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Abstract. In this paper, we give the explicit construction of certain components of
the space of holomorphic foliations of codimension one, in complex projective spaces.
These components are associated to some algebraic representations of the affine Lie
algebra aff(C). Some of them, the so-called exceptional or Klein–Lie components, are
rigid in the sense that all generic foliations in the component are equivalent (Example 1).
In particular, we obtain rigid foliations of all degrees. Some generalizations and open
problems are given at the end of §1.

1. Introduction
It is known that the space F(ν, n) of singular holomorphic codimension one foliations of
degree ν ≥ 0 on CP(n), n ≥ 3, can be considered as an algebraic subset of the space
of 1-forms on Cn+1 whose coefficients are homogeneous polynomials of degree ν + 1
(cf. [2, 4–6]). Some of the irreducible components of this algebraic subset have been
described: for example, the logarithmic components, which correspond to foliations
defined by closed meromorphic 1-forms (cf. [2]). Other components are the rational
(cf. [5]) and the pull-back components (cf. [6]). For ν= 0, 1, 2 the complete decomposition
of F(ν, n) in irreducible components was obtained in [5].

In this paper, we present new components of F(ν, n), n ≥ 3, related with some special
representations of the affine Lie algebra aff(C) := {e1, e2, [e1, e2] = e2} in the algebra of
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polynomial vector fields of an affine chart C3 ⊂ CP(3). These new components include
as a particular case the ‘exceptional component’ of F(2, n), described in [5].

To obtain our result we follow three steps.
(1) We construct families of foliations FP ⊂ F(ν, 3), where P denotes a discrete

invariant, arising from representations of the affine algebra.
(2) We find sufficient conditions in order to prove stability under deformations of some

of these families, i.e. we prove that for certain values of P the deformation of a
generic foliation F ∈ FP is still a foliation in FP.

(3) We get codimension one foliations in CP(n), n ≥ 4, by pull-back of the foliations
just constructed and prove that we also have irreducible components in F(ν, n).

In the first step the families are geometrically described. To do that, we consider the so-
called Klein–Lie curves. They are characterized by the fact of being the rational projective
curves fixed by an infinite group of projective automorphism. In CP(3) such curves, up
to an automorphism in PGL(4,C), can be parameterized by �(t : s) = (tp : tq sp−q :
tr sp−r : sp), where 1 ≤ r < q < p are positive integers with gcd(p, q, r) = 1.

For each � �= 0 such that � + r ∈ {0} ∪ N, we have a representation of the affine Lie
algebra ρ� : aff(C) → X(C), determined by the two vector fields s� := (1/�)t (∂/∂t), and
x� := t�+1(∂/∂t). Consider the linear semi-simple vector field on C3

S = px
∂

∂x
+ qy

∂

∂y
+ rz

∂

∂z
. (1)

Suppose that there is another polynomial vector field X on C3 such that [S,X] = �X, and
so that

γ∗(s�) = 1

�
S(γ (t)), γ∗(x�) = X(γ (t)),

where γ (t) = (tp, tq , tr ) is the affine curve � ∩ C3. Then the algebraic foliation
F = F(S,X) on C3 defined by the 1-form � = iSiX(dz1 ∧ dz2 ∧ dz3) is associated
to a representation of the affine algebra in the algebra of polynomial vector fields in C3,
and it can be extended to a foliation on CP(3) of certain degree ν.

We explicitly give several examples in §2, all in the case r = 1. Note also that both s�
and x� are complete vector fields on C just in the case � = −1. This is what happens
in Example 1, where S and X are complete and the flow of S is periodic: both are
necessary conditions for the existence of an action of the affine group on C3 associated
to the foliation.

We define

F((p, q, r); �, ν) := {F ∈ F(ν, 3) | F = F(S,X) in some affine chart}
and we show that they are irreducible subvarieties of F(ν, 3). We also show that if
F ∈ F((p, q, r); �, ν) then the tangent sheaf TF is isomorphic to O ⊕ O(2 − ν).

In order to carry out the second step, we need some technical results. Let us first give
some definitions.

Definition 1. Let ω be an integrable 1-form defined in a neighborhood of p ∈ C3. We say
that p is a generalized Kupka (GK) singularity of ω if ωp = 0 and either dωp �= 0 or p is
an isolated zero of dω.
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The local structure of a foliation near a GK singularity is well known. When dωp �= 0
it is of Kupka type and it is locally the product of two foliations: a singular one in
dimension two and a non-singular one of dimension one (cf. [10, 15]). When p is an
isolated singularity of dω, the singularity is logarithmic, degenerate or quasi-homogeneous
(cf. possibilities 2a, 2b and 2c and Theorem A of §2.1 and [4] and [12]).

We also prove that GK singularities are stable under deformations (cf. Proposition 1).

Definition 2. A codimension one holomorphic foliation F in a complex three manifoldM
is GK if all the singularities of F are GK.

We show, as a consequence of the stability of GK singularities, that GK foliations are
stable under deformations. In fact, we first note that the local structure of GK singularities
implies that the analytic tangent sheaf of a GK foliation is locally free. Using well-known
results on holomorphic vector bundle theory (Theorem B), we can prove the following
theorem.

THEOREM 1. Suppose that F((p, q, r); �; ν) contains some GK foliation. Then
F((p, q, r); �; ν) is an irreducible component of F(ν, 3).

The families of foliations of Example 1 in §2 provide irreducible components of
F(ν, 3), ν ≥ 2. As we will see, these families correspond to F((ν2+ν+1, ν+1, 1); −1; ν)
and all of them contain GK foliations. In fact, any component like that is the closure of an
orbit of the natural action of PGL(4,C) on F(ν, 3).

On the other hand, for each p ≥ 3, the foliations in the family F((p, 2, 1); −1;p)
are never GK, so that Theorem 1 does not hold in this case. In fact, as we will see
in §2.2, any foliation in F((p, q, 1); −1;p) has a meromorphic first integral, which in
the case of F((p, 2, 1); −1;p) can be written in homogeneous coordinates of CP(3) as
f p/g2, where f and g are homogeneous polynomials, dg(f ) = 2 and dg(g) = p.
In the notation of [5], such a foliation belongs to R(2, p) ⊂ F(p, 3), which is an
irreducible (rational) component of F(p, 3) (cf. [5]). On the other hand, it is not very
difficult to prove that a generic foliation in R(2, p) has no quasi-homogenous singularity.
Hence, F((p, 2, 1); −1;p) is not an irreducible component of F(p, 3), if p ≥ 3 (see also
Remark 4).

Theorem 3 states that given (p, q, r) positive integers such that p > q > r , the
set {(�, ν)} such that the family F((p, q, r); �; ν) contains some GK foliation is finite.
This motivates the following problem.

Problem 1. Given three positive integers p > q > r ≥ 1, are there (�, ν) such that
F((p, q, r); �; ν) contains a GK foliation?

The examples in §2.2 are GK foliations in CP(3), all of them belonging to
some F((p, q, r); �; ν). Consequently, the tangent sheaf for these examples splits.
This motivates the following questions.

Problem 2. Is it true that TF splits for any GK foliation F on CP(3)? More generally,
let F be a codimension one foliation on CP(3) such that for any p ∈ CP(3) the sheaf of
germs of vector fields at p tangent to F is free with two generators. Does TF split?
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We observe that all examples that we have of GK foliations on CP(3) have at most two
quasi-homogeneous singularities. A natural question is the following.

Problem 3. Are there GK foliations on CP(3) with more than two quasi-homogeneous
singularities?

Finally, concerning the third step, in §3.2 we consider foliations on CP(n), n ≥ 4, which
are pull-backs of GK foliations on CP(3) by a generic linear rational map f : CP(n) −→
CP(3). Denote by F((p, q, r); �; ν; n) ⊂ F(ν, n) the set of foliations so obtained from
F((p, q, r), �, ν),

F((p, q, r); �; ν; n) := {F | F = f ∗G,G ∈ F((p, q, r), �, ν)}.
We prove the following.

THEOREM 2. Let F be a foliation on CP(n), n ≥ 4 and i : CP(3) → CP(n) be a linear
embedding of a 3-plane in a general position with respect to F . Suppose that G = i∗(F)
is a GK foliation in F(ν, 3) and that it is generated by two one-dimensional foliations
on CP(3). Then there exists a linear rational map f : CP(n) −→ CP(3) such that
F = f ∗(G). In particular, F((p, q, r); �; ν; n) is an irreducible component of F(ν, n).

2. Preliminary results and examples
Notation. Throughout the paper, we consider (z1 : z2 : z3 : z4) as homogeneous
coordinates in CP(3). The basic affine open subsets will be

E1 = {(1 : w : v : u) | (u, v,w) ∈ C3} E2 = {(r : 1 : s : t) | (r, s, t) ∈ C3},
E3 = {(r : s : 1 : t) | (r, s, t) ∈ C3} E0 = {(x : y : z : 1) | (x, y, z) ∈ C3}.

2.1. Generalized Kupka and quasi-homogeneous singularities. Let p ≥ q ≥ r > 0 be
relatively prime integers and S be the semi-simple vector field on C3 defined as in (1) by
S = px(∂/∂x) + qy(∂/∂y) + rz(∂/∂z). We say that a vector field X, holomorphic in a
neighborhood of 0 ∈ C3, is S-quasi-homogeneous of weight �, if we have the following
Lie bracket identity: [S,X] = �X. Remark that necessarily �+ r is a non-negative integer
and X is a polynomial vector field. In fact, if X = P1(∂/∂x)+ P2(∂/∂y)+ P3(∂/∂z), the
condition that X is S-quasi-homogeneous of weight � is equivalent to the fact that, after
giving weights p, q and r to the variables x, y and z, respectively, the polynomials P1, P2

and P3 are weighted homogeneous of degrees �+ p, �+ q and �+ r , respectively.
Moreover, S and X give a representation of the affine Lie algebra in the algebra of

polynomial vector fields. If we suppose that S and X are linearly independent at generic
points, then these vector fields generate an algebraic foliation on C3, which is given by
the integrable 1-form � = iS iX(dx ∧ dy ∧ dz). Since � is a polynomial 1-form, this
foliation can be extended to a singular foliation of CP(3), which will be denoted by F(�)
or by F(S,X). Observe that S extends to a holomorphic vector field on CP(3) and that
its trajectories are contained in the leaves of F(�). On the other hand, in general, the
vector field X is meromorphic in CP(3), but the foliation defined by it on C3 extends to a
foliation on CP(3), which will be denoted by G(X), whose leaves are also contained in the
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leaves of F(�). Remark that the singular set of F(�), denoted by sing(F(�)), is invariant
under the flow of S, exp(tS) := St . This follows from the relation

LS(�) = m�, m = �+ tr(S) = �+ p + q + r, (2)

as the reader can check. Relation (2) also implies that if p0 /∈ sing(S), then F(�) is, in
a neighborhood of p0, equivalent to the product of a foliation in dimension two by a one-
dimensional disk. In fact, let (U, (u, v,w)) be a holomorphic coordinate system such that
S|U = ∂/∂u. Then it is not difficult to see that the integrability condition and (2) imply
that

�(u, v,w) = emu�(0, v,w) = emu(A(v,w)dv + B(v,w)dw),

which proves the assertion.
In the affine chart C3 ⊂ CP(3), where S is as in (1), the leaves of F(�) are ‘S-cones’

with vertex at 0 ∈ C3, that is, immersed surfaces invariant by the flow of S. If sing(F(�))
has codimension two, then each of its components is the closure of an orbit of S. Now we
impose a condition which implies the local stability of this kind of singularity by small
perturbations of the form defining the foliation.

