The goal of this paper is to give a version of this result to a more general class of open

sets, i.e.

� = {(x′, xN) ∈ RN/x′ ∈ �,−D(x′)< xN <0}, (2)

where� ⊂ RN−1 is an arbitrary open domain,D:� �→ R, x′ = (x1, . . . , xN−1), and
D(x′)>0, for all x′ ∈ �, and to apply it to the derivation of a de Rham-like lemma which
characterizes all distributions vanishing on the spaceV(�) ⊂ D(�)N−1 defined as

V(�) =
{
� ∈ D(�)N−1/∇′ ·

(∫ 0

−D(x′)
�(x′, xN)dxN

)
= 0 in�

}
, (3)

where∇′· is the divergence operator with respect to the variablesx1 to xN−1. This kind of
results can be applied in the study of some mathematical models arising in oceanography,
for instance, in the analysis of the hydrostatic approximation of Navier–Stokes equations
[9,10]; in this case,N = 3,� stands for a portion of the ocean or lake,� × {0} is the sea
surface, andD is the depth function describing the bathymetry of the sea bottom.

2. The representation theorem

Weconsider� ⊂ RN−1 an arbitrary open domain, and ameasurable functionD:� �→ R

such that the set� ⊂ RN as defined in (2) is open.We will make the following assumption
onD:

D(x′)>0 in �, and for every compact setK ⊂ �,ess infK D>0. (4)

Remark. In this setting, the functionD need not be continuous in�. Indeed, it may have
jumps along some curves in�.
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Remark. Notice that if ess inf� D>0, then� has a sidewall all along��. Under this
additional assumption, the analysis below simplifies. This was the case considered in[9] in
the analysis of the functional spaces involved in the study of the hydrostatic approximation.
Observe that (4) doesnot exclude the caseess inf� D=0, leading tomoregeneral situations.

Let u ∈ L1(�). Owing to Fubini’s theorem, the function

x′ ∈ � �→
∫ 0

−D(x′)
u(x′, xN)dxN

is defined almost everywhere in� and belongs toL1(�). This allows us to introduce the
operatorM:L1(�) �→ L1(�):

M(u)(x′) =
∫ 0

−D(x′)
u(x′, xN)dxN . (5)

Obviously, if� ∈ D(�) = {� ∈ C∞(�)/supp� is compact in�}, then we haveM(�) ∈
D(�).
Now we are ready to state the representation theorem.

Theorem 1. Assume hypothesis(4).Then, the following assertions are equivalent:

(1) F ∈ D′(�) and�F/�xN = 0.
(2) There exists a unique distributionS ∈ D′(�) such that

〈F,�〉D′(�),D(�) = 〈S,M(�)〉D′(�),D(�), f or all � ∈ D(�). (6)

Proof. First assume assertion 2. It is straightforward that expression (6) defines a distri-
bution F ∈ D′(�). To see that�F/�xN = 0, observe that for all� ∈ D(�) one has
M(��/�xN) = 0 in�. Consequently, (6) gives

0=
〈
F,

��

�xN

〉
D′(�),D(�)

= −
〈

�F
�xN

,�
〉
D′(�),D(�)

,

i.e.�F/�xN = 0 inD′(�).
The property 1⇒ 2 is the tricky part, so we divide its proof into three steps.
Step1: There existsS ∈ D′(�) such that for any compact setK ⊂ �

{ 〈F,�〉D′(�),D(�) = 〈S,M(�)〉D′(�),D(�), for all � ∈ D(�),

with supp� ⊂ ◦
K ×(−�K,0), �K = ess infK D>0

(7)

(here on,
◦
B stands for the interior of a setB ⊂ RN−1).

LetK ⊂ � be a compact set. Consider� ∈ D(�) anda ∈ D(R) such that supp� ⊂ ◦
K

and suppa ⊂ (−�K,0). Thus, the function�(x′, xN) = a(xN)�(x′) belongs toD(�). We
fix � and changea; then, the linear mappinga �→ 〈F, a�〉 is a distribution inD′(−�K,0),
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which is constant sinceF does not depend uponxN . Noting this constant asSK(�)we have

〈F, a�〉D′(�),D(�) =
(∫ 0

−�K
a(xN)dxN

)
SK(�).

Now, we fixawith
∫ 0
−�K

a(xN)dxN �= 0, and change�. This yieldsSK ∈ D′(
◦
K), i.e.

