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An independent components analysis algorithm is applied to extract

vibratory signals generated by termites from background noise. Signals

from a microphone in uniform and Gaussian noise, were taken as sensor

outputs. Bispectrum is proposed as a higher-order statistic to character-

ise time series. Experiments prove that detection and characterisation

can be performed successfully even with low signal-to-noise ratio

signals.

Introduction: The costs of the harm caused by termites could be

reduced through earlier detection. Detection is also important because

environmental laws are becoming more restrictive with termiticides.

Besides, only about 25% of the affected structure is accessible [1].

New techniques have been developed to gain accessibility.

Acoustic signals produced when wood fibres are broken by termites

can be monitored using acoustic emission (AE) sensors, targeting

infestations by means of spectral and temporal analysis. Their drawback

is the relative high cost and biophysical limitations.

The aim in this Letter consists of using higher-order statistics (HOS)

for a twofold purpose. First, an independent components analysis (ICA)

cumulant-based algorithm is used to separate alarm signals from

additive stationary noise. This could be the basis of separating

low-level termite signals from urban noise using cheap equipment.

Secondly, the bispectrum has been applied to obtain an improved

characterisation of emissions in the frequency domain.

A previous estimation of the power spectrum of termite emissions

was developed using a seismic accelerometer, with the aim of getting a

biological reference. Data were acquired in Málaga (Spain), in subter-

ranean wood structures and roots.

Acoustic detection of termites: characteristics and devices: When

disturbed in their galleries, soldiers produce vibratory signals by

drumming their heads against the substratum [1]. The signals consist

of pulse trains with pulse repetition rates in the range of 10–25 Hz,

with burst rates around 500–1000 ms, depending on the species [1].

The amplitudes of signals are highly variable and depend on the wood

and strength of the taps. Although these vibratory signals have

distinctive time instances it is difficult to detect them in a noisy

environment. A variety of signal processing methods have been used

in similar situations in other fields of science and technology [1–6].

They include statistical, spectral and time-frequency analysis

combined with wavelets. They are all based on energy conservation,

being only useful for finding predominant information. As a conse-

quence, low signal-to-noise ratio sources cannot be identified success-

fully. Spurious events of interest, like pulse-like events, are buried.

HOS and ICA bring a different strategy in dealing with source

separation and identification of non-Gaussian random processes.

ICA model, cumulants and polyspectra: Blind source separation

(BSS) by ICA is receiving attention because of its numerous applica-

tions in many fields such as speech recognition and medicine [2, 6].

Let s(t)¼ [s1(t), s2(t), . . . , sn(t)]
0 be the vector of unknown sources,

where the superscript represents transpose. The known mixtures are

modelled by

xðtÞ ¼ AsðtÞ ð1Þ

where x(t)¼ [x1(t), x2(t), . . . , xm(t)]0 is the vector of observations

and A¼ [ai, j]2<
m� n is the unknown mixing matrix, modelling the

environment in which signals are mixed, transmitted and measured. We

assume that A is a non-singular n� n square matrix. The goal of

ICA is to find an n�m separating matrix B such that it extracts source

signals via

ŝs ¼ yðtÞ ¼ BxðtÞ ¼ BAsðtÞ ð2Þ

where y(t)¼ [y1(t), y2(t), . . . , yn(t)]
0 is the separated source vector which

is an estimator of the original vector of sources [2–4]. If the complete

determination of the mixing matrix A were possible, BA would be the

identity.

Cumulants and polyspectra reveal information about amplitude and

phase, whereas second-order statistics are phase-blind [2–6]. For

example, the fourth-order cumulant of a set of variables is given by:

Cumðx1; x2; x3; x4Þ ¼ Efx1x2x3x4g � Efx1x2gEfx3x4g � Efx1x3g

� Efx2x4g � Efx1x4gEfx2x3g ð3Þ

Let {x(t)} be a r th-order stationary random process. The r th-order

cumulant is defined as the joint r th-order cumulant of the random

variables x(t), x(tþ t1), . . . , x(tþ tr�1):

Cr;xðT1; T2; . . . ; Tr�1Þ ¼ Cum½xðtÞ; xðt þ T1Þ; . . . ; xðt þ Tr�1Þ� ð4Þ

The higher-order spectra are usually defined in terms of the r th-order

cumulants as their (r� 1)-dimensional Fourier transforms

Sr;xðf1; f2; . . . ; fr�1Þ ¼
Pt1¼þ1

t1¼�1

� � �
Ptr�1¼þ1

tr�1¼�1

Cr;xðT1; T2; . . . ; Tr�1Þ

� exp½�j2pðf1T1 þ f2T2 þ � � � þ fr�1Tr�1Þ� ð5Þ

The special polyspectra derived from (5) are power spectrum (r¼ 2),

bispectrum (r¼ 3) and trispectrum (r¼ 4). To extract useful informa-

tion one-dimensional slices of cumulant sequences and polyspectra are

used in non-Gaussian stationary processes.