Let ω be an integrable 1-form in a neighborhood of p0 ∈ C3 and µ be a holomorphic
3-form such that µp0 �= 0. Then dω = iZ(µ), where Z is a holomorphic vector field.
The integrability of ω is equivalent to iZ(ω) = 0. It is not difficult to see that if p0 is a GK
singularity of ω, then we have two possibilities as follows.
1. Z(p0) �= 0. In this case we have a singularity of Kupka type, that is the foliation is

locally the product of a singular foliation in dimension two by a non-singular one of
dimension one.

2. Z(p0) = 0 and p0 is an isolated singularity of Z. In this case, there exists a
neighborhoodU of p0 such that all singularities of ω in U \ {p0} are of Kupka type.
Let L := DZ(p0) be the linear part of Z at p0 and λ1, λ2, λ3 be the eigenvalues
of L. Note that λ1 + λ2 + λ3 = 0. This implies that we have three sub-cases.
2a. λ1, λ2, λ3 �= 0. In this case, if we take p0 = 0, the second jet of ω at p0 is of

the form

j2(ω)0 = ayz dx + bxz dy + cxy dz = xyz

(
a
dx

x
+ b

dy

y
+ c

dz

z

)
,

where λ1 = c − b, λ2 = a − c and λ3 = b − a. When a, b, c �= 0 it is proven
in [4] that there exists a germ of vector field X at p0 such that [X,Z] = 0 and

iXiZ(dx ∧ dy ∧ dz) = fω,

where f (p0) �= 0, so that the foliation is locally generated by an action of C2.
It is also proven in [4] that if the triple (a, b, c) satisfies some conditions of
non-resonance, then there exists a local coordinate system (x, y, z) such that
ω = xyz(a(dx/x) + b(dy/y) + c(dz/z)). For this reason we say that the
singularity is of logarithmic type (even if ω is not equivalent to its 2-jet).

2b. One of the eigenvalues, say λ3, is zero and the other two satisfy λ1 = −λ2 �= 0.
We call this type of singularity degenerate.
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An example of this situation is ω = xy dz + zn(ax dy + by dx), where
a · b · (a − b) �= 0 and n ≥ 2. In this case, if we take µ = dx ∧ dy ∧ dz then
we get dω = iZµ where

Z = x(1 − bnzn−1)
∂

∂x
− y(1 − anzn−1)

∂

∂y
+ (b − a)zn

∂

∂z
.

Note that 0 ∈ C3 is an isolated singularity of Z with multiplicity mult(Z, 0) =
n and that the eigenvalues of DZ(0) are 1,−1, 0.
We observe that this case does not happen in the singularities of the examples
of §2.2.

2c. λ1, λ2, λ3 = 0. In this case, the germ of Z at p0 is nilpotent (as a derivation in
the local ring of formal power series at p0).

Definition 3. We say that p0 is a quasi-homogeneous singularity of ω if p0 is an isolated
singularity of Z and the germ of Z at p0 is nilpotent.

This definition is justified by the following result (cf. [12]).

THEOREM A. Let p0 ∈ C3 be a quasi-homogeneous singularity of an integrable 1-formω.
Then there exist two holomorphic vector fields S and Z and a local chart (U, (x, y, z))
around p0 such that x(p0) = y(p0) = z(p0) = 0 and:
(a) ω = αiSiZ(dx ∧ dy ∧ dz), α ∈ Q+ and dω = iZ(dx ∧ dy ∧ dz);
(b) S = px(∂/∂x)+ qy(∂/∂y)+ rz(∂/∂z), where p, q and r are positive integers with

gcd(p, q, r) = 1;
(c) p0 is an isolated singularity for Z, Z is polynomial in the chart (U, (x, y, z)) and

[S,Z] = �Z, where � ≥ 1.

Definition 4. Let p0 ∈ C3 be a quasi-homogenous singularity of ω. We say that it is of
type (p, q, r; �), if for some local chart and vector fields S and Z, the properties (a), (b)
and (c) of Theorem A are satisfied.

Remark 1. Let p0 be a quasi-homogenous singularity of type (p, q, r; �) of an integrable
1-form ω. If S and Z are as in Theorem A, then the multiplicity of Z at the singularity
p0,mult(Z, p0) (also called the Milnor number), is given by

mult(Z, p0) = (�+ p)(�+ q)(�+ r)

pqr
. (3)

In particular, pqr must divide (�+ p)(� + q)(�+ r). The proof of this fact can be found
in [12].

We can now state the stability result.

PROPOSITION 1. Let (�s)s∈� be a holomorphic family of integrable 1-forms defined in a
neighborhood of a compact ball B = {z ∈ C3; |z| ≤ ρ}, where � is a neighborhood of
0 ∈ Ck . Suppose that all singularities of �0 in B are GK and that sing(d�0) ⊂ int(B).
Then there exists ε > 0 such that if s ∈ B(0, ε), then all singularities of �s in B are GK.
Moreover, if 0 ∈ B is a logarithmic or quasi-homogenous singularity of type (p, q, r; �)
then there exists a holomorphic map B(0, ε) � s �→ z(s), such that z(0) = 0 and z(s)
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is a GK singularity of �s of the same type (logarithmic or quasi-homogenous of the type
(p, q, r; �), according to the case).

Proof. Letµ = dx∧dy∧dz andZs be such that d�s = iZsµ. Since all singularities of�0

inB are GK, we get that the singularities ofZ0 in B are isolated and that the singularities of
�0 which are not singularities ofZ0 are of Kupka type. Let sing(Z0)∩B = {p1, . . . , pr } ⊂
int(B) with the Milnor numbers mj = mult(Z0, pj ), j = 1, . . . , r . It is well known that
mult(Z0, pj ) = PH(Z0, pj ) > 0, the Poincaré–Hopf index of Z0 at pj . Hence, there
exists ε1 > 0 such that if |s| < ε1 then the singularities of Zs in B are isolated and

∑
p∈sing(Zs)

mult(Zs, p) =
r∑
j=1

mj .

In particular, the singularities of Zs in B are isolated, so that all singularities of �s in B
are GK.

Now, since the integrability condition for �s is equivalent to iZs�s = 0 and the
singularities of Zs in B are isolated, it follows from the parametric De Rham division
theorem (cf. [7] and [3]) that there exists a holomorphic family of 2-forms (θs)s∈B(0,ε1)

such that ωs = iZs θs . Since we are in dimension three, we have θs = −iXsµ, where
(Xs)s∈B(0,ε1) is a holomorphic family of vector fields. Note that

�s = iXs iZsµ = iXs (d�s) �⇒ LXs�s = �s �⇒ LXs (d�s) = d�s. (∗)

The last relation above implies that, for s fixed, the set sing(Zs) ∩ B = {p ∈ B |
d�s(p) = 0} is invariant under the flow of Xs . Since sing(Zs)∩B is finite, we obtain that
sing(Zs) ∩ B ⊂ sing(Xs) ∩ B, otherwise Zs would have non-isolated singularities.

Let us suppose that 0 is a logarithmic or quasi-homogenous singularity of type
(p, q, r; �) of �0. If we can guarantee that 0 is a non-degenerate singularity of X0,
that is such that det(DX0(0)) �= 0, then we can assert the existence of an analytic map
B(0, ε) � s �→ z(s) such that z(0) = 0 and z(s) is a non-degenerate singularity of Xs
for all s ∈ B(0, ε). Since sing(Zs) ⊂ sing(Xs), in this case we can assert that all the
singularities of Zs that appear by bifurcation of 0 must be at z(s). This gives the map
s �→ z(s) of the statement. Before proving this fact, let us observe that Xs and X1

s are
vector fields satisfying (∗) if and only if X1

s = Xs + fsZs , where fs is holomorphic.
This fact follows from iZs i(X1

s−Xs)µ = 0 and the division theorem.
Suppose first that 0 is singularity of logarithmic type of �0. We can not assert a priori

that 0 is a non-degenerate singularity of X0. However, we can take, instead of Xs , a vector
field of the form X1

s = Xs + aZs , a ∈ C. Since det(DZ0(0)) �= 0, it is possible to choose
a ∈ C∗ such that det(DX1

0(0)) �= 0. Note that z(s) will be a logarithmic singularity for�s ,
since det(DZs(z(s))) �= 0 (for small |s|).

Suppose now that 0 is a quasi-homogenous singularity of �0 of the type (p, q, r; �).
Let us prove that det(DX0(0)) �= 0. Since Z0 is nilpotent, by Theorem A there exists a
germ of vector field S at 0 ∈ C3, such that [S,Z0] = �Z0, �0 = αiSiZ0µ, α ∈ Q+,
d�0 = iZ0(µ) andDS(0) = px(∂/∂x)+ qy(∂/∂y)+ qz(∂/∂z) := S0. SetDX0(0) = A0

and DZ0(0) = B0. Note that X0 = αS + fZ0, where f ∈ O3, so that A0 =
αS0 +f (0)B0. On the other hand, the relation [S,Z0] = �Z0 implies that [S0, B0] = �B0.
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Consider a basis of C3 such that the matrices of S0 and B0 are S0 = diag(p, q, r) and
B0 = (bij )1≤i,j≤3, respectively, and B0S0 − S0B0 = �B0, � > 0. If we assume that
p ≥ q ≥ r > 0, then a straightforward calculation gives that bij = 0 for j ≥ i. Hence,
det(A0) = det(αS0) �= 0. This implies also that the eigenvalues of A0 are αp, αq, αr .

Fix δ > 0 and ε > 0 such that, for |s| < ε, Xs has a unique singularity z(s), with
|z(s)| < δ, where s �→ z(s) is analytic and det(DXs(z(s))) �= 0. Recall that Z0 has an
isolated singularity at 0. By Remark 1, we have

mult(Z0, 0) = (p + �)(q + �)(r + �)

p.q.r
> 1.

