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Abstract

Given an actiorw of a monoidT on a ringA by ring endomorphisms, and an Ore subSeif
T, a general construction of a fractional skew monoid % x4 A %, T is given, extending the
usual constructions of skew group rings and of skew semigroup rings. InSdasa subsemigroup
of a groupG such thatG = S~15, we obtain aG-graded rings®P x, A %, S with the property
that, for eachs € S, the s-component contains a left invertible element and ¢hé-component
contains a right invertible element. In the most basic case, wieteZ and S =T = ZT, the
construction is fully determined by a single ring endomorphisof A. If « is an isomorphism onto
a proper cornep Ap, we obtain an analogue of the usual skew Laurent polynomial ring, denoted by
Alt4+,1—; «]. Examples of this construction are given, and it is proven that several classes of known
algebras, including the Leavitt algebras of tyden), can be presented in the forAls, r—; «].
Finally, mild and reasonably natural conditions are obtained under wi¥k, A x, S is a purely
infinite simple ring.
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Introduction

Let o:G — Aut(A), g — ag, be an action of a grougr on a unital ring A.
A useful construction attached to these data is skew group ringA *, G, see [15]
and [17]. This is the ring of formal expressiods,; a,¢, wherea, € A and almost
all the coefficientsz, are 0. Addition is defined componivise and multiplication is
defined according to the rul@ig)(bh) = (acg(b))(gh). The skew group rin¢d x, G
can also be defined as the unital riRgsuch that there are a unital ring homomorphism
¢:A — R and a unital monoid homomorphistnG — R from G to the multiplicative
structure ofR, universal with respect to the property thég)¢ (a) = ¢ (g (a))i(g) for
alla € A and allg € G. In his pioneering paper [16], Paschke gave a construction of a
C*-algebraic crossed produdt x, N associated to a not necessarily unitdl-algebra
endomorphisma on a C*-algebraA. Paschke'sC*-algebraic construction has been
generalized to other semigroups, see [10-12] and [13]. Moreover, Rgrdam [19] used
Paschke’s construction together with the Pimsner-Voiculescu exact sequence associated
to an automorphism [5, Theorem 10.2.1] to realize any pair of countable abelian groups
(Go, G1) as (Ko(B), K1(B)) for a certain purely infinite, simple, nuclear separable
C*-algebraB.

In this paper, we develop a systematic purely algebraic theory of fractional skew monoid
rings with respect to monoid #ions on rings by not necessarily unital ring endomorphisms,
in which an Ore submonoid is inverted. (Rd¢hht a monoid is a semigroup with a neutral
element.) More precisely, we assume the fwelleg data are given (see 1.1 for the detailed
definitions of the properties):

(1) AmonoidT acting on a unital ringd by endomorphisms.
(2) A submonoidsS of T satisfying the left denominator conditions, and such thstleft
saturated ir7".

Then a fractional skew monoid rin§°? %, A %, T is constructed, with suitable maps
from A, S°P andT to S°P x, A %, T, which satisfy a universal property analogous to the
one for the skew group ring described above, see Definition 1.2. It is not difficult to show
that such a ring exists by using a construction with generators and relations, but it is rather
non-obvious to determine the algebraic structur®fx, A x, T. The ringS°Px, A %, T

is best understood by means of §517-graded structure, obtained in Proposition 1.6.
The structure is completely pinned down in 1.12 in the case wheaets by injective
endomorphisms.

The general construction 6PPx, A x, T is given in Section 1. In the other sections, we
specialize the construction to the case of a submofi@ifia groupG such thaiG = S~1§
(takingT = §), and to an actiow of S on A by corner isomorphisms, meaning tlhatis
an isomorphism fronA onto the corner ring; (1) Aa; (1) for all s € S. Several examples
of interest are considered in Section 2 in the case wieteT = Z™. In particular, the
Leavitt algebras/y , (k) and Uy, (k), already considered by Leavitt, Skornyakov, Cohn,
Bergman and others, are seen here to be particular cases of our construction.
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ForS =T =7, the construction is determined by a single corner isomorphisamd
the elements of the fractional skew monoid riRg= Z* x, A %, Z* can all be written as
‘polynomials’ of the form

r=apt +---+aity +ao+t-a1+---+t"a_p,

with coefficientsa; € A. Because of this similarity oR with a skew-Laurent polynomial
ring, we shall use the notatioR = A[zy, ¢_; «]. Using this construction and the Bass—
Heller—Swan—Farrell-Hsiang—Siebenmann Theorem,khegroup of these algebras is
computed in [2].

A general source of interesting exampleprovided in Section 3. Namely, assume that
G is a group acting on a ring by automorphisms, and that there are a submoScd
G such thatG = S~1§ and a non-trivial idempotertin A such thaiy(e) € eAe for all
s € §. Then the corner ring(A *, G)e of the skew group ring %, G is isomorphic as a
G-graded ring to a fractional skew monoid rifig*, (eAe) x,/ S (Proposition 3.3). Under
the standing assumption th&acts by corner isomorphisms, we prove thas@flx, A x4 S
can be exhibited in the for(A *x, G)e (Proposition 3.8).

