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Abstract. In the area of the intelligent mobile robots the hybrid reactive-deliberative architectures for navigation are aimed at

an efficient integration of reactive and deliberative skills. Reactive skills allow the robot a fast reaction to unexpected events

whereas deliberative skills permit the generation of plans to carry out tasks. In these systems a high level of accuracy in the

modeling of the environment is not usually necessary but some representation structure is needed to generate safe paths for the

robot navigation. Thus, the perception of the environment and the construction of useful models are two main problems to deal

with. In this work, we propose a fuzzy perceptual model and a map building process which would allow us to build a world

topological map giving us the possibility for reasoning and planning about the robot motion in the world. The perceptual model

deals with the uncertainty and vagueness underlying the sensor data, it carries out the data fusion from different sensors and

it allows us to establish various levels of interpretation in the sensor data. The topological map is used to generate high-level

abstraction paths and then the navigation is carried out using our own hybrid architecture and taking into account the perceptual

model to represent the robot’s beliefs about the world. Experiments in simulation and in real office-like environments are shown

for validating the proposal.

1. Introduction

The hybrid deliberative-reactive architectures ap-

plied to mobile robot navigation are aimed at an ef-

ficient integration of deliberative [26] and reactive

skills [11]. Typically these architectures use differ-

ent levels of abstraction setting a hierarchical structure.

Thus, in three layer architectures [5,20,35] the control

is usually situated at the lowest level whereas the de-

liberation is situated at the highest level. The interme-

diate level is the responsible for executing the actions

of the plan that has been previously computed by the

planning level and it has also to take into account the

1This work has been supported by the MCYT under Project

TIC2002-04146-C05-02.
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current robot state and the perceived world. To achieve

the deliberative skills, some world modeling is needed

to build some kind of representation upon which a plan-

ner can work and search the best path that links the

initial and final positions of the robot. An environment

map is the representation model that is typically used

for the navigation of mobile robots. This map can be

directly provided to the robot so that it can use it during

the navigation or the map can be constructed by the

robot from the sensor data, increasing its autonomy in

this way. In this case, before beginning its mission,

the robot must explore the work space to acquire the

necessary information with the objective of building

and storing a representation of this space. Therefore,

it will be necessary to have a perception model that

allows us to process the sensor data in a suitable way

and that can represent and manipulate the vagueness

and uncertainty in these data in an effective way.

ISSN 1069-2509/04/$17.00  2004 – IOS Press and the author(s). All rights reserved



240 E. Aguirre et al. / A fuzzy perceptual model for map building and navigation of mobile robots

In the field of mobile robots, two fundamental

paradigms exist to represent the environment the robot

has to cope with, geometric and topological ap-

proaches, although hybrid models have also been de-

veloped. Within the geometric approaches, we can find

occupancy grid maps [17,31,32], that consist of a ma-

trix of cells, each of which contains a measurement of

the certainty with which the modeled space is occu-

pied by an object. In other cases, geometric elements

such as points, lines or polygons are used to represent

the environment. These models include, among others,

generalized cones [10], Voronoi diagrams [7], segment

maps [13,18,40] and convex polygons maps [12]. On

the other hand, the topological maps represent the robot

environment as a graph in which the nodes correspond

to distinguished situations or places and the arcs con-

nect those nodes between which a direct path exists [16,

25,29]. Within the topological approaches, the seman-

tics associated with the nodes and arcs is not always

the same. For example, in [41] the topological map is

obtained by partitioning a probabilistic occupancy grid

into regions, that are considered as nodes, separated

by passages, that are considered as arcs. However, in

other models [25] the nodes represent places charac-

terized by the sensor data and the arcs represent paths

between places and they are associated with control

strategies. Therefore, the main difference between the

geometric and topological approaches lies in the stored

information. In the geometric approaches, some geo-

metric properties of the objects such as shape, size and

position are represented in relation to a global coordi-

nate system. On the contrary, the topological maps rep-

resent the world with a higher abstraction level, since

they simply register the vicinity or connectivity rela-

tionships between the relevant places or objects. Thus,

the construction of geometric maps requires to mea-

sure distances and angles, whereas this is not necessary

to construct topological maps. Finally, hybrid mod-

els have arisen to integrate characteristics of both ap-

proaches. Some generate topological maps from grid

maps [41], whereas in other cases a hierarchy of geo-

metric maps linked by topological connections is de-

fined [24,25]. In [4] a hybrid model is proposed to

adapt the type of representation to the specific needs

for navigation according to the characteristics of the

environment.

In certain environments it may be necessary for a

robot to know its exact location in terms of metric co-

ordinates and then the best choice is to use a geometric

map. In other environments, such as a highway net-

work, the street grid of a city, or an office floor with

rooms and corridors, a map specifying only the topol-

ogy of the important places and the connections among

them could be enough. In this work, the objective is

that the robot be able to navigate through an indoor en-

vironment taking into account references as the walls,

corridors, doors and other characteristic elements of

this kind of environment, but knowing only the connec-

tions among these objects and not their exact locations.

Thus, in this work we use a topological map since it

can meet the needs of world representation allowing

us, in addition, a more efficient planning than using a

geometric map.

In this paper, we will focus only on the aspects rel-

ative to the perception of the environment and to the

construction of its topological map. We propose a fuzzy

perceptual model and a map building process that al-

low us to build a world topological map giving us, at

the same time, various levels of interpretation of the

sensor data and the possibility for reasoning and plan-

ning about the robot motion in the world. Both the

perceptual model and the map building process are in-

tegrated into a hybrid deliberative-reactive architecture

for behavior-based navigation.

There exist two approaches to build topological

maps: one consists of creating the topological map di-

rectly [16,25,29,43], while in the other, the robot ex-

plores the environment and builds a geometric map,

from which a topological model is extracted later by

means of some process of analysis [41]. The method

proposed in this work directly creates a topological map

of an indoor environment, made up of several rooms

that are linked by means of doors and corridors.

With regard to the perceptual model, firstly, to re-

duce the negative influence of the noise in the sensor

data we define a new fuzzy sensor model that gives

us a belief degree about the possible existence of a

piece of wall that is being sensed perpendicularly in

the direction to the sensor. Then fusing information

gathered from different sensors, the contours around

the robot can be determined and classified in percep-

tual objects like walls, corners, corridors, doors, hall-

ways and other distinguished places using an incre-

mental process. Fuzzy logic [44] is the tool used to

manage the uncertainty and vagueness of the sensor

data and to model the different perceptual objects that

will be detailed along this work. The uses of fuzzy

logic in robotic systems to connect perception to action

have been numerous [9,21,27,30,37,38]and several au-

tonomous robots have been equipped with a wide set

of fuzzy behaviors as the cases of autonomous robots

FLAKEY [36], in which the architecture Saphira has
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been developed, and MARGE [22]. Regarding envi-

ronment modeling using fuzzy logic some approaches

deal with the modeling of the uncertain geometric robot

environment [23] using points and lines whereas oth-

ers built sonar map using segments whose width and

length are trapezoidal fuzzy sets [18]. There are other

approaches that have proposed variants of Moravec and

Elfe’s occupancy grids [31] in which each cell is asso-

ciated with a possibility distribution that expresses if a

cell is free or occupied [32]. In our proposal and taking

into account the perceptual objects defined, a topolog-

ical map of the environment can be built through the

exploration of the world. Then a planner will be able

to find the best path that links the initial position of the

robot to the final localization to reach.