Therefore, if ε and δ are small, then, for |s| < ε, Zs has at most mult(Z0, 0) singularities
in the ball B(0, δ). As we have seen before, sing(Zs) ∩ B(0, δ) ⊂ sing(Xs) ∩ B(0, δ).
This implies that sing(Zs) ∩ B(0, δ) = {z(s)} and mult(Zs, z(s)) = mult(Z0, 0).

Let us prove that the germ of Zs at z(s) is nilpotent for |s| < ε. Set As = DXs(z(s))

and Bs = DZs(z(s)). Since mult(Zs, z(s)) > 1, at least one of the eigenvalues of Bs is 0,
and so their eigenvalues are b(s),−b(s), 0, where b(s) ∈ C. On the other hand, for |s| < ε,
det(As) �= 0 and so all eigenvalues As are non-zero. We are going to use (∗) to prove that
if ε > 0 is small then b(s) = 0, so that Bs is nilpotent, if |s| < ε. Since iZs (µ) = d�s , we
get from (∗) that

iZs (µ) = LXs (iZs (µ)) = i[Xs,Zs ](µ)+ iZs (LXs (µ))

= i[Xs,Zs ](µ)+ div(Xs)iZs (µ)

�⇒ [Xs,Zs] = (1 − div(Xs))Zs := hsZs

�⇒ [As,Bs ] = g(s)Bs , (∗∗)

where g(s) = hs(z(s)). Note that g(0) = h0(0) = α� := β �= 0, because

[X0, Z0] = [αS + fZ0, Z0] = (α�−Z0(f ))Z0 �⇒ g(0) = α�−Z0(f )(0) = α� = β.

If we take ε > 0 small enough then g(s) �= 0 and det(As) �= 0, for |s| < ε. Suppose for
a contradiction that b(s) �= 0 for some |s| < ε. In this case, we can write As and Bs in
matrix form, in some basis of C3, as Bs = diag(b(s),−b(s), 0) and As = (aij )1≤i,j≤3, so
that (∗∗) is equivalent to

BsAs − AsBs = g(s)Bs �⇒ g(s)b(s) = b(s)a11 − a11b(s) = 0 �⇒ g(s) = 0,

because b(s) �= 0. This contradicts g(s) �= 0 and shows that b(s) = 0. Therefore, Bs is
nilpotent for |s| < ε.

Now, it follows from Theorem A that z(s) is a quasi-homogenous singularity of �s .
It remains to prove that it is of the type (p, q, r; �). Let Ss be as in Theorem A, so
that α(s)iSs iZs (µ) = �s , α(s) ∈ Q+, [Ss, Zs] = �(s)Zs , �(s) ∈ Z+, DSs(z(s))
is semi-simple and their eigenvalues are positive integers, say p(s), q(s), r(s), where
gcd(p(s), q(s), r(s)) = 1 and p(s) ≥ q(s) ≥ r(s). With the same argument that we have
used for s = 0, we have Xs = α(s)Ss + fsZs , where fs ∈ O3(z(s)) and DXs(z(s)) = As

has the same eigenvalues as α(s).DSs (z(s)). Since the function s �→ As is analytic,
the functions s �→ α(s)p(s) ∈ Q+, s �→ α(s)q(s) ∈ Q+ and s �→ α(s)r(s) ∈ Q+
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must be constant. Therefore, p(s) ≡ p, q(s) ≡ q , r(s) ≡ r and α(s) ≡ α (since
gcd(p(s), q(s), r(s)) = 1 and we have chosen p ≥ q ≥ r). Hence, the eigenvalues of
Ss are p, q, r . Finally, by (∗∗) we have [Xs,Zs ] = hsZs and, with the same proof as
in the case s = 0, hs(z(s)) = α(s)�(s) = α�(s) ∈ Q+. Since s �→ hs(z(s)) ∈ Q+
is analytic, we get that α�(s) ≡ α�, and so �(s) ≡ �. This finishes the proof of the
proposition. �

Let us state two consequences of Proposition 1. The first follows immediately from the
proposition.

COROLLARY 1. Let F0 be a codimension one GK foliation on a compact complex
threefold M . Then there exists a neighborhood U of F0 in the space of codimension one
foliations, such that any F ∈ U is GK.

COROLLARY 2. If p0 is a GK singularity of a foliation F , then the sheaf of germs of
vector fields at p0 tangent to F is locally free and has two generators.

Proof. In fact, if F is defined by ω in a neighborhood of p0, then we can write dω = iZµ

and ω = iXiZ(µ), where µp0 �= 0 and the germ of Z at p0 has an isolated singularity
at p0. Let Y be a germ of vector field such that iY (ω) = iY iXiZ(µ) = 0. This implies
that Y = aX + bZ where a and b are holomorphic outside sing(ω). Since sing(ω) has
codimension two, it follows from Hartog’s Theorem that a and b can be extended to a
neighborhood of p0. �

Remark 2. Let p0 be an isolated singularity of a codimension one foliation F on a
threefold (for instance, a Morse singularity). Then the sheaf of germs of vector fields at
p0 tangent to F is not locally free. In fact, it follows from Malgrange’s theorem (cf. [14]),
that F has a local holomorphic first integral. This implies the assertion, as the reader can
check (see also [11]).

Remark 3. If F is a GK foliation on M , the tangent bundle of F , TF , is a rank two
vector bundle over M . Moreover, there is a morphism π : TF → TM with the following
property. If U ⊂ M is an open set and σ : U → TF is a holomorphic (respectively mero-
morphic) section of TF |U then π ◦ σ : U → TM is a holomorphic (respectively
meromorphic) vector field tangent to F . Conversely, if X is a holomorphic (respec-
tively meromorphic) vector field on U tangent to F , then there exists a holomorphic
(respectively meromorphic) section σ of TF on U such that π ◦ σ = X. Let us also
observe that, when p ∈ sing(F) then dim(ker(πp)) = 1 if p is a Kupka singularity,
whereas dim(ker(πp)) = 2 if p is a logarithmic or quasi-homogenous singularity.

This motivates the following definition.

Definition 5. We say that a codimension one foliation F on a complex threefold M is
generated by two foliations of dimension one, say G1 and G2, if for any p ∈ M there
exists a neighborhoodU of p and holomorphic vector fields X1 and X2 on U such that the
following occur.
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(a) Gj is defined in U by Xj , j = 1, 2.
(b) F |U is defined by the 1-form ω = iX1 iX2 µ, where µ is a non-vanishing 3-form

on U . In particular, we have that G1 and G2 are tangent to F and that:
(b1) If p ∈ M \ (sing(G1) ∪ sing(G2)) and TpG1 �= TpG2 ⊂ TpM , then TpF =

TpG1 ⊕ TpG2;
(b2) sing(F) = sing(G1) ∪ sing(G2) ∪ D, where

D = {p ∈ M \ sing(G1) ∪ sing(G2) | TpG1 = TpG2}.

PROPOSITION 2. Let F be a GK foliation on M and TF be its tangent bundle. Then the
following occur.
(a) To any line sub-bundle L of TF corresponds a foliation by curves GL on M with the

following properties:
(1) GL is tangent to F ;
(2) sing(GL) ⊂ sing(F).

(b) TF splits as a sum of two line bundles if and only if F is generated by two foliations
of dimension one.

The proof of the proposition is straightforward and is left for the reader.
In the next section we will see some examples of GK foliations on CP(3). In all

examples the bundle TF splits. This motivates Problem 2 in §1.

2.2. Examples. This section is devoted to describing some examples of GK foliations
on CP(3). Each example is generated by two foliations of dimension one, G1 and G2,
in the sense of Definition 5. One of these one-dimensional foliations, say G1, will be
generated by a global vector field S on CP(3), which in some affine coordinate system
(x, y, z) ∈ C3 ⊂ CP(3) is like in (1): S = px(∂/∂x) + qy(∂/∂y) + rz(∂/∂z), where
p, q, r ∈ N, gcd(p, q, r) = 1 and p > q > r . On the other hand, G2 will be of degree
d ≥ 1, so that the foliation will be of degree ν = d + 1.

Being foliations in F((p, q, r); �; d + 1), all the examples that we give share a
geometrical pattern that we now explain. As the singular locus of the foliation is invariant
by a global vector field in CP(3), it is globally fixed by an infinite group of projective
automorphisms: that given by the flow of S. Each curve in the singular locus has to be of
a very special type.

Klein and Lie showed (see, e.g., [9]) that a curve CP(n) fixed by the action of an infinite
group of projective automorphisms is rational algebraic. If it is of degree p ≥ n, it
is obtained as an adequate linear projection of the rational normal curve �p ⊂ CP(p),
i.e. CP(1) embedded as �p(s : t) := (tp : tp−1s : · · · : tsp−1 : sp). For n = 3, they
showed that the projected curve could be written, after a change of coordinates, as (in the
affine open set E0)

γp,q,r (t) := (tp, tq , tr ),

where p ≥ q ≥ r ≥ 1 are positive integers. A curve so parameterized is fixed by the
projective transformations x ′ = αpx, y ′ = αqy, z′ = αrz that correspond to changing t by
αt , and fixing the points A = (1 : 0 : 0 : 0) and B = (0 : 0 : 0 : 1). Finally, note that if
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the numbers p, q, r admit a greatest common divisor k > 1, then the curve (Klein–Lie) is
a degree p/k one, counted k times. In this case we can substitute the parameter t by a new
parameter t ′.

Let us write �p,q,r := γp,q,r ⊂ CP(3). When p > q > r , �p,q,r is smooth at B if and
only if r = 1, whereas it is smooth at A if and only if p − q = 1, so that �p,q,r is smooth
if and only if p − q = r = 1. Moreover, when r = 1 and p ≥ q + 2 ≥ 4, it has the point
A as its only (cuspidal) singularity. On the other hand, if r > 1, B is also a singular point
of �p,q,r .

Let us insist on the fact that not every cuspidal rational algebraic curve is a Klein–Lie
curve. In particular, not all the cuspidal rational curves with the same degree and number
of cusps are projectively equivalent (see, e.g., [8]).

Let t be the coordinate on C and consider the vector field t (∂/∂t) on C. The vector
field (γp,q,r )∗(t (∂/∂t)) can be extended to C3 as S = px(∂/∂x)+ qy(∂/∂y)+ rz(∂/∂z).
On the other hand, (γp,q,r )∗(t�+1(∂/∂t)), � + r ≥ 0, can be extended as a polynomial
vector field X which is S-quasi-homogeneous, if certain arithmetical relations hold among
p, q, r and �. When r = 1, which is the case that we consider in the examples, this
extension can be done so that X is S-quasi-homogeneous of weight �. Thus we can define
a foliation generated by the subfoliations given by S and X, which will be of degree ν if
the foliation generated by X is of degree d = ν − 1.