Sections 4 and 5 deal with actions on simple rings. Using a suitable definition of outer
action of a monoids on a ringA, we prove in Theorem 4.1 th&afP x, A %, S is a simple
ring for any outer actiorx of S on a simple ringA. This is a generalization of a well-
known sufficient condition for simplicity of skew group rings, see [15, Theorem 2.3].
Section 5 shows that, under mild conditions4mnd on the outer actiom of S on A, the
fractional skew monoid ring°Px, A x, S is a purely infinite simple ring (Theorem 5.3). In
particular, this holds whenever is either a simple ultramatricial algebra over some field
or a purely infinite simple ring. The class ptirely infinite simple rings has been recently
studied by the first, third and fourth authors in [3], and constitute an important and large
class of relatively well-behaved simple rings. They can be thought of as the nice rings in
the wild universe of the directly infinite simple rings; see specially [3, Corollary 2.2 and
Theorem 2.3] for the good behaviour Kftheory of purely infinite simple rings. A further
nice property of them has been recently estallisby the first author in [1]: every purely
infinite simple ring satisfies the exchange property.

All'rings and modules in this paper will besumed to be unital unless explicitly noted.
(The main exception is the rin§~1A constructed in Section 3.) However, many of the
subrings we deal with will have units different from the unit of the larger ring; specifically,
we will deal with manycornerspAp in aring A, wherep is an idempotent. Note that any
ring endomorphisma of A, even if not unital when considered as a miap> A, is unital
when viewed as a ring homomorphistn— e(1)Ae(1).

We will use the standard order structure on the set of idempotents in aritiwat is,
foridempotentg and f in A, we havee < f ifand only ife = ef = fe. Two idempotents
e and f are said to bequivalentwrittene ~ f, if there are elements, y € A such that
e =xy and f = yx. This is equivalent to saying that the rightmoduleseA and f A
are isomorphic. We write < f in casee ~ f’ for some idempotent’ < f. We say that
an idempotent is infinite if there are nonzero orthogonal idempotesitandg such that
e =¢'+ g ande ~ ¢'. If no such decomposition existsjs called &finite idempotent.
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1. Thegeneral construction

We present the construction of a fractibekew monoid ring in full generality in this
section, and establish the precise graded structure of this ring. The basic data consist of
a ring A, a monoidT acting onA by ring endomorphisms, and a left denominator set
S C T the fractional skew monoid ring we construct is gradedsby7’, and its identity
component is the quotient &f modulo the union of the kernels of the endomorphisms by
which S acts.

1.1. We begin by fixing the basic data needed for our construction; these data and
conventions will remain in force throughoutthe paper. Ldte a (unital) ring, and Enda)
the monoid of non-unital (i.e., not necessarily unital) ring endomorphisms of

Let T be a monoid and : T — EndrA) a monoid homomorphism, written— ;.

In general, we will writeT multiplicatively, with its identity element denoted 1, but in
some applications it will be convenient to switch to additive notatiorffoFort € T, set

pr = (1), an idempotent iM. Thenw, can be viewed as a unital ring homomorphism
from A to the cornep; Ap;. Fors,t € T, we havepy; = oy (1) = oz (1) = ag(py).

Let S C T be a submonoid satisfying the left deniator conditions, i.e., the left Ore
condition and the monoid version I&ft reversibility: whenever, u € T with ts = us for
somes € S, there exists’ € S such thak’r = s’u. Then there exists a monoid of fractions,
S~1T, with the usual properties (e.qg., see [6, §1.10] or [7, §0.8]).

We shall also assume thétis left saturatedin 7: whenevers € S andt € T such
thatzs € S, we must have e S. This assumption means that equalitySn'7 can be
described as follows: if; 11 = 5, ' for somes; € S ands; € T, there existuy, up € S
such thatuys1 = u2s2 andu1t1 = ust>. (The usual denominator conditions only yield the
latter equations for, say, soma € S anduy € T. But thenupsy = u1s1 € S, and left
saturation implieay € S.)

Definition 1.2. The labelS°P x, A %, T stands for a (unital) ring¢ equipped with a (unital)
ring homomorphismg : A — R and monoid homomorphisms— s_ from $°° — R and
t — t4 from T — R, universal with respect to the following relations:

(1) t1¢p(a) = pas(a)ty foralla e Aandr e T
(2) ¢p(a)s— =s_opag(a) foralla € A ands € S;
(3) s_s=1forallseS;

(4) sys— =¢(ps) foralls € S.

Note that condition (2) follows from the others. Givene A ands € S, we have
s+ (a) = pag(a)sy by (1), and on multiplying each term of this equation on the left and
on the right bys_, we obtaing (a)s— = s_¢as(a)d (ps) = s—¢ (a5 (a) ps) from (3) and (4),
whence (2) follows because (a) ps = as(a).

1.3. At this point, we sketch thexistencef the ringR = S°P x, A %, T. The existence
of a ring satisfying the universal property of Definition 1.2 follows from a construction
with generators and relations, which does not use at all any propestyiofact, S can be
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an arbitrary subset df. TakeB = A x Z{t,s_ |t € T, s € S) to be the free product oA
and the free ring on the disjoint unidhu S, and let

i1:A— B and i2:Z{ty,s_|teT, se€S)— B
be the canonical maps. Létbe the two-sided ideal a8 generated by

(@) i2(t1)ir(a) —i1(ay(a))iz(ty) foralla € A andr € T
(b) i2((tt") 1) —iz(ty)ia(t)) forallt,¢ € T;

(€) i2(s—)ia(sy) —i1() forall s € S;

(d) ia(sy)ia(s—) —i1(ps) forall s € S.