This paper has been organized in the following way.

First, we briefly introduce the hybrid deliberative-

reactive architecture and the set of behaviors used for

navigating. Next we show the kind of map that will be

built through the exploration of the world. This map

is based on the perceptual model which is explained in

detail in Section 4. In this section firstly, the fuzzy sen-

sor model for modeling the possible existence of per-

pendicular walls is properly detailed. Upon this fuzzy

sensor model we develop the procedures to determine

the perceptual objects or distinguished places setting

the description of these places by means of fuzzy logic.

Once the perceptual model is explained, the environ-

ment exploration algorithm and map building process

are defined in Section 5. In the experimental section,

some results of detection of perceptual objects and the

map building process both in simulation and in a real

office-like environment are shown. Then the perceptual

model and the topological map proposed have been ap-

plied for navigating using our own deliberative-reactive

architecture obtaining a safe behavior-based naviga-

tion, first in simulation and afterwards in a real envi-

ronment. Finally, we comment on about related works,

some limitations of the proposal and some conclusions

and future work lines too.

2. Overview of the architecture

Our system is along the lines of behavior-based

robots [6] and uses a three-level architecture to integrate

deliberative techniques and reactive behaviors. This

architecture is composed of three hierarchical layers: a

planning, an executive-exploration and a control level.

Figure 1 shows the relationship among these layers and

the map of the environment.

The highest level must search for a safe and

minimum-cost path from an initial position to a final de-

sired position across an office-like environment, which

is expressed by means of a map that contains topologi-

cal information about the environment represented like

a graph. Previously, the map is constructed performing

an exploratory task in order to discover several kinds of

distinctive places, which are regions in the world that

have characteristics that distinguish them from their

surroundings. In the next section, it is described how

the world is represented by means of a graph and in

Section 5 the map building process is explained in de-

tail.

In the exploration phase, the intermediate level will

deal with building the topological map of the robot work

space. To do that, the robot must travel through the

environment locating the perceptual objects that have

to be stored into the map, by selecting the behaviors

which should be activated at each moment, according

to the context of the robot and the exploration strategy

adopted.

The topological map provides information gathered

directly from the interaction of the robot with the world,

but it can additionally contain any information obtained

independently of the robotic agent itself, such as maps

obtained from floor-plans. This kind of information re-

solves, for example, the problem of detecting the pres-

ence of a staircase since this kind of object cannot be

detected with the current sensor system. The topo-

logical map can be used by the planner to compute a

minimum-cost path from the current position to the de-

sired goal taking into account the estimated length of

each arc and using a standard graph search algorithm,

such as Dijkstra’s shortest path algorithm or the A*

algorithm.

The executive function of the second level must en-

sure the fulfillment of the plan by selecting which basic

behaviors should be activated at a given time depending

on the environment, the robot state and the current goal.

Thus, this level defines the context of applicability of

certain behaviors using a set of metarules that address

the perceptual objects that form the current context.

The detection of the perceptual objects is based on the

perceptual model proposed in this work which is used

to generate the level of belief in the existence of the

different objects.

The robot, by activating its reactive behaviors, will

be usually able to accomplish the plan in spite of the

presence of unexpected obstacles along its path. Addi-

tionally, the executive level monitors the performance

of the robot so that possible failures can be detected.
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Fig. 1. Three-level architecture and map.

These failures may be given by changes in the envi-

ronment which are not present in the current map. For

example, a door that previously was opened, is closed

now or some unexpected obstacle is blocking the path

in the middle of a room or the robot becomes trapped

among several unexpected obstacles. In these cases

the execution of the original plan is interrupted by the

execution level and, if it is necessary, one behavior

specifically designed for these situations is activated to

lead the robot to a safe area. The new location of the

robot is computed by the execution level and the map

is updated to show the new state of the environment.

Then the planning level considers the new situation to

decide if it is possible to fit the current plan, or on the

contrary, it is needed to generate a new plan or to abort

the mission after informing the user.

The robot localization during navigation is also a

function of the intermediate level. This problem is

resolved using an approach based on map matching [8,

14,34] so that the robot can know its position in the

world but taking into account a reasonable level of

uncertainty.

The lowest level deals with the control of the robot

motion, coupling sensors to actuators. The control

level is composed of several rule-based basic behaviors

which can be combined to generate a more complex

observable behavior [2]. Fuzzy logic is also used for

designing the rules of the behaviors and to obtain the

preferred action from each behavior and then to fuse

these actions.

2.1. The behaviors

The design of the behaviors follows a methodol-

ogy [3] by the authors, which is based on fuzzy control

and fundamentals of regulatory control. This method-

ology sets a classification of the behaviors according to

the use of several abstraction levels on the information.

That is, we classify the behaviors according to the kind

of input information that is used. Thus, the input data

can be:

– Input data from the robot sensors with a simple

pre-processing to avoid noisy data. Within this

kind of behaviors we distinguish between:

1. Behaviors addressed to reach and maintain an

objective e.g. the following of a wall. We call

these Objective-oriented behaviors and they

are:

∗ Follow wall. It follows the right or left wall

to a certain distance and maintains the robot

aligned with the wall.

∗ Follow Corridor. It keeps the robot close to

the middle of a corridor and in line with it.

∗ Face object. This behavior moves the robot

according to a certain orientation so that the

robot aligns itself with the correspondingob-

ject, for example a wall, corridor or door.

2. Behaviors that tightly couple perception to ac-

tion such as Avoid obstacle. These are Purely-

reactive behaviors.

– Input data from a sensor-derived world modeling.

There is a temporary world representation but only

the information necessary for the performance of

a specific behavior is represented. For example

Cross door is a behavior of this kind. We call these

Short-memory behaviors.

More details about the behaviors, metarules and con-

trol level can be seen in [3] whereas details about the

planning level and topological and geometrical maps
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integration can be viewed in [4]. Likewise, overall ar-

chitecture is profusely detailed in [1]. In the rest of the

work the attention is focused on the fuzzy perceptual

model and on the topological map building process.

3. Environment modeling: The topological map

Considering that the navigation of the robot is lead

by reactive behaviors, which permanently gather local

information from the environment and act according to

these inputs following certain rules, it is not necessary

to use maps with complete information on the world.

The idea is that the robot moves through the environ-

ment following routes in the style of the descriptions

that the people use to indicate how to arrive at a place:

“go out through this door and follow the corridor to-

wards the left until arriving at the next door”. That

is, the routes that the robot must follow are described

in terms of the subobjectives or places that have to be

reached by means of the interaction of different behav-

iors, instead of providing the robot a path as a series of

coordinates in a plane.

When representing the world in this way instead of

using a geometric model, the navigation capabilities of

the robot are better used. For example navigating fol-

lowing the contour of a wall, by means of the behavior

Follow wall defined in the control level, generates a

very robust final result because the robot moves with

constant reference to an object that it is perceiving in-

stead of doing it with respect to a representation of the

object that hardly will be exact. In short, the objective-

oriented behaviors and those of purely-reactive type are

going to generate a final behavior more robust and less

dependent on the accuracy of the representation mod-

els used, since they have a higher interaction with the

environment.