Example 1. Klein–Lie foliations with one quasi-homogeneous singularity.
We give examples that extend one found in [5], giving rise to the so-called exceptional
components. They appear in a family that we denote as Klein–Lie foliations in CP(3).
Klein–Lie foliations are not always GK, but for each degree there is exactly one which
is GK, and that has just one quasi-homogenous singularity.

Klein–Lie foliations in C3 and polynomial actions of aff(C)× C3 → C3.
We are going to study the families F((p, q, 1),−1, d + 1) for some d , which we are able
to choose. Recall that if t is the coordinate on C, the two basic complete vector fields
on C, that are the infinitesimal generators of the action of aff(C), are t (∂/∂t) and (∂/∂t).
As noted above, the vector fields (γp,q,1)∗(t (∂/∂t)) and (γp,q,1)∗(∂/∂t), can be extended
as

S = px
∂

∂x
+ qy

∂

∂y
+ z

∂

∂z

and

Xτ = p

( ∑
i+qj=p−1

τij z
iyj

)
∂

∂x
+ qzq−1 ∂

∂y
+ ∂

∂z
where

∑
i+qj=p−1

τij = 1.

The vector fields S and Xτ are complete, are linearly independent outside the curve
γp,q,1 and they satisfy the relation [S,Xτ ] =−Xτ , thus they generate an action of
aff(C)× C3 → C3. To define a foliation associated to it, we consider the polynomial 1-
form

ωτ
p,q,1 = iSiXτ dz ∧ dy ∧ dx = q(y − zq−1) dx

+ p
(∑

τij z
i+1yj − x

)
dy + pq

(
zq−1x −

∑
τij z

iyj+1
)
dz,
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which has degree dg(ωτp,q,r ) = dg(Xτ )+1. The relation dωτ
p,q,1 = (p+q)iXτ dx∧dy∧dz

implies that γp,q,1 is the Kupka set of the foliation represented by ωτ
p,q,1 and it has

transversal type η = −pv du+ qu dv. Moreover, the diffeomorphism

φτ (v, u, t) =
(
v + p

∑
τij

∫ t

0
si(u+ sq)j ds, u+ tq , t

)

which is the time t of the flow of the vector field Xτ , with initial condition (v, u, 0),
satisfies the relation φ∗

τ (ω
τ
p,q,1) = −pv du+ qu dv. Therefore, the foliation has a rational

first integral

Hτ = (y − zq)p

(x − ψτ (z, y))q
= f p

gq

where ψτ is a polynomial of degree p on the variable z and depending on the parameters
τij .

Now we study the extension to CP(3) of the foliations obtained above. It is given by the
homogeneous 1-form ωτ

p,q,1 = ω1 dz1 +ω2 dz2 +ω3 dz3 +ω4 dz4, obtained from ωτ
p,q,1.

Note that, by means of the action of PGL(4,C) on ωτ
p,q,1, we get a family of foliations:

we refer to all of them as Klein–Lie foliations in CP(3).
The degree of the foliation defined by ωτ

p,q,1 is d + 1 = max{q, i + j + 1 | τij �= 0}.
Moreover,

ω1 = qz4(z
d
4z2 − z

d−q+1
4 z

q

3)

ω2 = pz4

(∑
τij z

d−i−j
4 zi+1

3 z
j

2 − zd4z1

)

ω3 = pqz4

(
z
d−q+1
4 z

q−1
3 z1 −

∑
τij z

d−i−j
4 zi3z

j+1
2

)

ω4 =
(
p(q − 1)

∑
τij z

d−i−j
4 zi+1

3 z
j+1
2 + (p − q)zd4z2z1 − q(p − 1)zd−q+1

4 z
q

3z1

)

with 1 < q ≤ d + 1 ≤ p.
On the other hand, if ω = pGdF − qF dG, where F |E1 = f and G|E1 = g are

homogeneous of degree q and p, respectively, we obtain

ω = z
p+q−d−2
4 ωτp,q,1.

Remark 4. The hypothesis that F((p, q, r), �, d) contains a GK foliation is actually
necessary for the conclusion that it is an irreducible component of F(d, 3). The last
equation implies that F((p, 2, 1),−1, p) ⊂ R(2, p), the rational component [5], and
Theorem 1 is not true for these families, since the foliations in R(2, p) are not GK.

In order to study the singular set, observe that one of the following possibilities holds:
(1) q = d + 1 and a + b < d , where p − 1 = bq + a, 0 ≤ a < q;
(2) q = d + 1 and there is a unique pair (i0, j0) with τi0j0 �= 0 and j0 = d − i0;
(3) q < d and there is a unique pair (i0, j0) with τi0j0 �= 0 and j0 = d − i0.

In all cases, the hyperplane {z4 = 0} is invariant by the foliation defined by ωτ
p,q,1.

Concerning its singular locus, it is the union of �p,q,1 and the set {z4 = ω4(z1, z2,

z3, 0) = 0} which, according to the possibilities discussed above, is:
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(1) {zd+1
3 = z4 = 0} ∪ {z1 = z4 = 0};

(2) {zi0+1
3 = z4 = 0} ∪ {z4 = p(q − 1)τi0,d−i0z

d−i0+1
2 − q(p − 1)z1z

d−i0
3 = 0};

(3) {zi0+1
3 = z4 = 0} ∪ {zj0+1

2 = z4 = 0}.
To study the foliation around the point (1 : 0 : 0 : 0), we choose its affine open

neighborhood E1 and calculate the rotational of the form which represents the foliation
ητ
p,q,1 := ωτ

p,q,1|E1

ητ
p,q,1 = −

(
p(q − 1)

∑
τij u

d−i−jwi+1vj+1 + (p − q)udv − q(p − 1)ud−q+1wq
)
du

+ p
(∑

τij u
d−i−j+1wi+1vj − ud+1

)
dv

+ pq
(
ud−q+2wq−1 −

∑
τij u

d−i−j+1wivj+1
)
dw.

Its exterior derivative is dητ
p,q,1 = Q

(p,q,τ )
uw du∧dw+Q(p,q,τ )wv dw∧dv+Q(p,q,τ )vu dv∧du,

where

Q
(p,q,τ )
uw = q(p(d + 2)− q)ud−q+1wq−1 + p(p − q(d + 1))

∑
τij u

d−i−jwivj+1,

Q(p,q,τ )wv = p(q + p − 1)
∑

τij u
d−i−j+1wivj ,

Q
(p,q,τ )
vu = (p − q + p(d + 1))ud −

∑
p(d − p − q + 3)τij ud−i−jwi+1vj ,

and the rotational is given by

Rητ
p,q,1

= Q(p,q,τ )wv

∂

∂u
+Q

(p,q,τ )
vu

∂

∂w
+Q

(p,q,τ )
uw

∂

∂v
.

The only case in which the rotational above has isolated singularities is when q = d+1
and there is just one τij different from zero (case 2), that corresponding to i = 0 and j = d ,
which is 1. In that case, the Klein–Lie foliation is GK and the vector field X is given by

X = (d2 + d + 1)yd
∂

∂x
+ (d + 1)zd

∂

∂y
+ ∂

∂z
,

and the pointA = (1 : 0 : 0 : 0) is a quasi-homogenous point of the type (d2 +d+1, d2 +
d, d2; d3). By changing to the affine coordinates E2 = {(r : 1 : s : t)|(r, s, t) ∈ C3} and
E3 = {(r : s : 1 : t)|(r, s, t) ∈ C3}, it can be shown that all points in CP(3)\{(1 : 0 : 0 : 0)}
are of Kupka type and that sing(F) is the union of �d2+d+1,d+1,1 with the two curves

{z3 = z4 = 0} and {z4 = (d(d + 1)+ 1)(d − 1)zd+1
2 − (d − 1)(d(d + 1)+ 1)z1z

d
3 = 0}.

We leave the details for the reader.
Recall that the foliation has a meromorphic first integral F , which in the affine chart E0

can be written as

F(x, y, z) = (y − zq)p

(x + zp h(y/zq))q
,

where

h(t) =
d∑
j=0

hj t
j

is the solution of q(t − 1)h′(t) = p(td + h(t)).
In all the other cases, we can check that there is a one-dimensional set of singular points

on which the rotational vanishes, so the corresponding Klein–Lie foliation is not GK.
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Example 2. Let us consider the curve γ3,2,1 and the extension of the vector field
(γ3,2,1)∗(t (∂/∂t)) as S = 3x(∂/∂x) + 2y(∂/∂y) + z(∂/∂z) and the polynomial vector
field X = P + z3R, where R = x(∂/∂x)+ y(∂/∂y)+ z(∂/∂z) is the radial vector field on
C3 and P = P1(∂/∂x)+ P2(∂/∂y)+ P3(∂/∂z), with

P1(x, y, z) = ax2 + bxyz+ cy3

P2(x, y, z) = dxy + exz2 + fy2z

P3(x, y, z) = gxz+ hy2 + iyz2.

(4)

We consider this set of polynomials parameterized by (a, b, c, d, e, f, g, h, i) ∈ C9.
It is not difficult to see that [S,X] = 3X and so X is a weighted S-quasi-homogeneous
degree 3 polynomial vector field extending (γ3,2,1)∗(t4(∂/∂t)). The foliations defined by
S and X on CP(3) generate a codimension one foliation of degree four on CP(3), which
will be denoted by F(P ).

We take P in such a way that d(iP (dx ∧ dy ∧ dz)) = 0, which is equivalent to
div(P ) := P1x + P2y + P3z = 0, or to 2a + d + g = b + 2f + 2i = 0. In this case, if
�P = iSiX(dx∧dy∧dz), then�P defines F(P ) in the affine chartE0. A straightforward
calculation (using div(P ) = 0), gives d�P = iZP (dx ∧ dy ∧ dz), where

ZP = 9P + z3(9R − 6S).

As the reader can check, the set

A0 = {P | 2a + d + g = b + 2f + 2i = 0

and ZP has a non-isolated singularity at 0 ∈ E0 � C3},
is an algebraic subset of codimension three of C9. Therefore, if P /∈ A0 then F(P ) has
a quasi-homogenous singularity at 0 ∈ E0. Moreover, sing(F(P )) ∩ E0 contains seven
integral curves of S, say �j , j = 1, . . . , 7, where �6 = (y = z = 0), �7 = (x = y = 0)
and the others are generic trajectories of S of the form �j = {(αj t3, βj t2, t) | t ∈ C},
αj , βj �= 0.