ThenR = B/J is the ring we are looking for, andl is the composite map o i1, where
m:B — B/J is the canonical projection. (Here we identify the elementsfor s € S,
with their imagesriz(s—), and similarly for the elements,.) Note that the relations
(ss")— =5’ s_, forall s, s’ € § such thatss’ € S, hold automatically from (a)—(d) above.
Also, we have already observed that condit{@) in 1.2 follows from conditions (1), (3)
and (4), and so it follows from (a)—(d) too.

Rather than introduce a notation for the productsf®?, we view the map—)_ as a
monoid anti-homomorphist$i — R, so that(su)_ =u_s_ fors,u € S.

The construction above will also be applied wheis an algebra over a fieldand the
ring endomorphisme; for t € T arek-linear. In this case, it is easily checked tipamnaps
k =k - 1 into the center oB (use relations (1), (2) above and part (c) of the following
lemma to see thap (k) commutes with eack andt,;), so thatB becomes &-algebra
and¢ becomes &-algebra homomorphism. The universal propertyBothen holds also
in the category ok-algebras.

The following lemma and subsequent results pin down the structure of

R=2S%sy A%, T.
This structure simplifies considerably when the mapare injective—see 1.12.

Lemmald. Leta,be A, s,ucS,andr,veT.

(@) s+¢(a)s— = gpas(a).

(b) s—gas(a)sy = p(a).

(€) s— =s-¢(ps) andry. =P (py)t+.

(d) s—¢(a)ty =s—¢(psaps)ty.

(e) s—p(a)ty = (us)—pay(a)(ut)+.

(f) There existt € S andy € T such thatct = yu. For any suchx, y,

[s-p (@11 ][u-¢(B)vi] = (xs)-¢(ax (@pr)ety (b)) (yV)+-

In particular, tyu_ = x_pyy+.
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Proof. (a)s+¢(a)s— = ¢as(a)s+s— = pas(a)p(ps) = ¢ (as(a)ps) = pas(a).

(b) This follows from (a) because s, = 1.

(©) s— = ¢(Ds— = s—¢as(1) = s_¢(ps). Similarly, 14 = 1:¢(1) = ¢, (Dty =
d(po)it.

(d) This is clear from (c).

(e) From (b), we have (a) = u_¢a, (a)uy, and the desired equation follows because
S_u_ = (uUs)_.

(f) Note that(xt)+ (yu)— = (xt)+(xt)— = ¢(px1) = pax(pr). Using (e), we get

[s-p (@1 J[u—p B)v] = [(xs)—porr (@) (x0) 4 ][ (yie)—pery (b) (yV)+ ]
= (x8)—poy (@) pay (pr) oy (b) (yv)+
= (x$)-¢(ax(@pay(®))yv)4. O

Corollary 1L5. R =} g ;erS—P(A)ty =D s 1er S-P(PsApo)ty.

Proof. The second equality is clear from Lemma 1.4(d). Retdenote the sum in question.
Clearly R’ is closed under addition, and it is clasender multiplication by Lemma 1.4(f).
Also, 1g =1_¢(14)14 € R'. Thus,R’ is a unital subring oR.

Since the images af, s — s_, andz — t, are contained irR’, we can view these as
maps intoR’. The universal property foR then implies that there is a unique unital ring
homomorphismy : R — R’ such thaty¢ = ¢ while ¥ (s_) =s_fors € Sandy (1) =14
for r € T. Consequentlyy) acts as the identity oR’, whencey (R) = R’. Moreover, if we
view ¢y as a ring homomorphisrR — R, we havey ¢ = idg ¢ while ¢ (s_) = idg(s—)
for s € S andy () = idg(z4) for r € T. Now the universal property foR implies that
¥ =idg, and therefor&* = (R)=R'. O

We next exhibit the graded ring structure ®f As the reader will note, this result can
also be obtained from the proof of Propositiah@ below, and so Propositions 1.6 and 1.10
could have been combined. However, we think that separating the two results is helpful in
orienting the reader.

Proposition 1.6. The ring R has ans~*T-grading R = @, cs-1y R+ where eachr, =
Us—lt=x s_¢p(A)ry.

Proof. We can viewR as a leftA-module viag, and the relations iR imply that each
s_¢(A)ry is aleftA-submodule. If1, 52 € S andry, 12 € T such thas; 1 = 55 15, there
existu1, up € S such thawuis1 = ussp anduit1 = uztz, whence Lemma 1.4(e) implies that
(i) (A) ()4 € (u1s1)-p(A)(u1t1)+ for i =1, 2. Thus, eaclr, is a directed union of
left A-submodules oR, and so is a lefA-submodule itself.