Therefore, the model that we use to represent the

work environment of the robot consists of a topologi-

cal map represented as an undirected connected graph

(Fig. 2). Formally, the topological map consists of a

graph G = (V, E), where V = {v1, . . . , vN} is the set

of N nodes, and E ⊆ {eij , i = 1 . . .N, j = 1 . . .N},
where eij = (vi, vj), is the set of M edges. The

nodes of this graph correspond to distinguished places

of the environment and the edges connect pairs of these

places. The perception system classifies the distin-

guished places according to its morphological charac-

teristics in: corners (c), doors (d), hallways (h), end of

corridor (ec) and a default object type corresponding

to a long irregular boundary (i). Then each edge of the

graph represents a wall (w), a corridor (co), an edge

that crosses a door (cd), or a link between an irregular

type node and any other kind of node, and it expresses a

transition between two distinguished places, that is, the

behavior that the robot must activate to be transferred

from one place to another. Both nodes and edges have a

descriptor which contains information about the object

type and a fuzzy estimation of the object’s length.

Some explanations about the way of representing

these distinguished elements in the graph follow:

– A door always gives rise to two nodes in the graph,

each of them represents the door from a side of

this one. The kind of these nodes can be door or

hallway, depending on whether the door connects

two rooms or a room with a corridor. In the first

case, both nodes will be of the door type, one in

each room, whereas if there is a door between a

room and a corridor, then a node of door type will

be had in the room and a hallway type node in the

corridor. The reason for which this distinction is

done is that the doors can be faced in the corridors

and then the robot will detect such doors at the

same time, when it moves throughout the corridor,

thus they are represented as a single node of hall-

way type connected with different nodes of door

type situated in the rooms to which they give way.

– The hallways are also going to represent the ending

of a corridor in an open zone (which can also be

considered a room from the point of view of the

environment representation) without any door that

mediates between both spaces.

– As a result of both previous points, a hallway is a

place of transition between a corridor and one or

several rooms, and it can represent one or several

doors seen from the corridor or the ending of the

corridor directly in a room too.

– The end-of-corridor node type is reserved to rep-

resent the ending of a corridor in a wall.

It is important to note that the number of adjacent

edges of a node is determined by the kind of node. Con-

cretely, a corner has two edges, the two walls that form

it; a door in a room will always have two edges corre-

sponding to the two walls that delimit it and an edge

of connection with the other side; a hallway will have

two, three or four adjacent edges, according to whether

it connects with one or more rooms; and finally, the end

of a corridor is a node with a single edge, the corridor

that finishes. This characteristic of the representation

model facilitates the exploration task largely, because

when the robot arrives at a node it needs to know the
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Fig. 2. Work environment representation by means of a topological map.

number and type of the adjacent edges to learn which

are unexplored and to decide which way the exploration

should continue using the appropriate behavior.

In order to complete the topological map, it will be

necessary to incorporate some information associated

to the edges to be used as a help for the search of paths

in the planning phase. That is, it will be necessary to

assign some cost or weight to each edge of the graph like

the length of the edge or the security level or difficulty

whereupon the edge can be crossed, depending on the

obstacle density that has been detected in the phase of

exploration.

4. The fuzzy perceptual model

The proposed perceptual model allows us to build

an approximate environment model by setting various

perceptual objects or distinguished places that repre-

sent different levels of interpretation of the sensor data.

Besides, this fuzzy perceptual model is used to deter-

mine the robot’s beliefs about the perceptual objects

present in the environment and it allows the behavior-

based navigation using the deliberative-reactive archi-

tecture briefly introduced in Section 2. To define the

model, first the influence of noise in the sensor data

must be taken into account, so we have developed a

process to reduce the negative influence of the noise.

The idea is to define a sensor model for computing a

level of belief about the possible existence of a straight

contour around the robot and situated perpendicularly

in the direction of the sensor which is sensing that con-

tour. These contours belong to objects and walls of the

environment but from the point of view of the robot the

contours will be considered coming only from walls

so that the concept of wall must be understood in a

flexible way. Precedents of this way of understanding

the walls can be found in [28] where the integration of

qualitative maps and behavior-based robotic systems

is demonstrated. Once we have a belief degree of the

existence of a straight contour that is being perceived

perpendicularly to some sensor, the different perceptual

objects that form the topological map are defined.

4.1. The fuzzy sensor model

The sensing system of the robot is under the influ-

ence of multiple error sources that depend on the envi-

ronment features and the kind of sensor. These errors

concern the computation of distance and position of the

sensed objects by the perceptual system. In our system

the main sensors used to navigate are sonar and infrared

sensors, but actually most measures are provided by the

sonar sensors since infrared sensors have a very lim-

ited range. To consider the presence of uncertainty and

vagueness in the sensing information, mainly provided

by the sonar system, we have followed the process ex-

plained below. This process has been validated by ex-

perimenting with a mobile robot Nomad 200 [39], but

notice that the underlying ideas can easily apply to any

robot that uses ultrasound sensors.

The idea is to compute the belief in the correctness of

the measure that has been sensed by a sensor. It will be

higher if the echo of the emitted signal is returning from

a surface perpendicular to the direction of that sensor.

In this case it is well know that the computed measure

is very accurate. Thus, a new fuzzy sensor model is

developed to consider the influence of the uncertainty

and vagueness in the measures. The idea of this sensor

model is to increase our belief in a measure if the echo is

returned from a surface perpendicular to the direction of

the sensor. This sensor model makes sense because our
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Fig. 3. Sensing a perpendicular wall to sensor 4.

architecture can use several behaviors that allow to the
robot to follow the contours of objects, in fact Follow
wall and Follow corridor behaviors move the robot
following the right or left wall or following a corridor in
the middle. In such situations, the sensor situated in the
number 4 position of the sensor ring (see Fig. 3), if the
robot is following the wall on the left, or in the number
12 position (see Fig. 3), if it is following the right wall,
are going to be in very good situation for sensing the
distance to the object with a high accuracy. However
the echoes are not always returned from perpendicular
surfaces so a measure of belief is needed to assess the
accuracy of the values computed by any sensor. Thus,
we propose the following system.

The first step is to model the situation of sensing a
perpendicular echo and afterwards consider the influ-
ence of the error source. Figure 3 depicts the ideal
situation when the sensor s4 is sensing a perpendicu-
lar wall. In this ideal situation, we are supposing the
absence of noise in the measures and that the echoes
have a good angular resolution. Both features will be
more realistic in the case of the echo from sensor s4

but not for sensors s3 and s5. This fact will be dealt in
a second phase.

In the ideal situation shown in Fig. 3, we define the
relationship d, between the value of h − a and the

value of a, as d = h−a
a

, or simplifying d = h
a
− 1.

Considering the situation shown in Fig. 3, a rectangle

triangle exists among a, h and the wall, so that a =
h · cos 22.5 and replacing the value of a in the first

equation then:

d =
h

h · cos 22.5
− 1; d =

1

cos 22.5
− 1;

d = 0.0823.