Now, let us see how FP looks in the chart E1 = {(1 : w : v : u) | (u, v,w) ∈ C3}.
In this chart we have S = −S1, where

S1 = 3u
∂

∂u
+ 2v

∂

∂v
+w

∂

∂w
. (5)

Since X has a pole of order two at (u = 0), the foliation F(P ) is generated in this chart by
S1 and X1 := u2X. Observe that

[S1,X1] = −[S, x−2X] = −S(x−2)X − x−2[S,X] = 3X1.

This implies that X1 is of the same type as X, that is X1 = Q + mw3R, where
Q = Q1(∂/∂x) + Q2(∂/∂y) + Q3(∂/∂z) and Q1,Q2,Q3 are as in (4) (by changing
x → u, y → v, z → w and the parameters (a, . . . , i) → (a′, . . . , i ′)). In other
words, the point (1 : 0 : 0 : 0) ∈ E1 is a quasi-homogenous singularity of F(P ) for
a generic P . It is possible to verify, by taking other affine charts, that F(P ) is a GK
foliation with two quasi-homogenous singularities, the points p0 := (0 : 0 : 0 : 1) ∈ E0
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and p1 := (1 : 0 : 0 : 0) ∈ E1. Moreover, sing(F(P )) = ⋃7
j=0 �j , where

�0 = {(1 : w : v : u) ∈ E1 | u = v = 0} and the points in sing(F(P )) \ {p0, p1}
are of Kupka type. We leave the details for the reader.

Example 3. In this example we take again the curve γ3,2,1 and S = 3x(∂/∂x)+2y(∂/∂y)+
z(∂/∂z), as in Example 2, and

X = (ay2 + bxz)
∂

∂x
+ (cx + dy z)

∂

∂y
+ (ey + f z2)

∂

∂z
, (6)

so that [S,X] = X.

The foliation generated by S and X on CP(3) has degree three in this case. It is defined
in the chart E0 by the form � = iS iX(dx ∧ dy ∧ dz). We will denote this foliation by
F(S,X). If we take X in such a way that div(X) = 0, that is b + d + 2f = 0, then
d� = iZ(dx ∧ dy ∧ dz), where Z = 7X. As the reader can verify, if we take X /∈ A,
where

A = {X | X is as in (6) and abcdef (acf + bde) = 0},
then 0 ∈ E0 � C3 is an isolated zero of d�, that is a quasi-homogenous singularity of
F(S,X). For generic X /∈ A, sing(F(S,X)) ∩ E0 has three components: �0 = (x =
y = 0) and �1, �2, which are the closure of two trajectories of S, not contained in the
coordinate planes.

If we change coordinates to the chart E1 = {(1 : w : v : u) | (u, v,w) ∈ C3}, we find
that F(S,X) is generated in E1 by S = −S1, where S1 is as in (5) and

X1 = uX = (−buv − auw2)
∂

∂u
+ (euw + (f − b)v2 − avw2)

∂

∂v

+ (cu+ (d − b)vw − aw3)
∂

∂w
.

Therefore,F(S,X) is represented in this chart by�1 = iS1 iX1(du∧dv∧dw). On the other
hand, we have d�1 = iZ1(du ∧ dv ∧ dw), where Z1 = 8X1 − div(X1)S1. As the reader
can check, this implies that under generic assumptions on the coefficients a, b, c, d, e, f ,
the point 0 = p1 ∈ E1 is an isolated singularity of Z1, so that it is a quasi-homogenous
singularity of F(S,X). In this chart, the plane (u = 0) is invariant for F(S,X) and

sing(F(S,X)) ∩ E1 = (�1 \ {x = 0}) ∪ (�2 \ {x = 0}) ∪ �3 ∪ �4 ∪ �5,

where �3 = (u = v = 0), �4 = (u = w = 0) and �5 is a parabola in the plane (u = 0) of
the form {(0, αt2, βt) | t ∈ C}.

We observe that the curves �0, �4 and �5 meet at the point (0 : 0 : 1 : 0), which is
a singularity of logarithmic type for F(S,X). It can be proved, by changing variables to
other affine charts, that sing(F(S,X)) = ⋃5

j=0 �j and all points in sing(F(S,X)) \ {(0 :
0 : 0 : 1), (1 : 0 : 0 : 0), (0 : 0 : 1 : 0)} are of Kupka type.

2.3. Some remarks about the construction of the examples. In this section we discuss
the possibility of constructing families of foliations GK in CP(3), generated by two one-
dimensional foliations, say G1 and G2, as in §2.2. We suppose that G1 is the foliation
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defined in the affine chart E0 = {(x : y : z : 1) | (x, y, z) ∈ C3} by the linear vector
field S = px(∂/∂x) + qy(∂/∂y) + rz(∂/∂z), where p, q, r ∈ N, p ≥ q ≥ r > 0 and
gcd(p, q, r) = 1. If p = q = r = 1, then it is possible to construct GK foliations
of any degree. Take a homogeneous vector field of degree d on E0, say X, so that
[S,X] = (d − 1)X. The foliation generated by S and X in CP(3) is defined on E0 by
the form � = iSiX (dx ∧ dy ∧ dz). This type of example is considered in [3] and for
generic X it is GK. On the other hand, in the case where the integers p, q and r are not
equal, the situation is not so clear and we do not have a complete picture of all possibilities
if we fix p,q ,r . Nevertheless, in the case where p > q > r , the number of possible families
of foliations is finite, as we will see.

Consider S as in (1) and p > q > r > 0. Let us suppose that there is a one-dimensional
foliation G2 of degree d , which in the chart E0 is defined by a polynomial vector field X
such that [S,X] = �X, where � > 0. We denote by F(S,X) the foliation on CP(3), which
in the chart E0 is generated by S and X. Observe that F(S,X) ∈ F((p, q, r); �; d + 1).

THEOREM 3. If p > q > r > 0 are fixed, then the set

P = {(d, �) | d ≥ 0, � > 0 and F(p, q, r; �; d + 1) contains a GK foliation}
is finite.

Proof. Observe that S has four singularities in CP(3), the points p0 = (0 : 0 : 0 : 1) ∈ E0,
p1 = (1 : 0 : 0 : 0) ∈ E1, p2 = (0 : 1 : 0 : 0) and p3 = (0 : 0 : 1 : 0). The eigenvalues
of S at these points are, respectively, (p, q, r), (−p, q − p, r − p), (p − q,−q, r − q),
(p − r, q − r,−r). Note that only in the first two sets do the eigenvalues have the same
sign. As a consequence, the points p2 and p3 cannot be quasi-homogeneous singularities
for a foliation F ∈ F((p, q, r); �; d + 1).

The idea is to use (3) for the multiplicity of an isolated singularity of a quasi-
homogenous vector field in Remark 1. We prove that the existence of a GK foliation
F ∈ F((p, q, r); �; d+1) implies the existence of a one-dimensional foliation G of degree
d with the following properties:
(i) p0 and p1 are isolated singularities of G;
(ii) G is defined in the chart E0 by a vector field Y such that [S, Y ] = �Y .

Let us suppose the existence of G satisfying properties (i) and (ii) and prove the theorem.
Since p0 is an isolated singularity for Y , it follows from (3) that

µ0 = µ0(d, �) := mult(Y, p0) = (�+ p)(�+ q)(�+ r)

pqr
. (7)

On the other hand, G is defined in the chart E1 = {(1 : w : v : u) | (u, v,w) ∈ C3}, by the
vector field Y1, where Y1 = ud−1Y = x−d+1Y in E0 ∩E1. It follows that

[S, Y1] = S(x−d+1)Y + x−d+1[S, Y ] = (�− p(d − 1))Y1.

Note that, in the chart E1, we have

S = −pu ∂
∂u

− (p − r)v
∂

∂v
− (p − q)w

∂

∂w
,
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so that if we set S1 = −S, then [S1, Y1] = (p(d − 1)− �)Y1. Set q1 = p − r , r1 = p − q

and �1 = p(d − 1)− �. We assert that �1 ≥ 0, unless Y1(p1) �= 0.
In fact, suppose by contradiction that Y1(p1) = 0 and �1 < 0. Let Y1 = A(∂/∂u) +

B(∂/∂v) + C(∂/∂w). Since p1 = (0, 0, 0) is an isolated singularity of G, we must have
C �≡ 0, so that there is a non-zero monomial of the form uavbwc in C. Now, the relation
[S1, Y1] = �1Y1 implies that S1(C) = (�1 + r1)C and so

pa + q1b + r1c = �1 + r1 < r1.

However, the above relation is not possible if a + b + c ≥ 1 and p > q1 > r1 ≥ 1. This
contradiction implies that �1 ≥ 0, unless C is a constant. Observe that if C is a constant,
then Y1(p1) �= 0. In fact, if C �= 0 this is clear and if C = 0 then p1 would not be a
singularity of Y1, otherwise it would not be isolated.

In the case where Y1(p1) = 0, we get from (3) that

µ1 = µ1(d, �) := mult(Y1, p1) = (�1 + p)(�1 + q1)(�1 + r1)

pq1r1
. (8)

Note that when Y1(p1) �= 0 then µ1 = 0 and (8) is still true. Since G has degree d , we
must have (cf. [13]):

µ0 + µ1 ≤ d3 + d2 + d + 1. (9)

Let us see how [9] implies the theorem. First of all we write (9) as a function of � and �1.
Since �+ �1 = p(d − 1) we have

d3 + d2 + d + 1 = (d − 1)3 + 4(d − 1)2 + 6(d − 1)+ 4

= 1

p3 [(�+ �1)
3 + 4p(�+ �1)

2 + 6p2(�+ �1)+ 4p3] := 1

p3G(�, �1).

Therefore, (9) is equivalent to F(�, �1) ≤ 0, where

F(�, �1) = p2q1r1(�+p)(�+q)(�+r)+p2qr(�1+p)(�1+q1)(�1+r1)−qq1rr1G(�, �1).

Let us consider first the case �, �1 ≥ 0. Note that F(�, �1) is a degree three polynomial in
(�, �1) and its homogeneous term of degree three is

F3(�, �1) = p2q1r1�
3 + p2qr�3

1 − qq1rr1(�+ �1)
3.

ASSERTION. If �, �1 ≥ 0 and p > q > r > 0, then there exists C > 0 (which depends
only on p, q, r) such that F3(�, �1) ≥ C(�+ �1)

3.