It is clear from Corollary 1.5 thaR = )", _¢-17 Ry, and from Lemma 1.4(f) that
R:Ry C R, forall x,y e S~1T. Hence, it only remains to show that the sum of the
R, is adirect sum.
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Let R’ denote the external direct sum of tReg, and sett” = End;(R’). There is a unital
ring homomorphism.: A — E’ such that each(a) is the leftA-module multiplication by
acA.

Givens € S, observe that_R, C R,-1, for all x € S™1T. Hence, there exisig, € E’
such thatu,(b)y = s_by, for all b e R andy € S71T. Since¢(a)s_ = s_¢a,(a) for
a € A, we see thak(a)us; = usriag(a) for a € A. Observe also that— u, is a monoid
homomorphisn§°P — E’.

Givenr € T, it follows from Lemma 1.4(f) that, R, C R;, forall x € S~1T. Hence,
there existsy; € E’ such thaty, (b), = th:y tyb, for b e R' andy € S~T. Since
trd(a) = ¢pos(a)ty for a € A, we see thav,i(a) = Ao, (a)v; for a € A. Observe also
thatz — v; is a monoid homomorphisti — E’.

Sinces_sy =1 ands;s— = ¢(ps) for s € S, we see thaju;v; = idpr = 1p and
vsius = A(ps) for s € S. Now by the universal property aR, there exists a unital ring
homomorphism) : R — E’ such thaty¢ = A while v/ (s_) = u, for s € S andyr (1) = v,
forreT.

Note that k =1_¢ (1)1, € Ry, so there exista € R’ such thak; = 1 whilee, = 0 for
all z#1.Givens € S,a € A, andr € T, we observe that

[V (s-p@r+) (@] 1, = [mst@vi(e)] 1, = s-¢(a)t+

and all other components af (s_¢(a)t;)(e) are zero. Hence, for € S~1T andb ¢

Ry, we have[y (b)(e)], = b while [¢(b)(e)], = 0 for all y # x. Consequently, if
by +---+ b, =0 for someb; € R,, where thex; are distinct elements of~17, then
bi = [Y(b1+ --- + by)(e)]ly, =0 for all i. Therefored ¢ 17 Ry = @ cg-17 Ry, @s
desired. O

To completely pin down the elements 8f we need to know the relations holding in
each homogeneous componé@gt In particular, if pyap; € ker(¢), thens_¢ (a)t =0 by
Lemma 1.4(d), and we would like to show thatp (a)z+ = 0 only whenpap, € ker(¢).
For this purpose, we set up another representatighaf a leftA-module.

Lemmal.7.Letu,s e SandreT.

(@) The map«: A x psAp; — psAp; given by the ruler x b := o, (a)b turns the abelian
group ps Ap; into a left A-module.
(b) The restriction ofy, to ps; Ap; is a left A-module homomorphispy Ap; — pusApu:.

Proof. Part (a) is clear becausg is a unital ring homomorphism from to ps Ap,, while
part (b) follows because,; = ;. O

Each homogeneous componéditof R turns out to be a direct limit of the rectangular
cornersps Ap, over pairs(s,t) such thats—1s = x. However, there is no natural partial
order on the set of these pairs—the limit has to be taken over a small category.
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Definition 1.8. Forx € S~1T, let D, be the small category in wth the objects are all pairs
(s,1) € S x T such that—1r = x, the morphisms from an obje¢t, ¢) to an objects’, ')
are those elementise § such thaus = s’ andutr =+, and composition of morphisms is
given by the multiplication inS. The Ore and saturation conditions Srimply that D,

is directed: given any objects1, t1) and (s2, t2) in D, there exist an objedts, t) and
morphismsy; : (s;, t;) — (s, 1) in Dy fori =1, 2. Consequently, colimits based & are
directed colimits.

Taking account of Lemma 1.7, there is a fund®r. D, — A-Mod such thatFy (s, t) =
psAp; for all objects(s, 7) in D, and Fy () = aylp,ap, for all morphismsu: (s, 1) —
(us,ut) in Dy. Let M, denote the colimit ofF,, with natural mapsys.;: psAp: — M,
for objects(s, t) in D,. SinceM, is a directed colimit, it is the union of its submodules
ns,:(psApy) for (s, t) € D,. Note that ifb; € p;, Ap;, for i = 1,2, where(s;, t;) € Dy,
thenny, 4 (b1) = 15,1, (b2) if and only if there exisit1, up € S such that1s; = ups2 and
u1t1 = upty while alsow,,, (b1) = ay, (b2).

Lemmal9.Letse S,z eT,andx € S71T.

(a) There exists an additive map : M, — M -1, such thatosn,. ,(b) = nus,v(pusb) for
u"tv=xandb € p,Ap,.

(b) aos(m) =o;(as(a)ym) fora e A andm € M,.

(c) There exists an additive map: M, — M,, such thattn, ,(b) = 1y oo, (b) for
ulv=x,be p,Ap,, andw € S, z € T such thatwt = zu.

(d) 7,(am) =a;s(a)T;(m) fora € A andm € M,.