Therefore the value of h−a can be said to be 8.23%
the value of a when a perpendicular wall to sensor s4

is sensed. So far we have supposed the absence of

noise and that the signal echoes return to the sensor

describing straight trajectories. This assumption can

be considered generally valid for sensor s4, since this

sensor is pointing in a perpendicular way to the sensed

wall, but for sensors s3 and s5 a more complex model

is needed. The reason is that the incidence angle of the

ultrasound beam on the object affects to the accurate of

the measure given by the sensor. Also, the ultrasound

sensors can sense any object within a cone approxi-

mately 30 degrees wide and they can supply erroneous

measures depending on the position the sensed object

into the perception cone. Therefore, a 30 degree cone

is used to model the width of the range of the sonar,
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Approximate subtraction

0.86 8.23 14

Fig. 4. Approximate subtraction between h and a normalized to the

value of a (in percentage).

so that the returned echo from the sensors s3 and s5

can come from some points of the wall different to the

ones shown in Fig. 3 (corresponding to the arrowheads)

and these points should probably be closer the point

that has been sensed by the sensor s4. In order to take

this aspect into account, our sensor model considers

that the echo can come from a point such that the an-

gle between lines h and a will be a value belonging

to the interval [7.5, 22.5] (degrees), since the influence

of the half sensing cone is considered (15 degrees).

The value of d if the angle is 22.5 degrees, has been

already computed and we call it dmax, in percentage,

dmax = 8.23. Through a similar process for an angle

of 7.5 degrees, we obtain in percentage, dmin = 0.86.

To deal with the vagueness underlying to the assumed

suppositions, including the fact that the sonar measures

have an error of 1%, the fuzzy set shown in Fig. 4 is

used as a soft representation for the value of d. The

support of this fuzzy set is defined so that both dmin

and dmax will have maximum membership degrees and

the values greater than dmax will have gradually lower

membership values. The gradient of the right part of

this fuzzy set has been experimentally fixed.

This fuzzy set is considered as the Approximate Sub-

traction (AS) between the measures of two consecutive

sensors si, sj normalized to the value of si, needed to

establish whether in front of si, a perpendicular wall

has been detected by the echo of si. Thus, the degree

of belief in sensing a perpendicular wall to s i taking

into account sj , B(si/sj), is defined as the value of

the membership function of AS, µAS , in (sj − si)/si

expressed in percentage, that is:

B(si/sj) = µAS((sj − si) · 100/si)

so that B(si/sj) will be a value that belongs to interval

[0,1] since µAS is a membership function of a fuzzy

set and it is defined in the interval [0,1]. Addition-

ally, the previous sensor in the ring can also be con-

sidered in order to carry out a similar process. Thus,

let B(si/si+1) be the degree of belief of perpendicular

wall to sensor si taking into account the value of si+1

and let B(si/si−1) be the belief of perpendicular wall

to sensor si but considering the measure from sensor

si−1, then the final value B(si) will be the result of

fusing both values. To compute the final value, we con-

sider that a perpendicular wall to si exists if a perpen-

dicular wall to si has been detected depending on the

measures of si+1 or si−1. Understanding B(si/si+1)
as the possibility of the first event and B(si/si−1) the

possibility of the second event, then the possibility of

the union of both events is the maximum of both pos-

sibilities according to the possibility theory [45]. Thus

the blended belief will be:

B(si) = max{B(si/si+1), B(si/si−1)}.

Anyway it is necessary to notice that this process

is not avoiding all the possible noise sources, since

the ultrasound sensors can be affected by several noise

sources at the same time and it is usual the presence of

non linearity in the data. That is, there may be some

situations in which the result of the described opera-

tions renders the belief of a perpendicular wall to be

1, but the wall is not actually perpendicular. There-

fore to draw more reliable conclusions from this sensor

model some redundancy and data fusion are needed.

Thus, in the process to determine the perceptual objects

several values of this measure along the time must be

considered and also the information of different sen-

sors of the sensor ring must be properly blended. Both

questions have been taken into account in next subsec-

tions in which, both the measures of the sensor model

and the distances computed by the ultrasound sensors

are understood as variables affected by vagueness and

uncertainty.

Vagueness refers to the fact that the value of the vari-

able under consideration is only known to belong to

some subset of values that is not a singleton. Uncer-

tainty refers to the lack of complete information that

precludes a statement as to the certainty that the vari-

able either belongs or does not belong to some subset.

In this work, we use the possibility theory [45] for the

modeling of information that is both vague and uncer-

tain so that the perceptual information is understood as

belief and it is dealt by the robot following the rules

of the approximate reasoning [44]. Furthermore, with

respect to the design of the behaviors, we use fuzzy

control [15] since this kind of control is preferred for

non linear systems, systems with no predictable distur-

bance or low accurate sensors and systems where there

is a need to incorporate human experience [42].
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4.2. Determining the perceptual objects

In this subsection, we are going to show how the sen-

sor model previously defined can be used to determine

various perceptual objects or distinguished places that

can be used for both building a topological environment

map and navigating using the behaviors.

The philosophy that guides the design of these rou-

tines is the following. In the first place, a linguistic de-

scription of the object is given and then this description

is represented using expressions with fuzzy sets. These

fuzzy expressions use certain perceptual features that

generate a belief level in the existence of the object.

Then if a high level of belief is given during a time

then the beginning of the object is considered. The

perceptual routines are continuously computing the be-

lief level thus if the level becomes lower than a certain

threshold during a time, then the end of the object is

fixed.

In next subsection this process is explained in detail

for the case of determining the wall existence but when

the other objects are explained, the attention will be

mainly focused in the fuzzy expressions to determine

the perceptual features.

4.3. Determining the existence of possible walls

To determine the existence of a wall, the informa-

tion provided by the previously explained sensor model

is used. Through the sensor model a belief value of

sensing a perpendicular wall can be associated to each

sensor of the robot sensor ring. Summarizing, let s0 to

s15 be the sixteen possible positions in the sensor ring

then B(si) is the belief value, between 0 and 1, of a

perpendicular wall exists to the corresponding sensor

at distance D(si). This information is always available

and it is continuously updated. Furthermore, taking

into account the direction of the robot motion when

it is navigating different kinds of walls can be deter-

mined. That is, the process will deal with the possible

existence of walls on the right or on the left relative to

the robot motion. Therefore our objective is to com-

pute the value of possible left wall, which is expressed

by beliefW (Left) or possible right wall, which is ex-

pressed by beliefW (Right). We are also interested in

obtaining the distance to the wall. On the other hand,

as the values of long distances can be more affected by

noise, a distance threshold is considered so that a mea-

sure is rejected if it exceeds this threshold. Actually

this threshold is a new fuzzy set that we call WD (Wall

Distance). This fuzzy set, shown in Fig. 5, allow us to

Wall Distance
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Fig. 5. Wall Distance.

smooth the threshold of maximum distance at which a

wall can be sensed.

The linguistic description of a right or left wall could

be as follows. A left (or right) wall exists if the sensors

situated on the left (or right) are detecting an approxi-

mately perpendicular wall to the direction of those sen-

sors and also the distance of detected wall is smaller

than a certain threshold. This description is translated

to the fuzzy expression beliefW(Left) which fuses the

information provided by various sensors.

Here we suppose that the robot is following the left

wall so that the value of beliefW (Left) is computed

by:

beliefW (Left) = max
i
{min{B(si),

µWD(D(si))}} i = 2, 3, 4.