Proof. Suppose that �1 > 0, � ≥ 0 and set y = �/�1. Then F3(�, �1) = �3
1.f (y), where

f (y) = p2q1r1y
3 + p2q r − q q1r r1(y + 1)3. Observe that f (0) = qr(p2 − q1r1) > 0

and
1
3f

′(y) = p2q1r1y
2 − qq1rr1(y + 1)2

so that f ′(0) < 0 and f ′(y) = 0 has a unique positive root y0 = √
qr/(p − √

qr). As the
reader can check, by calculating f ′′ and f ′′′, the point y0 is the positive minimum of f (y).
Since

f (y0) = 2p3qr

(p − √
qr)2

(
q + r

2
− √

qr

)
> 0,
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we have f (y) ≥ f (y0) = α > 0 for all y ≥ 0, so that F3(�, �1) ≥ α�3
1. Similarly, there

exists β > 0 such that F3(�, �1) ≥ β�3, if � > 0 and �, �1 ≥ 0. It follows that

F3(�, �1) ≥ 1
2α�

3
1 + 1

2β�
3 ≥ C(�+ �1)

3

for some C > 0 and �, �1 ≥ 0. �

Now, since F(�, �1) − F3(�, �1) is a degree two polynomial in (�, �1), there exists
ρ > 0 such that if �, �1 ≥ 0 and �+ �1 ≥ ρ, then |F(�, �1)−F3(�, �1)| ≤ (C/2)(�+ �1)

3,
which implies that F(�, �1) ≥ (C/2)(� + �1)

3, if �, �1 ≥ 0 and � + �1 ≥ ρ. It follows
that the number of pairs (�, �1) ∈ N2 which are solutions of F(�, �1) ≤ 0 is finite.
Since � + �1 = p(d − 1), the number of pairs (�, d) ∈ N2 which are solutions of (9)
is also finite.

Let us consider now the case Y1(p1) �= 0 and �1 < 0. In this case, we have
(�1 + p)(�1 + q1)(�1 + r1) = 0 and so the inequality F(�, �1) ≤ 0 is equivalent to
H(�, �1) ≤ 0, where

H(�, �1) = p2(�+ p)(�+ q)(�+ r)− qrG(�, �1).

Note that the homogeneous part of degree three of H is

H3(�, �1) = p2�3−qr(�+�1)
3 ≥ (p2−qr)�3 ≥ (p2−qr)(�+�1)

3 = (p2−qr)p3(d−1)3.

Since C = p2 − qr > 0 we can apply the same argument as before to conclude that the
number of pairs (�, d) which are solutions of (9) is finite.

It remains to prove the existence of a foliation G satisfying (i) and (ii). We prove that
there are two foliations G0 and G1 of degree d such that:
(iii) pj is an isolated singularity of Gj , j = 0, 1;
(iv) Gj is defined in the chart Ej by a vector field Xj such that [Sj ,Xj ] = �jXj , where

S0 = S and �0 = �.
If we have two foliations like above, then the generic foliation in the pencil Gα =

G0 + αG1 satisfies (i) and (ii), as the reader can check. Recall that Gα is the foliation that
in the chart E0 is defined by Xα = X0 + αxd−1X1.

Let us construct G0. Consider a foliation F ∈ F((p, q, r); �; d + 1). Then it
has degree d + 1 and is defined in the chart E0 by an integrable 1-form � such that
d� = iZ(dx ∧ dy ∧ dz), p0 = 0 is an isolated singularity of Z and [S,Z] = �Z.
Since F has degree d + 1, the form � has degree d + 2, so that d ≤ dg(Z) ≤ d + 1.
If dg(Z) = d , then the foliation G(Z) on CP(3) defined in the chart E0 by Z has degree
d and we take G0 = G(Z). Let us suppose that dg(Z) = d + 1. In this case we must
have div(Z) = 0, so that if Zd+1 is the homogeneous part of Z of degree d + 1, then
div(Zd+1) = 0 and [S,Zd+1] = �Zd+1. As the reader can check, these relations imply
that Zd+1 = g(mR − nS), where R is the radial vector field on C3, m = � + p + q + r ,
n = d + 3 and g is a homogeneous polynomial of degree d such that S(g) = �g. Let us
write Z = P + g(mR− nS), where dg(P ) ≤ d , P = A(∂/∂x)+B(∂/∂y)+C(∂/∂z) and

Z = (A+ (m− np)xg)
∂

∂x
+ (B + (m− nq)yg)

∂

∂y
+ (C + (m− nr)zg)

∂

∂z
.
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Observe that if λ is small then 0 is an isolated singularity of Z + λgR. Take λ in such a
way that m− np + λ,m− nq + λ,m− nr + λ �= 0. In this case, the vector field

X0 =
(

A

m− np + λ
+ gx

)
∂

∂x
+

(
B

m− nq + λ
+ gy

)
∂

∂y
+

(
A

m− nr + λ
+ gz

)
∂

∂z

has an isolated singularity at 0. Moreover, [S,X0] = �X0 and the foliation defined by X0

on CP(3) has degree d . The construction of G1 is similar and this finishes the proof of
Theorem 3. �

Remark 5. When p = 3, q = 2 and r = 1, then the unique possibilities are those of
Examples 1 (with d = 1), 2 and 3. In fact, in this case, if we set k = d − 1 ≥ 0, we have
�1 = 3k − � and

F(�, 3k − �) = 3[A(k)�2 − B(k)�+ C(k)], (10)

where A(k) = 3k + 4, B(k) = 12k + 9k2 and C(k) = 7k3 + 10k2 − k − 4. On the
other hand, the inequality F(�, 3k − �) ≤ 0 implies that for a solution (k, �) we must have
B2 − 4AC ≥ 0. Since

B2 − 4AC = −(k − 2)(k + 2)(k + 4)(3k + 4)

we get that the unique possible solutions are k ∈ {0, 1, 2}, that is d ∈ {1, 2, 3}. If we
substitute these values of k in (10) we get the following possibilities for � and �1

k = 0 �⇒ � = 1, �1 = −1

k = 1 �⇒ �, �1 ∈ {1, 2}
k = 2 �⇒ � = �1 = 3

which give exactly the values of (d, �, �1) of the examples.

The above result has motivated Problem 1 in §1.

3. Proofs of Theorems 1 and 2
3.1. Proof of Theorem 1. In this proof we assume that (p, q, r) �= (1, 1, 1). We observe
that the case p = q = r = 1 is essentially proven in [3], as was remarked in Example 3
of [4]. Let F ∈ F((p, q, r); �; ν) be a GK foliation on CP(3). Observe that F is generated
by two one-dimensional foliations of CP(3), say G1 and G2, the foliations defined in the
chart E0 by the vector fields S and X, respectively. As we have seen in Proposition 2, this
implies that its tangent bundle TF splits as the sum of two line bundles TF = L1 ⊕ L2,
where L1 corresponds to the foliation G1 and L2 to G2. Moreover, the corollaries of
Proposition 1 imply that there exists a neighborhood U of F such that any foliation in
U is GK, so that its tangent bundle splits locally.

Remark 6. Since (p, q, r) �= (1, 1, 1), S is a global vector field in CP(3) with singular
set of codimension greater or equal than two. Therefore, L1 is a trivial line bundle, that is
L1 � CP(3)× C = O(0) = O. On the other hand, if d is the degree of G2, we have that
L2 � O(1 − d) (cf. [1]) and that the degree of F is ν = d + 1.
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Since F(d+1, 3) is finite dimensional, it is sufficient to prove that for any holomorphic
curve � � t �→ Ft ∈ F(d + 1, 3), such that 0 ∈ � ⊂ C and F0 = F , then
Ft ∈ F((p, q, r); �; d + 1) for small |t|.

Let (Ft )t∈� be a holomorphic family of foliations on F(d + 1, 3), parameterized in an
open set 0 ∈ � ⊂ C, where F0 = F . We take� so small that for any t ∈ �, Ft is GK and
TFt splits locally. Moreover, (TFt )t∈� is a holomorphic family of rank two vector bundles
over CP(3). We prove first that TFt is isomorphic to TF = TF0 , if |t| is small. To do that,
we essentially use the following theorem.

THEOREM B. (Kuranishi [17]) Let E → X be a holomorphic vector bundle over a
complex compact manifold X. Then there exists a versal deformation space S of E.
Moreover, the tangent space of S at E is isomorphic to H 1(X,End(E)), where End(E)
is the sheaf of endomorphisms of E.

In order to conclude that for small |t|, it is TFt � TF0 by theorem B, it is sufficient to
prove thatH 1(CP(3),End(TF0)) vanishes. However, the dimension of that vector space is
zero, as End(TF0) = T ∗

F0
⊗ TF0 , where T ∗

F0
= O ⊕ O(d − 1) is the dual bundle of TF0

(cf. [16]).
Now, let (Ft )t∈� be a holomorphic family of foliations such that F = F0 ∈

F((p, q, r); �; d + 1) is GK. It follows from Remark 6 and the results above that if �
is a small neighborhood of 0 ∈ C, then TFt � O ⊕ O(1 − d) for all t ∈ �. On the
other hand, Proposition 2 (b) implies that Ft is generated by two foliations of dimension
one, say G1(t) and G2(t), where G1(t) corresponds to the factor O and G2(t) to the factor
O(1 − d). As a consequence, G1(t) is generated by a global vector field S(t) on CP(3).
Now, Proposition 1 implies that S(t) has a singularity whose eigenvalues, say λ1, λ2, λ3,
are multiples of p, q, r , so that we can suppose without loss of generality that λ1 = p,
λ2 = q and λ3 = r . Consider an affine coordinate system (U(t) = C3, (x, y, z)), where
S(t) = px(∂/∂x) + qy(∂/∂y) + rz(∂/∂z). Let �(t) be a polynomial integrable 1-form
which defines Ft in this chart. We assert that

LS(t)�(t) = (�+ p + q + r)�(t). (11)

In fact, since G1(t) is tangent to Ft , we have iS(t)�(t) = 0. This implies that
LS(t)�(t) = iS(t) d�(t). On the other hand, it follows from the integrability condition,
�(t)∧ d�(t) = 0, that�(t)∧ iS(t) d�(t) = 0, which implies that LS(t)�(t) = λ(t)�(t),
where λ : C3 → C∗ is holomorphic. Now, the eigenvalues of the operator ω �→ LS(t)ω

are integers, so that λ(t) is a constant. Since �(0) = � = iSiX(dx ∧ dy ∧ dz), where
[S,X] = �X, we have LS� = (� + tr(S))� = (� + p + q + r)�, which proves that
λ(0) = �+ p + q + r ≡ λ and the assertion.