〈F, a�〉D′(�),D(�) =
(∫ 0

−�K
a(xN)dxN

)
〈SK,�〉

D′(
◦
K),D(

◦
K)
.

We can then apply Fubini’s theorem for distributions[12]: for any� ∈ D(�), such that

supp� ⊂ ◦
K ×(−�K,0) we have

〈F,�〉D′(�),D(�) =
〈
SK,

(∫ 0

−�K
�(x′, xN)dxN

)〉
D′(

◦
K),D(

◦
K)

.

It is easy to check that ifK ′ ⊂ K thenSK |
D(

◦
K ′)

= SK ′ , this allows us to introduce the

distributionS ∈ D(�)definedby〈S,�〉D′(�),D(�)=〈SK,�〉
D′(

◦
K),D(

◦
K)
,where it is assumed

that supp� ⊂ ◦
K, and this gives (7).

Step2: Proof of (6).
By repeating the same arguments given above, we easily find that (6) holds true whenever

� ∈ D(
◦
K ×(a, b)), where

◦
K ×(a, b) ⊂ �, K ⊂ � is a compact set and−‖D‖L∞(�) < a

<b<0 (the case‖D‖L∞(�) = +∞ being not excluded).
Now, let� ∈ D(�) and consider the familyF ⊂ P(�) of open cylinders in� given by

F = {B(x′; r) × (a, b) ⊂ �/x′ ∈ �, r >0, −‖D‖L∞(�) < a <b<0},

whereB(x′; r) stands for the open ball of� centered atx′ with radiusr. Since�=⋃
F∈F F,

F is an open covering of the compact set supp�; thus supp� ⊂ ⋃J
j=1�j , where�j =

B(x′
j ; rj )× (aj , bj ) ∈ F, for someJ�1, x′

j ∈ �, rj >0 and−‖D‖L∞(�) < aj < bj <0.

We also put�0 = RN\supp�. To the finite subfamily{�j }Jj=0 we associate a partition of

unity of�, {�j }Jj=0, i.e. [13]:

(1) �j ∈ D(RN), 0� �j�1 inRN , j = 0, . . . , J ;
(2) supp�j ⊂ �j , j = 0, . . . , J ;
(3)

∑J
j=0 �j = 1 in�.
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Notice that�0� = 0 in �. Consequently, by applying expression (6) in every set�j ,
j = 1, . . . , J , it yields

〈F,�〉D′(�),D(�)=
J∑

j=0

〈F, �j�〉D′(�),D(�)

=
J∑

j=1

〈F, �j�〉D′(�),D(�) =
J∑

j=1

〈S,M(�j�)〉D′(�),D(�)

=
J∑

j=0

〈S,M(�j�)〉D′(�),D(�) = 〈S,M(�)〉D′(�),D(�).

Step3: The distributionS is unique.
Let S1, S2 ∈ D′(�) be two distributions satisfying (6), and putS = S1 − S2. Then,

〈S,M(�)〉D′(�),D(�) = 0 for all� ∈ D(�). Take� ∈ D(�) anda ∈ D(R) with suppa ⊂
(−�,0), � = ess infsupp� D, and

∫
R a(xN)dxN = 1. Thus,a� ∈ D(�),M(a�) = � and

0= 〈S,M(a�)〉D′(�),D(�) = 〈S,�〉D′(�),D(�), for all � ∈ D(�)

and thereforeS = 0. This ends the proof of Theorem 1.�

Now, we study the regularity ofSwith respect toF. To do that, we introduce the usual
first-order Sobolev spacesW1,q(�),W1,q

0 (�) given by




W1,q(�) = {v ∈ Lq(�)/∇v ∈ Lq(�)N }, 1� q� + ∞,

W
1,q
0 (�) = D(�)

W1,q (�)
, 1� q < + ∞,

W−1,q ′
(�) = dual space ofW1,q

0 (�), 1/q + 1/q ′ = 1,
H 1(�) = W1,2(�),

where∇v = (�v/�x1, . . . , �v/�xN)T is the gradient operator, all derivatives being taken
in the sense of distributions. It is well-known thatW1,q(�), W1,q

0 (�) are Banach spaces
provided with their standard norms, and alsoH 1(�),H 1

0 (�) are Hilbert spaces[1].

Lemma 1. LetF ∈ D′(�) andS ∈ D′(�) satisfy(6).AssumeF ∈ W−1,q ′
(�). Then

S ∈ W−1,q ′
(

◦
K) f or every compact set K ⊂ �. (8)

Moreover, if � is bounded in some direction andess inf� D>0, thenS ∈ W−1,q ′
(�).