Proof. (a) For each(u,v) € Dy, we have (us,v) € D,-1,, and there is an addi-

tive map p,Ap, - M,-1, given by b +— nus»(pusb). Moreover, if w € § then

Nwus,wo (Pwus%w (B)) = Nwus, wo%w (Pusb) = Nus,v (Pusb). Thus, our maps ta/,-1, are

compatible with the functof,, and so there exists a unique additive mafas described.
(b) If m = ny (D) for u, v, b as in (a), then

aos(m) = anys,v(pusb) = 7]us,v(a * (Pusb)) = rlus,v(aus (a)pusb) = nus,v(]’usaus (a)b)

= nus,v(pus (as (a) * b)) =0y 7]u,v(as (@) * b) =0y (as (a)m)

(c) Fix (u, v) € Dy, choosew € §, z € T such thatws = zu, and note thatx = w1zv.
Sincea; (pyApy) C puApzy S pwApzy, the composition ofy, ., with the restriction of
a; to p, Ap, gives an additive map, Ap, — M;,. Suppose alsw; € S andz; € T such
thatwir = zgu. Thenwy'zg = 1=t = w1z, so there existy, r € § such tharywy = rw
andrizy = rz. Since alsoriziv = rzv and oy o7, = ooy, it follows thatn,, .oz, =
Nw.zvz ON p,Ap,. Thus, we obtain a well-defined additive mgp,, : pyApy, — My
which agrees withy,, .y, foranyw € S andz € T with wt = zu.

Now consider a morphism: («, v) — (ru, rv) in D,. There exisiv € S andz € T such
thatwr = z(ru), so thatf,, , is given byn, ;rvc;. Sincewr = (zr)u, we also have that
fu.v IS given byn,, .., and sof;, , equals the composition gf,, -, with the restriction
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of o, to p, Ap,. Thus, the mapg’ . are compatible withF,, and so there exists a unique
additive mapr; as described.
(d) If m = ny (D) with u, v, b, w, z as in (c), then

T (am) =7y y(a@a*b) = ttnu,v(au(a)b) = Nw,zvlz (au(a)b) = nw,zv(awat(a)az(b))

= Nw.zo (01 (@) * 0 (b)) = (@) w200 (b) = s (@)Ti(m). O

Proposition 1.10. For eachx € S~1T, there is a leftdA-module isomorphism, : M, — R,
such that

O uv(b) =u_¢p(b)vy foru=tv=xandb e p,Ap,.

Proof. In view of Lemma 1.4(e), for each € S~1T there is a unique additive map
0y : M, — R, as described. lf» =, ,(b) with u, v, b as above, then far € A we have

Ox(am) = exrlu,v(a xb) = exrlu,v(au (a)b) =u_¢a,(a)pb)vy =d(@u_¢b)vy
=ab(m).

Thus,0, is a left A-module homomorphism. It isugjective by definition ofR,, and so it
only remains to show that ke,) = 0.

Form the leftA-moduleM := @, s-17 My, SetE = Endz (M), and for eachu € A
let A(a) € E be the map given by left multiplication by. Then we have a unital ring
homomorphism.: A — E.

For allx € S~17, use the same notatioas andz; for the additive map3/, — M1,
and M,, — M;, described in Lemma 1.9, and alfor the corresponding homogeneous
maps onM. Thus, fors € § andt € T we have additive maps;, r; € E such that
a5 (m)y = oy(msy) andz,(m)y = 3, _, (my) for m e M andy € S~17. Lemma 1.9
also shows that(a)o; = osha,(a) andt;A(a) = Ao, (a) T, fora € A.

Itis easily checked that— o, andt — 1, are monoid homomorphisn#® — E and
T — E.Now consider =, ,(b) € M, forx,u, v, b asin Lemma 1.9. There existe S
andz € T such thatws = zu, and

055 (M) = Oy 1w, 200tz (B) = Nuss, 20 (Pus @z (D)) = Nzu,z0 (Pzuctz (b))
= Nzu, 200z (Pub) = Nu,v (D) = m.
It follows thatoyt; = 1g in E. Next, note that: € S and 1€ T with u - s = 1 - us. Hence,
505 (M) = TsNus,v (Pusb) = Nu,v®1(Pusb) = Nu,v(ps * b) = psm.
It follows thatz,o; = A(ps) in E.

By the universal property oR, there is a unital ring homomorphisfn: R — E such
thaty ¢ = 1 while (s_) =os fors e Sandy (t;) =7, forr e T.
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Define e €¢ M so thate; = n1.1(1) while ¢, = 0 for all z # 1. We claim that
[(¥ 6, (m))(e)]x = m for x € S7IT andm € M. Write m =, ,(b) whereu v = x and
b € puAp,. Theny 6, (m) = ¥ (u_¢(b)vy) = o, A(b)7, and so

[(¥6:(m)) (@], = 0ur(B)ryn1,1(1) = 6uA(B)N1,v0ty (1) = 0un1,0 (b * py)

= Uunl,v(b) = nu,v(pub) = nu,v(b) =m,

as claimed.
The claim immediately implies that k@x) = 0 for allx € S~1T, as desired. O

Corollary 1.11.

(@) Lets e S,teT,anda € A. Thens_¢(a)ty = 0 if and only if psap; € ker(ay) for
somes’ € S. In particular, ker(¢) = [, ker(ay).

(b) The ideall = ker(¢) satisfiengl(I) =[forallseSando,(I)CIforallteT.

(¢) « induces a monoid homomorphisem: T — Endz(A/I), ande; is injective for all
seSs.