That is, the belief of the possible left wall is computed

using the value of possible perpendicular wall detected

in some of the positions sensed by the sensors number

2, 3 or 4, taking the maximum value of beliefW among

the three sensors and provided that the distance to the

possible wall was under the threshold. Let s iMax be the

sensor in which the belief is maximum and being the

distance to the wall within the established threshold on

the distance, then the value of distance to the left wall

is given by:

distanceW (Left) = D(siMax
).

Another factor that must be considered to estab-

lish the beginning of a wall is the time factor, that

is, to establish that a left wall is sensed, the value of

beliefW(Left) must be greater or equal than a certain

threshold continuously during some time.

Let

{beliefW1(Left), belief W2(Left), . . . ,

beliefWn(Left)}

be n consecutive measures ofbeliefW(Left)and let δ ∈
[0, 1] be the considered threshold, then the beginning

of the wall becomes true if:

∀i{beliefWi(Left) > δ} i = 1 . . . n.
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Thus we use redundant information to avoid the neg-

ative influence of noise sources. Finally, we should

note that the values of parameters n and δ have been

determined experimentally after numerous tests have

been carried out.

When the beginning of the wall is detected, the level

of belief in that wall is continuously observed and up-

dated so that if this value becomes lower than the thresh-

old for a number of consecutive steps then that wall

is considered finished. Other possibility that can pro-

voke the end of the detected wall is the perception of

a new perceptual object in the data, as for example the

presence of a corner or a corridor.

Belief levels for walls on the right, front and back

can be defined in a similar fashion to beliefW (Left).
These are their expressions:

beliefW (Right) = max
i
{min{B(si),

µWD(D(si))}} i = 12, 13, 14;

beliefW (Front) = max
i
{min{B(si),

µWD(D(si))}} i = 1, 0, 15;

beliefW (Back) = max
i
{min{B(si),

µWD(D(si))}} i = 7, 8, 9.

Once again, the distance to each wall is computed

following the process explained above.

4.4. Determining the existence of possible corners

A corner is another possible distinguished place to be

considered. More exactly we consider a corner as the

intersection between two approximately perpendicular

walls. Thus, a corner can be perceptually established

by the determination of two nearby walls that are inter-

secting and forming it. We use the information B(s i)
about the existence of “possible perpendicular wall”

from all of the sixteen sensors of the ring. To detect

the existence of a corner at the direction of the sensor

si the levels of belief in perpendicular wall of sensors

s(i+2)mod16 and s(i+14)mod16 are used because these

two walls are forming the corner in the direction of

si. Additionally, the distance of these walls is bounded

using a new fuzzy set in order to detect the corner in

the moment in which the robot is reaching that corner.

This new fuzzy set, that we call Corner Distance (CD),

is shown in Fig. 6.

Thus, the belief of the existence of a corner in the

direction of si is computed as follows with 0 6 i 6 15:

Corner Distance

15 25 30 Cm

Fig. 6. Corner Distance.

beliefC(si) = min
j
{min{B(sj), µCD(D(sj))}}

where j = (i+2) mod 16, (i+14)mod 16 and mod is

the mathematical module operator. Therefore, a value

of belief in the interval [0,1] is assigned to the possibil-

ity of existence of a corner in the direction of sensor s i.

The distance to this corner will be approximated using

the minimum value between the distances to each wall.

Once a value of “possible corner” has been assigned

to every position of the sensor ring, then these values

are blended for computing the belief of “possible left or

right corner” according to the direction of the robot mo-

tion. Using the maximum as an aggregation operator,

the belief of left corner will be:

beliefC(Left) = max
i
{beliefC(si)}

i = 1, 2, 3, 4.

Similarly for a right corner, it will be:

beliefC(Right) = max
i
{beliefC(si)}

i = 12, 13, 14, 15.

The process of corner detection needs some redun-

dancy in the measure of beliefC(si) so that in order

to establish the presence of the corner, a high level of

beliefC(si) is needed during some time using a process

similar to the procedure described in subsection 4.3.

The end of the corner is determined when the mea-

sure of beliefC(si) is under a certain limit during some

time. The values of the parameters used in this process,

as well as the support and membership function of the

fuzzy sets have been obtained experimentally. Convex

corners, are not actually considered into the kind of the

corners discussed here. They are considered as result

of the end of a wall or a corridor. When a topological

concept has to be associated to these corners they can

be modeled as hallways and irregular contours which

are described in subsection 4.7.

4.5. Determining the existence of possible corridors

We use a linguistic description of the concept of cor-

ridor to define a corridor. We call beliefCo(Ahead) to
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Fig. 7. Corridor Width.

the level of belief on a corridor composed of “two par-

allel walls that are detected at both sides and separated

to certain distance”. Anyway the process deals with

many more intermediate possibilities relative to the po-

sition of the robot and the walls since fuzzy sets are

used to represent and process the sensor information.

The information of the existence of the walls is taken

from beliefW (Left) and beliefW (Right) whereas

the width of the corridor WideCo will be established

by the following expression:

WideCo (Ahead) = distanceW (Left)

+ distanceW (Right) + 2·R

where R is the radius of the robot turret.

This width must be within certain limits to be con-

sidered as a valid width of a corridor. These limits are

represented by means of a new fuzzy set that we call

Corridor Width (CW), which is shown in Fig. 7.

The level of belief of “possible ahead corridor” is

defined blending the belief of wall on the left, wall on

the right and the belief of these walls being separated

within the considered limits. That is:

beliefCo(Ahead) = min{beliefW (Left),

beliefW (Right), µCW (wideCo(Ahead))}.

The minimum is the operator used since the three

conditions are necessary to determine the existence of

the corridor. The detection of the end of the corridor

is determined when the robot detects a frontal wall that

interrupts the corridor or when it arrives at a hallway

situated at the end of the corridor.

4.6. Determining the existence of possible doors

The detection of the doors is more difficult than the

detection of the previous objects. There is an important

reason for this. The robot try to detect doors when it

is following the contour of walls. In this situation, it is

not possible to determine the existence of a door from

the measures taken only at a fixed moment. It is nec-

essary to consider the measures of the sensors during a

time interval because when the robot begins to perceive

Cm85
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Fig. 8. Door Width (DW).

a possible door, the presence of the other frame that

delimits the door cannot be detected with reliability.

Obviously, we are speaking of opened doors, because

the robot is going to try to detect the gap delimited by

the frames of the door. Consequently, the linguistic

description of a door is a gap within a wall and whose

width is similar to the widths of doors commonly found

in indoor environments. This width is defined as the

fuzzy set shown in Fig. 8, called Door Width.

The detection of doors is made in two stages. Firstly,

the position of the first frame that the robot finds when it

is following a wall is calculated. That is, the existence

of a possible door is considered when the robot begins

not to perceive the followed wall. The end of a left

wall is determined using the sensors s3, s4 and s5 in

the following way:

– Three fuzzy sets are defined (Fig. 9):

∗ High Increment (HI) define a high increment

between two consecutive readings of a sensor.

∗ Zero Increment (ZI) define a very small variation

between two consecutive readings of a sensor.

∗ Wall Normal Distance (WND) represent the ap-

proximate distance to which the robot follows

the walls.

– The membership degree of the variation between

the two last readings of s3, ∆s3, to the fuzzy set

HI is µHI(∆s3).
– The stability degree of the readings of the sensor

si when the robot is following a wall is defined as

the measurement in which the variation between

the two last readings of si is very small and the

distance to which si is perceiving something is

more or less that which the robot follows the walls.

stability(si) = min{µZI(∆si), µWND(si)}.