Now, letX(t) be the vector field in C3 = U(t) defined by iX(t)(dx∧dy∧dz) = d�(t).
It follows from (11) that

λiX(t)(dx ∧ dy ∧ dz) = λ d�(t) = LS(t) d�(t) = LS(t)(iX(t)(dx ∧ dy ∧ dz))
= i[S(t),X(t)](dx ∧ dy ∧ dz)+ iX(t)(LS(t)(dx ∧ dy ∧ dz))
= i[S(t),X(t)](dx ∧ dy ∧ dz)+ tr(S(t)) d�(t)

�⇒ [S(t),X(t)] = (λ− tr(S(t)))X(t) = �X(t).
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This implies that Ft ∈ F((p, q, r); �, d + 1) for small |t| and finishes the proof of
Theorem 1 as F((p, q, r); �; d + 1) is an irreducible algebraic subset of F(d + 1, 3).
Indeed, recall from the description of the foliations in F((p, q, r); �; d + 1) that in
order to define such a foliation, we need to choose an affine open C3 ⊂ CP(3)
(or equivalently a point in the dual projective space CP∗(3)), fixing linear coordinates
on it and choosing (up to multiplication by the same constant) the coefficients of the
vector field X. This shows that there is a surjective map from a dense open subset
U ⊂ CP∗(3) × GL(3,C) × CN onto F((p, q, r); �; d + 1), for a certain N . So the
irreducibility of the last algebraic subset follows from that of U .

Furthermore, to parameterize F((p, q, r); �; d + 1), we should analyze the map above
in order to detect which elements in U give rise to the same foliation. Note that for a fixed
affine open subset, a linear change of coordinates of the form x ′ = αx, y ′ = βy, z′ = γ z

takes S to S′ = px ′(∂/∂x ′)+ qy ′(∂/∂y ′)+ rz′(∂/∂z′) andX to an S′-quasi-homogeneous
vector field X′ of weight �. As the open affine C3, the coordinates (x ′, y ′, z′) and the
vector fields S′, X′ define the same foliation, we should factor the groupGL(3,C) by the
subgroup of diagonal invertible matrices. �

For Klein–Lie foliations we have the following result, extending the existence of the
exceptional component in [5], that corresponds to the case d = 1.

COROLLARY 3. Let d ≥ 1 be an integer. There is an N-dimensional irreducible
component

F(d2 + d + 1, d + 1, 1; d + 1; −1)

of the space F(d+1, 3) whose general point corresponds to a GK Klein–Lie foliation with
exactly one quasi-homogenous singularity, where N = 13 if d = 1 and N = 14 if d > 1.
Moreover, this component is the closure of a PGL(4,C) orbit on F(d + 1, 3).

Proof. This is an immediate consequence of Theorem 1, the study of Klein–Lie foliations
in Example 1 and the analysis of the parameterizations of the sets F((p, q, r); �; d + 1).
Indeed, if F is a foliation in F(d(d + 1)+ 1, d + 1, 1; d + 1; −1), then in an affine open
subset we have that it is determined by the vector fields

S = (d2 + d + 1)x
∂

∂x
+ (d + 1)y

∂

∂y
+ z

∂

∂z
and

Xαβ = α(d2 + d + 1)yd
∂

∂x
+ β(d + 1)zd

∂

∂y
+ ∂

∂z
.

Note that X, the S-quasi-homogeneous vector field of weight −1, is uniquely defined up
to the choice of the non-zero constants α and β (we take the last coordinate, which is
necessarily a constant, to be 1). The dependence locus of S and X, which is the singular
set of the foliation F in C3, is the Klein–Lie curve (αtd

2+d+1, βtd+1, t). After the linear
change of coordinates given by x = αx ′, y = βy ′, z = z′, the foliation in C3 is
exactly that described in Example 1, whose singular locus is the curve γd2+d+1,d+1,1(t) =
(td

2+d+1, td+1, t). The extended foliation in CP(3) is GK and was studied in Example 1:
it has just one quasi-homogenous singularity, an invariant hyperplane (that at infinity,
CP(3) \ C3) and we also know its singular locus. �
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3.2. Proof of Theorem 2. We observe that the second statement of the theorem is a
direct consequence of the first and of Theorem 1, so that we only prove the first.

We perform the arguments in homogeneous coordinates. Let π : Cn+1 \ {0} → CP(n)

be the natural projection. Given a codimension one holomorphic foliation F on CP(n)

of degree d , then the foliation F∗ = π∗(F), on Cn+1 \ {0}, extends to a foliation on
Cn+1, which can be defined by a polynomial 1-form � = ∑n

j=0Aj(z) dzj satisfying the
following properties (cf. [5]).
(i) Aj is a homogeneous polynomial of degree ν = d + 1 for all j = 0, . . . , n.
(ii)

∑n
j=0 zj .Aj (z) ≡ 0.

(iii) � ∧ d� = 0 (integrability condition).
(iv) π(sing(�)) = sing(F) and codC(sing(�)) ≥ 2.
(v) If Uα is the affine chart (zα = 1), then F |Uα is defined by �α = �|Uα .

Moreover, if CP(k) � E ⊂ CP(n) is a linearly embedded k-plane, 2 ≤ k < n, non-
invariant for F , where π−1(E) = E∗, then:
(vi) π∗(F |E) = F∗|E∗ is defined by �|E∗ .

Now, suppose that n = 3 and that F is generated by two one-dimensional foliations,
say Gj of degree dj , j = 1, 2. We have the following.

LEMMA 1. In the above hypothesis, let� be as before. Then there exist polynomial vector
fields Xj on C4, j = 1, 2, with the following properties.
(a) The components of Xj are homogeneous of degree dj .
(b) The two-dimensional foliation on C4 \ {0}, π∗(Gj ), extends to C4 and is generated

by Xj and the radial vector field on C4 : R = ∑3
j=0 zj (∂/∂zj ).

(c) � = iRiX1 iX2(dz0 ∧ dz1 ∧ dz2 ∧ dz3).

Proof. The existence of vector fields Xj , j = 1, 2, satisfying (a) and (b), is well known
(cf. [13]). Since G1 and G2 generate F , we must have iXj� = 0, j = 1, 2. We also have
iR(�) = 0 (from (ii)). Let� = iRiX1 iX2(dz0∧dz1∧dz2∧dz3). It follows from Definition
5 and (b), that codC(sing(�)) ≥ 2 and that for any p ∈ C4 \ sing(�) we have Tp(F∗) =
ker(�(p)) = ker(�(p)), where Tp(F∗) denotes the tangent space to the leaf of F∗
through p. This implies that � = λ� outside sing(�), where λ �≡ 0 is some holomorphic
function on C4 \ sing(�). Since cod(sing(�)) ≥ 2, λ extends to a holomorphic function
on C4, which of course is a homogeneous polynomial. Now, it follows from dg(Gj ) = dj ,
that dg(F) = d1 + d2, and so dg(�) = d1 + d2 + 1 = dg(�). This implies that λ is a
constant. Now, if X̃1 = λ−1X1, then � = iRiX̃1

iX2(dz0 ∧ dz1 ∧ dz2 ∧ dz3), which proves
the Lemma. �

We have the following consequences.

COROLLARY 4. Let F , F∗ and� = iR iX1 iX2(dz0 ∧ dz1 ∧ dz2 ∧ dz3) be as in Lemma 1.
Then for any p ∈ C4 the sheaf of germs of holomorphic vector fields at p which are tangent
to F∗ is free and generated by the germs of R, X1 and X2 at p.

The proof is similar to the proof of Corollary 2 and is left for the reader.

COROLLARY 5. Let F , F∗ and� be as in Lemma 1. Let (Vα)α∈A be a covering of C4\{0}
by Stein open sets and (Xαβ)Vαβ �=∅ be an additive cocycle of holomorphic vector fields
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such that for any Vαβ �= ∅, Xαβ is tangent to F∗; that is, iXαβ� = 0. Then for any
α ∈ A there exists a holomorphic vector field Xα on Vα such that Xα is tangent to F∗ and
Xαβ = Xβ −Xα on Vα ∩ Vβ := Vαβ �= ∅.

Proof. Let X1 and X2 be as in Lemma 1, so that � = iR iX1 iX2(dz0 ∧ dz1 ∧ dz2 ∧ dz3).

It follows from Corollary 4 that if Vαβ �= ∅ then there exist f jαβ ∈ O(Vαβ), j = 0, 1, 2,
such that

Xαβ = f 0
αβR + f 1

αβX1 + f 2
αβX2.

Clearly, (f jαβ)Vαβ �=∅ is an additive cocycle for j = 0, 1, 2. Since H 1(C4 \ {0},O) = 0,

there exist collections (f jα )α∈A, where f jα ∈ O(Vα), j = 0, 1, 2, such that f jαβ = f
j
β − f jα

on Vαβ �= ∅. If we set Xα = f 0
αR + f 1

α X1 + f 2
αX2, then Xα is tangent to F∗ and

Xαβ = Xβ −Xα . �

Now, we consider the case in which F |E is GK.

LEMMA 2. Let F be a codimension one foliation of degree d on CP(n). Suppose that
there exists a 3-plane E as in (vi) before Lemma 1 and that F |E is GK. Let F∗, E∗
and � be as before. Then, for any p ∈ E∗ \ {0}, there exists a local coordinate
system around p, say (U, (t, u, v)), where t : U → C, u = (u1, u2, u3) : U → C3 and
v = (v1, . . . , vn−2) : U → Cn−3, such that t (p) = 0, u(p) = 0, v(p) = 0 and:
(a) E∗ = (v = 0);
(b) �|U = et(d+2)∑3

j=1 αj (u) duj .
In particular, F∗|U is locally equivalent to the product of a codimension one foliation

on C4 by a non-singular foliation, say P , of dimension n − 3, which is given in this chart
by (t, u) = const.

Proof. The lemma is a consequence of [10] and [3]. First of all, observe that LR(�) =
(d + 2)�, because� is homogeneous of degree d + 1. This implies that

R∗
s (�) = es(d+2)�, (12)

where Rs(q) = esq is the flow of R. Let p = (p0, . . . , pn) ∈ E∗ \ {0}. After a linear
change of variables in Cn+1, we can suppose that E∗ = (z4 = · · · = zn = 0) and
p = (1, 0, . . . , 0) ∈ E∗. LetH be the hyperplane (z0 = 1) of Cn+1. Since R is transversal
to H , there exists coordinate system (t, x) : V → D × Cn, where V = {Rs(q) | s ∈ D,
q ∈ H }, such that R = (∂/∂t), H = (t = 0) and p = 0, in this chart. It follows from (12)
that

�(t, x) = et(d+2)ω, (13)

where

ω =
n∑
j=1

ωj (x) dxj

depends only on x = (x1, . . . , xn). We can suppose also that E∩H = E∗ ∩H is the plane
E0 = (x4 = · · · = xn = 0). Note that (v) and the hypothesis imply that all singularities of
ω|E0 are generalized Kupka. We have three possibilities.
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(I) �(p) = ω(0) �= 0. In this case, we have ω|E0(0) �= 0; that is, F∗ is transversal toE0

at 0. In fact, since ω(0) �= 0, F has a holomorphic first integral in a neighborhood
of 0, say f , so that ω = g df , where g(0) �= 0. Now, ω|E0(0) = 0 implies that
df |E0(0) = 0, and so f |E0 has an isolated singularity at 0, which is not possible
(see Remark 2). As the reader can check, this implies the lemma in this case.