Proof. Let K ⊂ � be a compact set,�K = ess infK D>0. Takea ∈ D(R) such that
suppa ⊂ (−�K,0)and

∫ 0
−�K

a(xN)dxN=1.According to (6), for any� ∈ D(�), supp� ⊂
◦
K, we have

〈F, a�〉D′(�),D(�) = 〈S,�〉D′(�),D(�), for all � ∈ D(
◦
K)
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whence,

|〈S,�〉D′(�),D(�)|� ‖F‖
W−1,q′

(�)
‖a�‖

W
1,q
0 (�)

.

On the other hand,

‖a�‖q
W

1,q
0 (�)

�
∫
�

|a∇�|q +
∫
�

|a′�|q� ‖a‖q
W1,∞(R)

(∫
◦
K

|∇�|q +
∫

◦
K

|�|q
)

and owing to Poincaré’s inequality, we finally deduce

|〈S,�〉D′(�),D(�)|�CK‖�‖
W

1,q
0 (

◦
K)
, for all � ∈ D(

◦
K),

whereCK =�K‖a‖W1,∞(R)‖F‖
W−1,q′

(�)
(�K is a constant coming fromPoincaré’s inequal-

ity in
◦
K). From a density argument, we obtain the desired regularityS ∈ W−1,q ′

(
◦
K).

Finally, if� is bounded in somedirection, then theconstants�K maybe taken independent
ofK and if we also assume that ess inf� D>0, then the functionacan be taken independent
of K. These two facts give directly the global regularityS ∈ W−1,q ′

(�).

Remark. Letm�2 integer and put


Wm,q(�) = {v ∈ Wm−1,q(�)/∇v ∈ Wm−1,q(�)N }, 1� q� + ∞,

W
m,q
0 (�) = D(�)

Wm,q (�)
, 1� q < + ∞,

W−m,q ′
(�) = dual space ofWm,q

0 (�), 1/q + 1/q ′ = 1.

It is very easy to check the following generalization of Lemma 1: IfF ∈ W−m,q ′
(�) then

S ∈ W−m,q ′
(

◦
K) for every compact setK ⊂ �

and if� is bounded in some direction and ess inf� D>0, thenS ∈ W−m,q ′
(�).

3. Some applications of the representation theorem

There are some mathematical models in which the unknownu:� �→ RN−1, � like in
(2), is subject to a non-local constraint of the form∇′ ·M(u)=0 in�, whereM(u) is given
in (5), and the operator∇′ refers to the(N −1)-gradient operator with respect to theN −1
first variablesx1, . . . , xN−1, and so∇′ · v = 0 is the divergence with respect to theseN − 1
variables. Though this is a non-local constraint, it is still linear and, therefore, it is quite
natural to search for solutionsof suchmodels in somespaceof the form{v ∈ X/∇′·M(u)=0
in�}, whereX is a suitable Banach space. The hydrostatic approximation of Navier–Stokes
equations is an example of such a model[3–6,9–11,14]. The hydrostatic approximation
is a general model arising in oceanography for the description of the circulation of water
in oceans and lakes. Taking into account only the essential unknowns, i.e. the horizontal
velocity fieldu:� ⊂ R3 �→ R2 and the surface pressureps:� ⊂ R2 �→ R, the model, at
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climatic time scales, becomes


(u · ∇′)u + W(u) �u

�x3
− 	1
′u − 	2 �2u

�x23
+ �u⊥ + ∇′ps= f in �,

∇′ · M(u) = 0 in�,

u = 0 on�b, 	2 �u
�x3

= gs on�s.

(9)

HereN = 3,W(u) represents the vertical velocity. It is given by

W(u)(x1, x2, x3) =
∫ 0

x3

∇′ · u(x1, x2, 
)d
.

The constants	1>0 and	2>0 are the horizontal and vertical viscosity coefficients, re-
spectively (in practice	2>	1). Also, �u⊥ stands for the Coriolis acceleration term,� be-
ing a function depending upon the angular velocity of the earth and the latitude, whereas
u⊥ = (u2,−u1)

T. The boundary of� is split into two parts,

�� = �s∪ �b, �s= � × {0}, �b = ��\�s,

so that�s is the sea surface and�b is the bottom basin together with (possible) sidewalls
or taluses. The right-hand sidef is a forcing term taking into account the effects of salinity,
density or temperature, which are considered here decoupled from the governing equations
of the flow (9). Finally,gs is the wind stress.
As one can readily see, the natural space to search for the horizontal velocity fieldu is

V = {v ∈ H 1(�)2/v = 0 on�b,∇′ · M(v) = 0 in�},
which yields the following regularity for the vertical convection term[4,7,10]:

W(u)
�u
�x3

∈ W−1,q ′
(�)2, for all q ′ <2.