ICA algorithm: Separation of the sources can be developed using a

contrast function based on the entropy of the outputs [2]. Using this

function it can be shown [2, 4] that the separating matrix can be

obtained by means of the recurrent equation

Bðhþ1Þ ¼ bI þ mðhÞðC1;b
y;y S

b
y � I ÞcBðhÞ ð6Þ

where Sy
b is the matrix of the signs of the output cumulants. Equation

(7) can be interpreted as a quasi-Newton algorithm of the cumulant

matrix Cy,y
1,b. The learning rate m(h) is described in [4]. Convergence of

(6) is reached if the matrix Cy,y
1,bSy

b tends to the identity.

Fig. 1 Sources and their mixtures

Horizontal units 1=96000, s

Results: A low-cost microphone, Ariston CME6 model, with a

sensitivity of 62 dB and a bandwidth of 100 Hz to 8 kHz was

connected to the sound card of a portable computer. Sources 1 and

2 consist of two zero-mean normalised bursts. The third and fourth

sources consist of two uniform distributed noise signals with enough

amplitude to mask the burst. The elements of the 4� 4 mixing matrix

are chosen from uniformly distributed random numbers between 0

and 1. A comparison between the impulse response of the acceler-

ometer (KB12V, MMF) and the spectrum of one impulse in a burst

was performed. Significant drumming responses are produced over

the range 200 Hz to 4 kHz and the carrier frequency is around

2600 Hz [1, 2]. The spectrum is not flat against frequency as one

would expect for a pulse-like event. Fig. 1 shows the original sources

and the mixtures, which give very little information about the original

signals. With the sources, a number of differences are found. First, the

carrier in the spectra of the separated signals, y1(t) and y2(t), matches
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the carrier frequency in the spectra of the impulsive response of the

accelerometer.

To provide some insight about the power of the higher-order statistics

for characterisation purposes, ten replications of signal-plus-white

Gaussian noise were generated (SNR¼ 0 dB). The average diagonal

bispectrum is shown in Fig. 2. We observe very sharp peaks of the

energy, concentrated in a narrow range of frequencies. These one-

diagonal measures underlie information concerning the phase coupling

of harmonics at integer multiples of the fundamental one.

Fig. 2 Diagonal average bispectrum of masked alarm signals

Conclusions: This work shows that the ICA algorithm separates

sources with small energy levels in comparison to the background

noise. This is explained by the statistical independence basis, regard-

less of the energy associated to each frequency component. Results of

the spectra lead us conclude that the separation has been performed

correctly, because the same spectral shape as the accelerometer

response is outlined. In this stage we have proved the validity of

ICA over a pre-processed set of signals. A time-domain characterisa-

tion is enough. We have also presented a HOS-based method of

characterisation of the vibratory signals. Application of the polyspec-

tra of the bispectra has enhanced the characterisation of the data

sequences in Gaussian noise.
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J.J.G. de la Rosa and J.M. Górriz (Electronics Instrumentation

Research Group, Engineering School of Algeciras, University of

Cádiz Avda, Ramón Puyol S=N, Algeciras, Cádiz 11202, Spain)

I. Lloret (Department of Computer Science, Engineering School of

Algeciras, University of Cádiz Avda, Ramón Puyol S=N, Algeciras,
Cádiz 11202, Spain)

C.G. Puntonet (Department of Architecture and Computers Technol-

ogy, University of Granada, ESII C=Periodista Daniel Saucedo,

Granada 18071, Spain)

References

1 Robbins, W.P., Mueller, R.K., Schaal, T., and Ebeling, T.: ‘Characteristics
of acoustic emission signals generated by termite activity in wood’. IEEE
Ultrasonic Symp., Orlando, FL, USA, 1991, pp. 1047–1051

2 Puntonet, C.G., and Mansour, A.: ‘Blind separation of sources using
density estimation and simulated annealing’, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 2001, E84-A

3 Chambers, J.A., Jafari, M.J., and McLaughlin, S.: ‘Variable step-size
EASI algorithm for sequential blind source separation’, Electron. Lett.,
2004, 40, (6), pp. 393–394
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