– Finally, it could be concluded that the left wall has

ended and the robot has detected the beginning of

a possible door, if s3 has a sudden high increase,

that is, it does not already perceive the wall, but

s4 continue perceiving the wall, that is, s4 is sta-
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Fig. 9. Fuzzy sets for detecting a door.

ble. However, in order to increase the confidence

in this measurement, the degree of stability of the

sensor s5 is also calculated and the degree corre-

sponding to the most stable sensor (s4 or s5) is

taken. Thus, the degree of belief of end of a left

wall or belief in the existence of the first frame

on the left, beliefFF (Left), is calculated as the

minimum of these two conditions.

beliefFF (Left)=min







µHI(∆s3),
max{stability(s4),
stability(s5)}







In a second phase, the size of the gap that con-

stitutes the possible door is calculated, that is, the

robot goes to try to detect the beginning of the sec-

ond frame. To do that, the robot must continue ad-

vancing following the direction of the wall until find-

ing the other frame. This one will be found when

the robot detects again the wall to the same distance

to which it left it (distanceW0(Left)) and whenever

the traveled distance between a frame and another one

(traveled distance) corresponds to Door Width (DW).

Thus the degree of belief in the existence of the second

frame on the left, beliefSF(Left), is:

belief SF (left)=min































beliefW(Left),
µZERO(distanceW0

(Left)− distance
W(Left)),
µDW (traveled

distance)































where, beliefW (Left) is the belief in finding again the

wall after the gap, distanceW (Left) is the distance

to this wall and ZERO is a fuzzy set that represents

“approximately 0”.

Therefore, the final degree of belief that a door has

been found, beliefD(Left), is defined as the minimum

of the two conditions because both previous conditions

are necessary:

belief D(Left) = min {belief FF (Left),

belief SF (Left)}

The belief of a door on the right can be defined in a

similar fashion considering sensors s11, s12 and s13.

Notice that this process to detect the doors suffers

from the usual weakness of the ultrasound sensors,

therefore some redundancy on the measures is taken

into account again. Anyway, some gaps in the walls

can be classified as doors whereas they are not real

doors. In a new version of this process, we are using

visual information to increase the belief in the possible

existence of the frames of a door so that this problem

can be resolved.

4.7. Determining the existence of other distinguished

places

It is possible to find places with contours not suffi-

ciently regular to be considered walls and that can not

be classified in any of the previous categories. In this

case, a special kind of object that we call irregular con-

tour is used for modeling these places. For example, a

convex corner at the end of a wall will be classified as

this kind of object.

Regarding the places hallways, the robot detects

them using a similar process for detecting a door when

this one is located at a left or right side of the direction

of robot motion. That is, if the robot is following a cor-

ridor and it arrives near to an opened door which links

the corridor and a room, then it thinks that the corridor

is interrupted by the presence of the opened door and

classifies that place as a hallway, since it is a place that

communicates the corridor with a room. Moreover if

the corridor ends on a clear space then the robot will

detect the open space in both sides and it will classify

this place as a hallway too.

Figure 10 shows both situations describing the con-

cept of hallways for the robot. Besides, this figure

shows some convex corners and how these places can

be included into the hallway places.

5. Environment exploration and map building

In this stage, the final mission of the robot is to

explore the environment in order to determine all the

nodes and edges of the graph and to build the topolog-
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Fig. 10. Hallways.

ical map of the environment. For this, as it has been

explained in Section 2, the executive-exploration level,

that is located on the control level in the navigation

system architecture, takes charge of selecting the be-

haviors that must be activated at every time. Which are

these behaviors will depend on the context in which the

robot is at every time and on the exploration strategy

followed.

As the exploration progresses, a partial map of the

environment is constructed consisting of all nodes and

edges that have already been explored. Whenever the

robot arrives at a node, it is necessary to solve two

problems so that the robot can achieve its objective.

On the one hand, it must select the edge by which to

continue the exploration and to activate the behavior to

traverse it. To select the most suitable edge to explore

next, the robot needs to know the number and the type

of the edges adjacent to the reached node. In our model

of environment representation this is possible, because

the kind of node directly determines the number and

type of the adjacent edges. Therefore, for each node of

the constructed part of the map, at any time it is known

how many unexplored adjacent edges exist and their

types, but the ends of these edges are unknown.

Although the map that we want to build is a topolog-

ical map, sometimes the robot uses metric information

in the map building process and therefore a method is

necessary to correct the cumulative errors of the dead

reckoning system. This problem is resolved by match-

ing environment maps constructed by the robot at dif-

ferent times. The initial map built when the robot starts

moving in the environment is used as a reference map

since it provides the best estimate of the positions of

the different perceptual objects detected in the envi-

ronment. These positions are relative to a local co-

ordinate system which is associated to that concrete

sector of the environment. Subsequent maps obtained

as the robot continues moving in the same sector are

matched against the initial map and the transformation

that brings them together is used to estimate the odo-

metric system errors. Once these errors are corrected

the uncertainty about the robot localization is bounded

to certain level that depends on the size of the sector

and the precision of the odometric system. However

this uncertainty can be managed by the system since

the position of the robot is represented by using fuzzy

sets too. Actually a more accurate positioning system

is not necessary because the global topological map has

not to be metric and globally consistent to allow the

behavioral navigation of the robot. This localization

method is mainly based on the map matching method

proposed in [19].
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With regard to the exploration of the environment,

the exploration algorithm has been designed based on

the proposal of Panaite and Pelc [33] to explore an
unknown undirected and connected graph. During the

construction of the map, the edges that have not been

explored yet are called free edges. A node is said
saturated if it does not have free adjacent edges. The

exploration of the complete graph is done visiting and

saturating each node of the graph. Each node saturated
during the robot’s trip is marked, thus the graph will

have been completely explored when all the nodes have

been marked.
In order to saturate a node v, the robot follows the

algorithm shown in Fig. 11. It traverses a path from

v successively selecting free edges until arriving at a
saturated node or until returning to departure node v.

In the first case, the robot turns back on the walked path
until finding a nonsaturated node and it continues the

exploration from there. But if the robot returns to the

initial node v, then v can be nonsaturated and the robot
will continue the exploration as has been described,

selecting successive free edges and going back from the

saturated nodes until returning to v again. This process
will finish when the robot returns to node v and it does

not have free adjacent edges.

Once the initial node is saturated, if there are still
nodes with free edges, a partial map of the environment

will have been constructed. Then one of these nodes

is selected and it is saturated by means of the previous
procedure. The selection of the next node to saturate

is made with the goal of reducing the total distance

traveled by the robot, so the nearest nonsaturated node
to the current node is chosen. When no unsaturated

nodes remain, the exploration finishes and the map will

have been completely constructed.
Likewise, the order in which the free edges of a node

are selected is important to try to reduce the distance

traveled by the robot during all the process. Thus, the
robot does not leave a room until it has been completely

explored. A corridor is not explored at once, but rather
when the robot advances by a corridor, it goes into the

rooms to explore them, crossing the doors that it finds

throughout the corridor. According to this, the robot
explores the environment by regions, room by room, so

that when it visits the last room, probably nonsaturated

nodes does not remain and therefore it will not have to
return on its steps to complete the map.