Consequently, if the data are smooth enough, e.g.f ∈ H−1(�)2 andgs ∈ H−1/2(�s)
2,

one may expect the regularityps ∈ Lq ′
(�), for all q ′ <2 [6,10]. Indeed, putting

F = f − (u · ∇′)u − W(u)
�u
�x3

+ 	1
′u + 	2
�2u
�x23

− �u⊥,

it can be shown thatF ∈ W−1,q ′
(�)2 for all q ′ <2 and

〈F,�〉
W−1,q′

(�)2,W
1,q
0 (�)2

= 0 for all� ∈ V(�),

whereV(�) is defined in (3). Therefore, in order to retrieve the surface pressure term
∇′ps, we have to show thatps is the Lagrange multiplier related to the non-local constraint
∇′·M(�)=0 in�.This is equivalent to thederivationof adeRham-like lemma involving this
non-local constraint. The next result gives the answer to this question. It is a generalization
of the one given in[9] to more general domains�, without the assumption on the existence
of a sidewall all along��, together with a non-Hilbert setting.
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We will make use of the spaceLq ′
D(�), 1<q ′ < + ∞, given as

L
q ′
D(�) =

{
h:� �→ R

/∫
�
D|h|q ′

< + ∞
}
.

Observe thath ∈ L
q ′
D(�) if and only if �h/�xN = 0 andh ∈ Lq ′

(�) (in this context,h as
defined in� is understood as the function(x′, xN) ∈ � �→ h(x′)).

Lemma 2. Let� be a connected and bounded set inRN−1, D ∈ L∞(�) satisfying(4),
and� ⊂ RN as given in(2). LetF ∈ W−1,q ′

(�)N−1. Then the following conditions are
equivalent:

(1) 〈F,�〉
W−1,q′

(�)N−1,W
1,q
0 (�)N−1 = 0 for all � ∈ V(�).

(2) F does not depend upon thexN -variable and there existsps ∈ L
q ′
loc(�) (unique up to

an additive constant) such thatF = ∇′ps.Moreover,

(a) If � is Lipschitz continuous andess inf� D>0 thenps ∈ Lq ′
(�).

(b) If � is Lipschitz continuous thenps ∈ L
q ′
D(�).

Proof. 2 ⇒ 1. Letps ∈ L
q ′
loc(�) and� ∈ V(�), thenps ∈ L

q ′
loc(�). Therefore,

〈∇′ps,�〉
W−1,q′

(�)N−1,W
1,q
0 (�)N−1

= −
∫
�
ps∇′ · � = −

∫
�
ps

∫ 0

−D(x′)
∇′ · �(x′, xN)dxN .

Since� ∈ V(�), we have in particular� = 0 near�b = ��\� × {0}, which yields
∫ 0

−D(x′)
∇′ · �(x′, xN)dxN = ∇′ ·

(∫ 0

−D(x′)
�(x′, xN)dxN

)
= ∇′ · M(�) = 0

and thus

〈∇′ps,�〉
W−1,q′

(�)N−1,W
1,q
0 (�)N−1 = 0.

1⇒ 2. First of all, we show thatF is independent ofxN . To do that we follow[9]: observe
that for all� ∈ D(�)N−1 one has∇′ · M(�) = M(∇′ · �). Now let� ∈ D(�)N−1, then
M(��/�xN) = 0 in� so that��/�xN ∈ V(�); consequently,

0=
〈
F,

��

�xN

〉
= −

〈
�F
�xN

,�
〉
,

i.e.�F/�xN = 0. This means that theN − 1 components ofF are under the conditions of
Theorem 1 and Lemma 1: there exists a uniqueS ∈ D′(�)N−1 satisfying (6) and (8).