(d) SPuxy Awy T =58Py (A/D) %y T.

Proof. (a) By Lemma 1.4(d)s_¢(a)ty = s_¢(b)t. whereb = psap;. Then Proposi-
tion 1.10 yieldsé,n; ;(b) = s_¢(a)t+ wherex = s~1. Sinced, is an isomorphism,
s_¢(a)ty = 0if and only if ns ,(b) = 0, which happens if and only i/ (b) = 0 for some
s’ € S. This verifies the first statement in (a). The second follows on takiag = 1.

(b) If t e T ands € S, there exists’ € § and ¢ € T such thats’t = t’s. Then
ag o (ker(ag)) = 0, and sax; (ker(ay)) € ker(a) € 1. This shows thaty; (1) C I for all
teT.

Now if s € §, the previous paragraph implies thatc a;l(l). If a e a;l(l), then
as(a) € ker(ay) for somes’ € S, whencea € ker(arg) C 1. Thereforexgl(l) =1.

(c), (d) These are clear from (a) and (b)o

1.12. As Corollary 1.11 shows, we can always reduce to the case whésenjective
forall s € S. Inthat caseg is injective by Corollary 1.11(a), and so we can identfyvith
the unital subringb (A) € R. All of the relations inR simplify in this case:

(1) tyra=o(a)ty forallae Aandr e T;

(2) as— =s_as(a)foralla € A ands € S;

(3) s_sy =1foralls S,

(4) sys— = psforalls €S;

(5) R has ans~17-gradingR = @, _s-1; R: Where eaciR, = | J,—1,_, s_At;

(6) s—_aty = s_psapsity for s € S, t € T, anda € A, ands_aty = 0 if and only if
psap; =0;

(7) Letx =57ty =55 12 € ST for somesy, s, € S, 11,12 € T, and letas, az € A. Then
(s1)—a1(t1)+ = (s2)—ax(t2)+ if and only if there exist1, up € S such that1s1 = uzss
anduity = uotz while alsoay, (ps;a1ps) = otu, (Ps,azpr,)-
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2. Thecase S§ =T =Z*. Examples

2.1. For the remainder of the paper, we take advantage of Corollary 1.11 and assume
thata; is injective for alls € S. Thus, the relations i® = S°Px, A *, T take the simplified
form givenin 1.12. Moreover, we assume that the maparecorner isomorphismshat is,
eachu; is an isomorphism ofl onto ps; Ap;. Finally, we assume th&t= T is a submonoid
of a groupG which is its group of left fractions, that i&§ = S~15. These conventions are
to remain in effect for the rest of the paper.

2.2. A particularly nice setting is the case whénis a left totally ordered group with
positive coneG* = § (thusG = ST U S andS~1 N S = {1}). In this case, the elements
of R can be expressed in a simpler way, namely in the drm¢s_as + >, cga:t4. TO
achieve this, we need to be able to simplify individual tesmsz. for s, € S anda € A.

If s <t,thens™r > 1, whencea: := st € S. Thens_aty = s_a(su)+ = s_psapssii+.
Because of our current convention that A — p; Ap; is an isomorphismpaps = o (b)
for someb € A, and therefore_at; = s_o; (b)stuy = bs_siuy = buy. On the other
hand, ifs > 7, thenv := =15 € S ands_ary = v_c wherec = o, X(prap).

2.3. We now specialize to the case whesrés the additive monoid.*, so thatG = Z.
Here the monoid homomorphism S — Endr(A) is determined by, and so we change
notation, writinge and p for o1 and p1. Thus,« is now an isomorphismd — pAp,
and the monoid homomorphisth— Endi(A) is given by the rule: — «”. Let r denote
the generator & Z* = S. Since the maps — s+ are monoid homomorphisms into the
multiplicative structure o, we haven. = (t1)" =: ¢ forn € Z*, and

at” =t"o"(a) and tfa=a"(a)]

foralla e Aandn e Z™*.
In view of 2.2, the elementse R = Z* x, A x, ZT can all be written as ‘polynomials’
of the form

r=apt +---+aity +ao+t-a1+---+t"a_p,

with coefficientsa; € A. Because of this similarity oR with a skew-Laurent polynomial
ring, we shall use the notatidh= A[z,, t_; «]. Proposition 1.6 shows th&tis aZ-graded
ring R = P, R:, and from the discussion above we see tRat= Az} for i > 0 and
R, =t"'Afori <0, while Ag= A.

Our construction oZt x, A %, ZT is an exact algebraic analog of the construction of the
crossed product of a C*-algebra by an endomorphism introduced by Paschke [16]. In fact,
if A is a C*-algebra and the corner isomorphisns a *-homomorphism, then Paschke’s
C*-crossed product, which he denotés«,, N, is just the completion dZT %, A x4, ZT in
a suitable norm.

Note again that any ringR = A[t;,t—; «] is Z-graded, withA = Rg. Moreover,z,
is a left invertible element oR; with a particular left inverse_ € R_1, anda can be
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recovered from the rule(a) = t;at_. These observations allow us to recognize rings of
the formA[zy, t_; «] amongZ-graded rings, as follows.