6. Experimental results

As we said, the objects or distinguished places that

have been explained can be used for both building a

qualitative map of the environment and navigating us-

ing the set of suitable behaviors. Thus, in our archi-

tecture one important advantage of using a topological

map is the assistance to the navigation since the con-

sidered distinguished places show features that can be

used by the robot to navigate. For example, if a wall

is detected then the robot can activate the Follow wall

behavior, if a corridor is sensed then the suitable be-

havior will be Follow corridor and so on. This way of

generating behaviors is quite robust because the robot

can navigate according to the objects that it is sensing.

Moreover, the qualitative descriptions of the environ-

ment are more suitable to adapt the behavior of the

robot to the features of the world. For example, when

a door is detected then a specific behavior called Cross

door will be used. Therefore, as a consequence of

the environment description using these distinguished

places, a high level plan can be generated and then this

plan give us a sequence of places to visit so that the

robot can reach the final goal.

With regard to the concrete experiments, we first

show an example of sensor data classification in per-

ceptual objects while the robot is exploring an environ-

ment and building the topological map. The example

is shown first in simulation and later in a real room.

Next, we show a navigation task and its resolution us-

ing the topological map that has been built using the

perceptual objects and the map building process previ-

ously explained. First, the navigation task is executed

in a simulated environment and then another naviga-

tion task is shown but in the real world using a No-

mad 200 mobile robot in an office-like environment.

Both navigation tasks are accomplished using our hy-

brid deliberative-reactive architecture and the proposed

perceptual model. It allows the robot to model the en-

vironment and navigate according to the context per-

ceived.

6.1. Perceptual objects detection and map building

process

In this section a couple of experiments are described

in which the robot detects the perceptual objects and

builds the topological map of a room. Figure 12 shows

the exploration of a room in a simulated environment

and the map built by the robot. In Fig. 12(b) we can

see the robot’s trajectory and the detected objects along

its path. The robot starts in an initial position near the

left lower corner, approaching the closest object, which

it identifies as a wall. So, the behavior Follow wall is

activated and the robot turns on the right and advances



E. Aguirre et al. / A fuzzy perceptual model for map building and navigation of mobile robots 253

Fig. 11. Saturation algorithm of a node ν.

c2 c3

c4c1 d2

d1

w1

w2

w3

w4

w5w6

Fig. 12. Exploration and map building of a room with two doors.

parallel to the wall situated on the left. While the robot

moves under the control of this behavior, it continu-

ously analyzes the sensor data applying the procedures

of detection of distinguished places, so as soon as it

begins to detect one of them, it creates a new node in

the graph along with the edge connecting the new node

with the previous node and it continues the exploration.

In Fig. 12(b) the start and the end of each distinguished

place are marked with two perpendicular lines to the

robot’s trajectory. The approximated position of the

detected object is marked with a circle. The start of

an object and the circle indicating its approximated po-

sition have been drawn up by the robot in run time at

the moment at which it begins perceiving the object.

The end of each object has also been drawn up in run

time when the robot finishes perceiving the object. The

lines (edges) forming the contour of the figure have

been drawn up linking the circles (nodes) and, because

the nodes location is approximated, these lines do not

represent the exact positions of the walls. This fact is

more evident in the upper wall, since the localization

error of the corner c2 is high and hence the edge w3 is

far from the real position of the wall. These errors in

the object locations are due to the signal rebounds on

the corners and to the odometric errors. They do not

affect the map building since we are actually interested

in knowing what distinguished places exist and which

are the connections between them.

The robot crosses the contour of the room under

the control of the behavior Follow wall, except when

it arrives at the gap of a door. Then, the robot loses

the reference of the wall, which it identifies as the

frame of a possible door. Then, a specific behavior

called Follow direction is activated, which makes the

robot to continue advancing, trying to follow the same

direction that it had when it was following the wall,

until it finds another wall that it identifies as the second

frame of the door. The doors’ frames are marked with

perpendicular lines to the trajectory and the door is

depicted with a circle on the middle point between

both frames, linked by lines with previous and next

nodes (see Fig. 12(b)). The map stored by the robot is

shown in Fig. 12(c), which does not represent the exact

position of the perceived objects but just the topological

structure of the environment.

The second trial (Fig. 13) has been done in an envi-

ronment of the real world, which is an office room with

tables, chairs and other furniture. In this case, we can

verify that the performance is equally robust and that

the robot is able to determine the topological structure



254 E. Aguirre et al. / A fuzzy perceptual model for map building and navigation of mobile robots

w2w3

c1

c2d1c3

c4

w5

w4 w1

Fig. 13. Exploration and map building in the real world.

of the environment. The robot starts the exploration

near the lower table shown in Fig. 13(a). The linguistic

description of wall that is used causes that the table and

the chairs near to the robot be interpreted like a wall.

In this experiment, the perception of the robot is shown

with points forming the objects contour that the robot

interprets like a wall (Fig. 13(b)). Therefore, the robot

advances under the control of the behavior Follow wall

following the contour of the objects and detecting the

corners until it reaches the gap between the two tables

of the upper side of the figure. Due to the door concept

that is used, this gap is interpreted like a door that gives

way to another room or region of the environment.

6.2. A navigation task that uses topological

information

This experimental example shows a navigation task

in a simulated environment. Both the simulated en-

vironment and the result of navigation task are shown

in Fig. 14. Before the navigation, a world topological

map like the one displayed in Fig. 14 has been built

using the perceptual model and map building process

proposed in this paper.

The navigation task consists of reaching the corner

labeled as c15 from an initial position at corner c5.

The plan to resolve this navigation task is computed by

the planning level using a minimum-cost path search

algorithm such as Dijkstra’s shortest path algorithm or

the A* algorithm and taking into account an estimated

length of each arc of the topological map. The plan

that links the initial and final positions is composed of

the following steps:

c5→ w7 → d3 → w13→ c8→ w12 → d5 →

dh → h2 → co3→ h3 → hd→ d8 → w21

→ c14→ w22 → c15.

In this kind of plan, it is very important the skill of

the robot to detect the current context so that the robot

can recognize the part of the plan in which it is. Thus,

this plan is given to the executive level that uses the per-

ceptual model of the system and information about its

localization to set the state of the robot and determine

the current perceptual context. According to this con-

text several metarules are activated and therefore the

corresponding behaviors are going to control the mo-

tion allowing robot to follow the walls, cross the doors,

follow the corridor, etc. In fact, the robot achieves suc-

cessively every sub-goal until it arrives to the desired

final goal.

In detail, first the robot is situated near corner c5
and wall w7. While it is sensing such objects, it has

to follow the wall on the right until door d3 begins to

be detected. At this moment, an unexpected obstacle

is perceived so that the Avoid obstacle behavior is ac-

tivated and the robot follows the contour of the object

until again the beginning of a new wall object is deter-

mined. This object is w13 which is ended by the begin-

ning of perception of corner c8. After this, wall w12
is determined and ended by the perception of door d5.

The robot crosses d5 using theCross door behavior and

then it detects hallway h2, where corridor co3 begins.

In this moment Follow corridor behavior is activated

and another obstacle is sensed and properly avoided.

The navigation successively continues until it finally

arrives at corner c15. Notice the robot adapts its ob-

servable behavior to the perceived context in each case

which can be determined using the proposed perceptual

model.