Now, we show the following assertion: There existsps ∈ L
q ′
loc(�), uniquely determined

up to an additive constant, such thatS = ∇′ps. To do that, we consider the increasing
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sequence of compact sets

Cm =
{
x′ ∈ �/dist(x′, ��)� 1

m

}
, m�m0,

wherem0�1 is chosen so thatCm �= ∅ and is connected (this is possible since� is
connected). SinceCm may not bear a regular boundary, we consider another sequence of
compact sets(Km)m�m0 such that{

Cm ⊂ ◦
Km ⊂ Cm+1, and

Km is connected and Lipschitz-continuous, for allm�m0.

For everym�m0, we take�, supp� ⊂ ◦
Km, thenaas in the proof of Lemma 1, and assume

also that∇′ · � = 0 in�. Then,a� ∈ V(�) and owing to (6) and the hypothesis onF, we
have

0= 〈F, a�〉D′(�)N−1,D(�)N−1 = 〈S,�〉D′(�)N−1,D(�)N−1

and consequently,

〈S,�〉D′(�)N−1,D(�)N−1 = 0, for all � ∈ D(
◦
K )N−1, such that∇′ · � = 0 in

◦
K .

We can then apply de Rham’s lemma toS ∈ W−1,q ′
(

◦
Km)

N−1 [2]: there exists a function

pm ∈ Lq ′
(

◦
Km) such thatS = ∇′pm in

◦
Km. SinceKm is connected, thispm is uniquely

determined up to an additive constant, and we can choose it so thatpm=pm+1 in
◦
Km for all

m�m0. This allows us to defineps ∈ L
q ′
loc(�) so thatps=pm in

◦
Km and clearlyS = ∇′ps

in �.
Now let� ∈ D(�)N−1; owing to (6), we have

〈F,�〉D′(�)N−1,D(�)N−1=〈∇′ps,M(�)〉D′(�)N−1,D(�)N−1

= −
∫
�
ps∇′ ·

(∫ 0

−D(x′)
�(x′, xN)dxN

)

= −
∫
�
ps

∫ 0

−D(x′)
∇′ · �(x′, xN)dxN

= −
∫
�

∫ 0

−D(x′)
ps∇′ · �(x′, xN)dxN

= −
∫
�
ps∇′ · �(x′, xN)dxN = 〈∇′ps,�〉D′(�)N−1,D(�)N−1,

whenceF = ∇′ps in the sense of distributions.
In order to show 2(a), observe that if ess inf� D>0 then, according to Lemma 1,S ∈

W−1,q ′
(�)N−1. Therefore,ps ∈ L

q ′
loc(�) is such thatS=∇′ps ∈ W−1,q ′

(�)N−1; and since
we also assume that� is a connected, bounded and Lipschitz-continuous set, we deduce
the global regularityps ∈ Lq ′

(�) [2].
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Finally, assume that� is Lipschitz continuous. Sinceps ∈ L
q ′
loc(�), it is straightforward

thatps ∈ L
q ′
loc(�). This property togetherwith∇′ps=F ∈ W−1,q ′

(�)N−1 and the regularity
of� implies that[2] ps ∈ Lq ′

(�), and sinceps does not depend uponxN , this is equivalent

to ps ∈ L
q ′
D(�). This shows 2(b) and ends the proof of Lemma 2.�

Remark. If � is Lipschitz continuousand�hasasidewall all along��, i.e. ess inf� D>0,
then Lemma2 tells us thatps ∈ Lq ′

(�), and this is true even if� is not Lipschitz continuous.
Therefore, Lemma 2 is a generalization of the result appearing in[9] where it was assumed
thatq ′ = 2 and� is Lipschitz continuous.

Remark. In the caseof a domain� that is Lipschitz continuous (with orwithout a sidewall),
Lemma 2 is equivalent to the following reduced inf-sup condition: there exists�>0 such
that

‖p‖
L
q′
D,0(�)

�� sup
v∈W1,q

0 (�)

∫
� p∇ · M(v)

‖v‖
W

1,q
0 (�)

, for all p ∈ L
q ′
D,0,

whereLq ′
D,0={g ∈ L

q ′
D(�)/

∫
� Dg=0}. This reduced inf-sup condition was already shown

in [6], and its proof is based in the application of a version of de Rham’s lemma in�.
Notice that we have applied de Rham’s lemma in� after deriving the relation (6) linking a
distribution in� with one in�.

Remark. The results described in this work have been applied in[10] in the study of a
modified version of the hydrostatic approximation: the differential equations for the hori-
zontal velocity are perturbed with certain monotone expressions; this approach has led to
another proof of the existence of a solution to problem (9), and to analyze a one-equation
hydrostatic turbulence model.
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