Lemma 2.4. Let D = @, ., D; be aZ-graded ring containing elements € D; and
t— € D_1 such that_r; = 1. Then there is a corner isomorphism Do — t¢_ Dot t—
given by the rulex(d) =t.dt_, andD = Do[t4,t_; ].

Proof. It is clear thatz, ¢ is an idempotent inDg, and that the given rule defines an
isomorphisma : Do — tt—Dott—. Hence, there exists a fractional skew monoid ring
D= Dolty,f—; a]. Sincetyd = a(d)ty anddt_ = t_a(d) for all d € D, the identity map
on Dy extends uniquely to a ring homomorphigtm D — D such thatg (7+) = 7. It
remains to show thag is an isomorphism. Note that since € D; and+’. € D_; for all

i € N, the mapg is a homomorphism of graded rings. Thus, we need only showgthat
maps each homogeneous componﬁnﬁsomorphically ontoD;. This is already given
wheni =0.

Now leti > 0. If x € D;, thenx = d7. for somed € Do, and¢ (x) = dr’.. If ¢(x) =0,
thenda! (1) = dr'.t" = 0 in Do, whencex = do' (1)7L = 0 in D. Thus, the restriction
of ¢ to D; is injective. Further, ify € D;, thenyr’ € Do and((yt!)il) = yt' ¢} =y.
Thereforep mapsD; isomorphically ontaD;. A symmetric argument shows that this also
holds fori < 0, completing the proof. O

Example 2.5 (An algebraic version of the Cuntz—Krieger algebrad/e give an algebraic
version of the C*-algebra®, introduced in [8] (now called “Cuntz—Krieger algebras”
in the literature), and show that they may be expressed in the ®m,7_; «] for
ultramatricial algebrag and proper corner isomorphismsThe latter statement is parallel
to the corresponding C*-algebra resty = B x4 N for a suitable approximately finite
dimensional C*-algebr® (essentially in [8]; discussed explicitly in [19, Example 2.5]).

Let k be an arbitrary field andl = (a;;) ann x n matrix overk, with a;; € {0, 1}
for all i, j. To avoid degenerate and trivial cases, we assume that no row or column of
A is identically zero, and thatl is not a permutation matrix. We define théebraic
Cuntz—Krieger algebra associated #oto be thek-algebraC = CK 4 (k) with generators
X1, y1, - - -, Xn, yn @nd relations

(1) xjyix; =x; andy;x;y; = y; forall i;
(2) Xiyj = Oforalli # j;

() xiyi = ijlaijijj for all i;

(4) Z.'/l'zl ijj = 1

Note that all thex; y; andy;x; are idempotents, and that thex; are pairwise orthogonal.
The free algebr& (X1, Y1, ..., Xy, Y,) can be given &-grading in which theX; have
degree—1 while theY; have degree 1, and the relatofsy; X; — X;, etc. corresponding to
(1)—(4) are all homogeneous. Hencgjnherits aZ-grading such that each € C_; and
eachy; € C1.
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Now setN = {1,...,n}. Given u = (1, ..., u¢) € N for some¢, we setx, =
XpaXpo -+ X, ANA Y, = Yy Y, -+ Y- The casel = 0 is allowed, with the conventions
that N% = {#}} andxy = yy = 1. The subalgebr& = Cy of C is thek-linear span of the set

{yﬂxu |, ve Nt ¢ €Z+}.

As in [8, Proposition 2.3 and following discussio,is an ultramatriciak-algebra, and
Ko(B) is isomorphic (as an ordered group) to the direct limit of the sequence

Zr A 7 A, g As L
with the clasg B] € Ko(B) corresponding to the image of the order-udit1, ..., 1) in
the firstZ". (See [9, Chapter 15] for a developnmei ultramatricial algebras and their
classification viaKp.)

Fori =1,...,n, let ¢; denote the sum of thosg;x; for which y;x; < x;y; but
yjXj & xmym for anym < i. Thesee; are pairwise orthogonal idempotents ) with
eache; < x;y;. Since the matrixA has no identically zero columns, eagfx; lies below
somex;y;, and so eacly;x; lies below some;. In fact, y;x; < e; wherei is the least
index such that;; = 1. From relation (4), it follows tha}_7_; ¢; = 1. Next, note that the
elementsy;e; x; are pairwise orthogonal idempotentsBn(because; x; y; = ¢; for all i),
whence the sump := y1e1x1 + - - - + ynenx, is an idempotent irB. Moreoveryx; p = e; x;
andpy; = y;e; forall i. We claim thatp # 1.

If p =1, then eachy; = ¢;x;, whence each;y; = ¢;. Then thex;y; are pairwise
orthogonal. In view of the relations (3), it follows that each columndohas only one
nonzero entry. Sincel has no identically zero rows, it must be a permutation matrix,
contradicting our assumptions. Therefere: 1, as claimed.

Nowsett_ =eix1+---+e,x, € Coypandty = yie1+---+yqe, € C1. Thent t_ = p,
and

n

n n
Ity = Ze,'x,'y,'e,' = Z ajjeiyjxje; = Zijj =1,
j=1

i=1 i,j=1
because each;x; < e¢; for precisely oné, anda;; = 1 for thati. Hence, there is a proper

corner isomorphismx : B — pBp given by the rulex(b) =z bt_, and we conclude from
Lemma 2.4 that

C =CKa(k)=Blty,1_; a].