6.3. A navigation task in the real world

The results of navigation in simulated environments

have been validated through trials in the real world.

In this case the navigation task is accomplished in a

real environment cluttered with chairs, tables and other

objects.

Figure 15 depicts from left to right the real world

environment, its representation in a topological map
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Fig. 14. From left to right: A navigation task and environment topological map.
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Fig. 15. A navigation task in the real world. From left to right: Environment, topological map and trace of the robot motion.

and the result of this navigation task. In this case,

the task is to go into room2 from an initial position

near corner c1 of room1. The path computed by the

planning level is formed by the next steps:

c1→ w1 → i1→ w2 → d1 → dh → h1→

w3→ h2→ hd → d2.

Again, the plan is supplied to executive level and this

level generates the corresponding metarules to activate

the behaviors according to the particular context and

the defined goals. In this example, the determined

perceptual objects have been marked out by flags in

the trace of the navigation task shown in Fig. 15. The

robot which, initially, is near to corner c1 detects the

beginning of wall w1 and follows it until the belief of

w1 decreases and the end of this wall is determined.

The next object is defined as irregular contour i1 until

a new object of type wall is detected. It is wall w2, the

robot follows this wall until the belief on wall decreases

and a new object is expected. The perceptual system

determines the presence of an open door that is crossed

using the Cross door behavior. When the robot goes

out room1, hallway h1 is perceived and the robot turns

on the left. After this, wall w3 begins to be detected

and again the Follow wall behavior is activated until

the end of the wall is determined by another open door.

This open door is defining a new object hallway h2 that
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connects to door d2. The robot turns to face the door

d2 then it crosses it and finally it goes into room2.

7. Related work

We found interesting advantages comparing our per-

ceptual model and the kind of map that is built by ex-

ploration of the environment, with others approaches.

Grid-based approaches [17,31,32] require a trade off

between the level of detail of the grid map and the

computational complexity and, the stored information

can also be dramatically affected by changes in the

environment. However, qualitative models are more

compact, that is, the number of nodes is usually much

smaller than the number of cells of grid-based maps

and therefore the planning process will be faster [41].

Regarding other metric approaches such as [7,12,13],

the qualitative models integrated into a deliberative-

reactive architecture are more robust to changes in the

environment because, generally, the behaviors are able

to achieve their corresponding goals in spite of uncer-

tainty and vagueness in the sensor data and in the repre-

sentation model [28]. The proposed perceptual model

is based on fuzzy logic and this allows the definition

of different perceptual objects in a natural way and ob-

taining a great flexibility when the sensor data have to

be interpreted as for instance walls, corners or corri-

dors since each of these concepts includes different real

situations with their owns particular features (surface,

texture, smoothness).

On the other hand, the qualitative models present

some weaknesses. Firstly, the perceptual objects or

places are not always easy to distinguish and some

times their locations can be confused or the model can

classify the same distinguished place as two different

perceptual objects. This problem is known as sensor

aliasing and in our proposal is resolved by matching the

approximate localization of the perceptual objects to

be able to determine whether they are the same object.

In second place, there are places that are not appro-

priate for a qualitative or perceptual description such

as places near the stairwells and staircases. The third

problem is related to the skill of the reactive behaviors

that control the robot motion. In certain very cluttered

environments the reactive behaviors could not achieve

the current goal without additional assistance since fine

motion control is needed to navigate among obstacles

and to achieve the goal. These two last limitations can

be overcome using some kind of geometric informa-

tion of the environment to complement the topological

representation. In another paper [4] we propose a hi-

erarchical map to integrate topological and geometric

modeling that can be constructed taking into account

the topological map and the perceptual model proposed

in this work.

In [4] the geometric information is modeled using a

fuzzy segments map and a fuzzy occupancy grid-map

to represent the zones that are not suitable to be mod-

eled through the topological model as, for example, the

places near the stairwells and staircases. Thanks to the

hierarchical map, the robot can use the representation

model more convenient in every case to achieve a safe

and efficient navigation. On the other hand, the design

in detail of the fuzzy behaviors used for the behavior-

based navigation as well as the methods to coordinate

and to fusion the different behaviors can be found in [2,

3].

8. Conclusions and future work

Into the area of the hybrid reactive-deliberative ar-

chitectures for mobile robot navigation, some represen-

tation structure is needed to allow the robot to reason

about its relationship with the environment and to plan

a safe path that links its initial to desired final localiza-

tions in the environment. In this work, we have pro-

posed a fuzzy perceptual model and a map building pro-

cess that allow the construction of a world topological

map giving us the possibility for reasoning and planning

about the robot motion in the world. The nodes of the

topological map are distinguished places like corners,

doors and hallways among others, whereas the edges

represent walls, corridors or other kinds of transitions

between two distinguished places. An important aspect

of our proposal is that the kind of edge is considered to

select the corresponding behavior to control the robot

so that the robot will use the more suitable behavior in

every case. Moreover the way in that the topological

map has been defined facilitates the exploration task

because the robot knows the number and kind of the

adjacent edges for exploring.

With regard to the fuzzy perceptual model, first a

fuzzy sensor model is proposed to deal with the uncer-

tainty and vagueness of perceptual information. Thus,

the information from different sensors is blended to

determine the level of belief about the possible exis-

tence of a straight contour around the robot and situated

approximately perpendicular to the sensor. Upon this

sensor model and following an incremental process,

different perceptual objects are defined as wall, corner,
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corridor and door, so that various levels of interpreta-
tion in the data are managed. To determine the different
perceptual objects, a linguistic description is given and
then this description is represented using fuzzy expres-
sions that define certain perceptual features for gener-
ating a belief level in the existence of the object. The
determination of other perceptual objects as hallways
are also commented on, but in a lesser detail level.

Both the map building process and the fuzzy per-
ceptual model are integrated into our own hybrid
deliberative-reactive architecture in order to resolve
two basic requirements for intelligent mobile robot nav-
igation: perception and reasoning. On the one hand,
the uncertainty and vagueness of sensor data is prop-
erly managed by the perceptual model which is able
to link sensory information to environment objects so
that it is used to build the topological map of the envi-
ronment. On the other hand, concerning reasoning, the
topological map can be used in the deliberative layer
to compute a plan that links the initial and the desired
final positions. This plan is a high level abstraction
plan since it only addresses the successive objects that
the robot must reach while it is navigating and the mo-
tion control is under the responsibility of the control
layer that can use different behaviors depending on the
perceived context. The perceptual model is also used
to state the robots beliefs in the moment of the execu-
tion of the plan, so that the context of applicability of
the appropriate behaviors can be defined and suitably
evaluated.

The perceptual model, map building and exploration
processes form part of a whole architecture for mobile
robot navigation. Numerous experiments, both simu-
lated and in the real world, have been carried out to test
the validity of the proposal. These results support the
utility of the proposal to achieve a safe and intelligent
navigation in office-like environments allowing world
modeling, planning and connecting properly perception
to action.

Regarding future works related to the perception it
is important the integration of other kind of sensors
into our perceptual model. For example, the usage
of visual information could help to detect only true
doors by locating the frames of the door and, during the
navigation, it would also allow the robot to detect visual
landmarks that cannot be perceived using the current
perceptual model.
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