(II) ω|E0(0) = 0 and dω|E0(0) �= 0. In this case, 0 is a Kupka singularity of ω|E0 and of
ω. The Lemma follows from the arguments in [10] or [15] in this case.

(III) ω|E0(0) = 0, dω|E0(0) = 0 and 0 is an isolated zero of dω|E0 . In this case, the
lemma follows from Theorem 4 of [3]. �

Now, Lemma 2 implies that there exists an open covering (Uα)α∈A of E∗ \ {0} with the
following properties.
(vii) Uα = Vα×Wα , where Vα is a Stein open subset of E∗ andWα is a polydisk in Cn−3.
(viii) F∗|Uα is the product of a codimension one foliation on Vα by a non-singular foliation

Pα of dimension n− 3, transversal to E∗.
We suppose that E∗ = (z4 = · · · = zn = 0) and use the notation z = (x, y), where

x = (x1, . . . , x4) = (z0, . . . , z3) and y = (y1, . . . , yn−3) = (z4, . . . , zn). Since Pα is
non-singular of dimension n−3 and transversal to E∗, by taking a smallerUα if necessary,
we can suppose that it is generated by n− 3 holomorphic vector fields, say Y 1

α , . . . , Y
n−3
α ,

of the form

Y jα (x, y) = ∂

∂yj
+Xjα(x, y), where

Xjα(x, y) =
4∑
i=1

A
j
α,i(x, y)

∂

∂xi
and A

j
α,i ∈ O(Uα). (14)

LEMMA 3. For any j = 1, . . . , n − 3, there exists a constant vector field Zj on Cn+1 of
the form

Zj = ∂

∂yj
+

4∑
i=1

a
j
i

∂

∂xi
(15)

such that iZj�(q) = 0 for any q ∈ E∗ and any j ∈ {1, . . . , n− 3}.
Proof. Fix j ∈ {1, . . . , n−3} and consider the covering (Uα = Vα×Wα)α∈A and the vector
fields Y jα as in (14). Consider the additive cocycle of vector fields (Xα,β)Vαβ �=∅ onE∗ \{0},
where Xα,β(x) = Y

j
β (x, 0)− Y

j
α (x, 0) = X

j
β(x, 0)− X

j
α(x, 0). Clearly, Xαβ is tangent to

F∗|E∗ if Vαβ �= ∅. It follows from Corollary 5 that we can writeXα,β = Tβ−Tα, where Tα
is holomorphic on Vα and tangent to F∗|E∗ . Since Y jα (x, 0)+ Tα(x) = Yβ(x, 0)+ Tβ(x)

on Vαβ �= ∅, there exists a holomorphic vector field Z along E∗ \ {0}, such that

Z(x) = Y
j
α (x, 0) + Tα(x) if x ∈ Vα . It follows from Hartog’s theorem that we can

extend Z to a vector field on E∗, which we again denote by Z. Let Z(x) = ∑∞
k=0 Z

k(x)

be Taylor series of Z at 0 ∈ E∗, where Zk(x) is a vector field with polynomial coefficients
homogeneous of degree k. Since Y jα is tangent to F∗ and Zα is tangent to F∗|Vα , we have
iZ(q)�(q) = 0 for any q ∈ E∗. Now, since the coefficients of � are homogeneous of
the same degree, we get that iZ0�(q) = 0 for any q ∈ E∗. Finally, observe that Z0 is a
constant vector field as in (15), which proves the lemma. �
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Let us finish the proof of the first part of Theorem 2. We prove that there exists a linear
change of variables on Cn+1 of the form (x, y) = L(u, v) = (u+ b(v), v) such that

L∗(�) =
4∑
j=1

ωj (u) duj .

This clearly implies the first part of Theorem 2.
Let Zj , j = 1, . . . , n − 3, be as in (15). Consider the linear change of variables

(x, y) = L(u, v) as above, given by y = v and xj = uj + ∑n−3
i=1 a

i
j vi , j = 1, . . . , 4.

As the reader can check, we have L∗(Zj ) = ∂/∂vj for all j = 1, . . . , n − 3. Therefore,
returning to the old notation, we can suppose that Zj = ∂/∂yj .

ASSERTION. Let (x, y) ∈ C4 × Cn−3 be a linear coordinate system such that
E∗ = (y = 0) and Zj = ∂/∂yj , j = 1, . . . , n − 3. Then � = ∑4

j=1 ωj (x) dxj in this
coordinate system.

Proof. Let us suppose first that n = 4, so that y ∈ C and Z1 = ∂/∂y. Write

�(x, y) =
ν∑
k=0

yk�k(x)

where ν is the degree of � and the coefficients of �k are homogeneous polynomials of
degree ν − k in x. We can write

�k(x) = �0
k(x)+ fk(x) dy,

where

�0
k(x) =

4∑
i=1

gik(x) dxi

and fk , gik are homogeneous polynomials of degree ν − k, i = 1, . . . , 4. We want to prove
that � = �0

0. First of all, observe that f0 = 0, because f0(x) = iZ1 �(x, 0) = 0. Let us
suppose by induction that �j = 0 for j = 1, . . . , k − 1, k < ν, and prove that �k = 0.
In this case, we have

� = �0
0 +yk(�0

k+fk dy) (mod yk+1) and d� = d�0
0 +kyk−1dy∧�0

k (mod yk),

so that the integrability condition gives us

0 = � ∧ d� = �0
0 ∧ d�0

0 + kyk−1�0
0 ∧ dy ∧�0

k (mod yk).

Since�0
0 = �|E∗ , it is integrable,�0

0 ∧d�0
0 = 0, and we get�0

0 ∧dy∧�0
k = 0. However,

the forms�0
j do not contain terms in dy, and so�0

0∧�0
k = 0. This implies that�0

k = λ�0
0,

where λ is holomorphic, because cod(sing(�0
0)) ≥ 2. On the other hand, the fact that the

coefficients of�0
k are homogeneous polynomials of degree ν − k, while the coefficients of

�0
0 are of degree ν > ν − k, implies that λ = 0 and so �0

k = 0.
Let us prove that fk = 0. We use the vector fields Y 1

α = ∂/∂y +X1
α , α ∈ A, as in (14).

We can write for (x, y) ∈ Vα ×Wα that

Y 1
α (x, y) = Z1 +

∞∑
j=0

yj Xα,j (x)
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where the vector fields Xα,j contain only terms in ∂/∂xi , i = 1, . . . , 4. Since iY 1
α
� = 0

and iZ1�
0
0 = 0, we get

0 ≡ iY 1
α (x,y)

�(x, y) = iZ1�(x, y)+
∞∑
j=0

yj iXα,j (x)�(x, y)

= yk fk(x)+
k∑
j=0

yj iXα,j (x)�
0
0(x) (mod yk+1),

as the reader can check. This implies that iXα,j �
0
0 = 0 for j = 0, . . . , k − 1 and

fk + iXα,k�
0
0 = 0. For Vαβ �= ∅, set Xαβ(x) = Xβ,k(x) − Xα,k(x). Clearly, (Xαβ)Vαβ �=∅

is an additive cocycle of vector fields. Moreover, iXαβ �
0
0 = 0, so that we can apply

Corollary 5 to obtain vector fields Tα on Vα such that Xαβ = Tβ − Tα on Vαβ �= ∅ and
iTα�

0
0 = 0 for all α ∈ A. This implies that there exists a vector field X on E∗ \ {0} such

that X|Vα = −(Xα,k + Tα) for all α ∈ A. By Hartog’s theorem, X can be extended to E∗.
On the other hand, as the reader can check,

iX�
0
0 = fk. (16)

However, fk is homogeneous of degree ν−k and�0
0 is homogeneous of degree ν > ν−k,

so (16) implies that fk = 0. This finishes the case n = 4.
The general case can be reduced to the above by taking sections. In fact, since

iZj�(x, 0) = 0, j = 1, . . . , n− 3, we can write

�(x, y) = �0
0(x)+

∑
1≤|σ |≤ν

yσ�0
σ (x)+

n−3∑
i=1

∑
1≤|σ |≤ν

yσ f iσ (x) dyi,

where σ = (σ1, . . . , σn−3), yσ = y
σ1
1 . . . y

σn−3
n−3 , |σ | = σ1 + · · · + σn−3, f iσ and the

coefficients of �0
σ are homogeneous polynomials of degree ν − |σ | and �0

σ contains only
terms in dx1, . . . , dx4. Let v = (v1, . . . , vn−3) be a non-zero vector of Cn−3 and consider
the linear immersion L : E∗ × C → E∗ × Cn−3 � Cn+1 given by L(x,w) = (x,wv).
We have

L∗(�) = �0
0(x)+

ν∑
k=1

wν
[ ∑

|σ |=k
vσ�0

σ (x)+
( n−3∑
i=1

∑
|σ |=k

vσ vif
i
σ (x)

)
dw

]
.

It follows from the case n = 4 that
∑
|σ |=k

vσ �0
σ (x) = 0; ∀v ∈ Cn−3; ∀1 ≤ k ≤ ν �⇒ �0

σ = 0; ∀σ �= 0.

This implies that

�(x, y) = �0
0(x)+

∑
i,σ

yσf iσ (x) dyi �⇒ d�(x, y) = d�0
0(x)

+
∑
i,σ

yσ df iσ (x) ∧ dyi +
∑
i<j

ωi,j dyi ∧ dyj .
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Now, by using the integrability condition and collecting in � ∧ d� = 0 the coefficients of
the terms containing only the factors dxi ∧ dxj ∧ dy�, we get that∑

i,σ

yσ (�0
0 ∧ df iσ + f iσ d�

0
0) ∧ dyi = 0

�⇒ df iσ ∧�0
0 = f iσ d�

0
0; ∀i, σ ; 1 ≤ |σ | ≤ ν, 1 ≤ i ≤ n− 3.

The last relation implies that f iσ = 0, for all i, σ . In fact, we have seen in the proof of
Lemma 2 thatLR(�0

0) = (ν+1)�0
0, so that iR(d�0

0) = iR(d�
0
0)+d(iR �0

0) = LR(�
0
0) =

(ν + 1)�0
0. Hence,

iR(df
i
σ ∧�0

0) = iR(f
i
σ d�

0
0) �⇒ (ν − |σ |)f iσ = (ν + 1)f iσ �⇒ f iσ = 0,

because f iσ is homogeneous of degree ν − |σ |. This finishes the proof of the assertion and
the theorem. �
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