In case the matrix in Example 2.5 has all of its entries equal to 1, the relations for the
algebraCK 4 (k) reduce to

(1) x;y; =4; j foralli, j;
2 Xyjxj=1.
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Thus in this cas&;C4 (k) is theLeavitt algebraVy , (k) first studied in [14]. (The notation
V1., was introduced in [4].) There is a related Leavitt algebig, (k) which, as we now
show, can also be presented as a fractional skew monoid ring.

Example 2.6. Let k be a field andi € N. The algebrdJ = Uy , (k) is thek-algebra with
generatorscy, yi, ..., X,, ¥y, and relationsy;y; = §; ; for all i, j. (Thus, V1, (k) is the
factor algebra ot/1 , (k) modulo the ideal generated by—lz’}zl y;jxj.) The elements
y1x1,..., yuX, are pairwise orthogonal idempotentstih As in Example 2.5, there is a
Z-grading onU such that each; € U_; and eachy; € U1.
SetN ={1,...,n} and definex,, y, € U for u € Nt asin Example 2.5. li¥/, the set
{yﬂxv lpeNt, veN™, t,m €Z+}

forms ak-basis. We again st = Up, which is thek-linear span of the set

{yuxv |, ve N, ez,
and as beforeB is ultramatricial. It is isomorphic to a direct limit of the algebras

M,i (k) x M,i—1(k) x -+ x My (k) x k,

the ordered groufo(B) is isomorphic to the direct limit of a sequenfe— 7° — 73 —
.- where each transition m&y — Z'*1 is given by an(i + 1) x i matrix of the form

n 00 .- 00
100 -- 00
010.- 00
0 00 .10
0 00 .- 01

and the clas§B] € Ko(B) corresponds to the image o&1Z.

Setp = y1x1 € B, a proper idempotent. Then set=x1 € U_; andt; = y1 € Uj, SO
thatryr_ = p andr_ty = 1. Hence, the rulé — ¢, bz_ gives a proper corner isomorphism
«:B — pBp, and Lemma 2.4 shows that

U=Un(k)=Blty,1-;a].
Example2.7. Let k be a field, and note that there are natural inclusions
Ui1(k) C U1 2(k) CUrsk) C---
among the algebra#/y ,(k). Set Ux (k) = J,—1 U1n(k), Which is a simple algebra

(e.g., [3, Theorem 4.3]). We may also viell, (k) as thek-algebra with an infinite
sequence of generators, y1, x2, y2, ... and relations;; y; = §; ; for all i, j. This algebra
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is Z-graded as before, with the having degree-1 and they; degree 1. SeB = U (k)o,

which is thek-linear span of the set

{yﬂxvl,u,ve{l,...,n}e, neN, ZEZ+}.

In the present case} is an ultramatriciak-algebra isomorphic to a direct limit of the

algebras

My (k) X Mn-1(k) x - x My (k) x k.

Here Ko(B) is isomorphic to the direct limit of a sequengé — 73 — Z* — -.. with

transition maps

n on n2 n3 nn—Z nn—l
1 1 n n? n"=3 pn
01 1 n e
0O 0 0 O 1 1
0O 0 0 O 0 1

and[B] corresponds tc@ € Z2. If we definep, r+, « exactly as in Example 2.6, we
conclude from Lemma 2.4 that

Uso(k) = Blt4,t—; ].

3. Fractional skew monoid rings ver sus corners of skew group rings

Paschke [16] and Rgrdam [19, Section 2] have shown that a C*-algebra crossed
product by an endomorphism corresponds naturally to a corner in a crossed product by
an automorphism. In other words, the C*-algebra versions of fractional skew monoid rings
7 x4 A x4 Z7F are isomorphic to cornews B . Z)e in certain skew group rings. This
leads us to ask whether, in general, our ris§8%+, A %, S should appear as corner rings
e(B x G)e, whereB x G is some skew group ring over the groGp= S~15. This is indeed
the case, as we prove in Proposition 3.8. We prepare the way by studying corner rings of
the forme(A x G)e (for G = S~1S as above), and showing that they fall into the class of
fractional skew monoidings under appropriateaditions on the action.

3.1. Let A be a unital ring,G a group, andx: G — Aut(A) an action. Assume théht
is a submonoid ofz with G = 15, and letR = A %, G. Suppose that there exists a
nontrivial idempotent € A such thatxs(e) < eforall s € S.

Lemma 3.2. Under the above assumptions, the following hold

(a) The actionx restricts to an action’ : S — EndieAe) by corner isomorphisms.
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(b) There are natural monoid morphisn8P — eRe, given bys — es—1, andS — ¢Re,
given byr — re, satisfying the condition&l)—(4)in Definition 1.2 with respect tax’
and the inclusion map :eAe — eRe.

Proof. (a) This is clear from the hypothesis en

(b) Notice that, since < a;X(e) for all s € S, we havees ™ = es oy (e) € eRe and
(es y(et™1) = e(rs)~1 for 5,1 € S. Similarly, se € eRe and (se)(re) = (st)e. So, the
defined maps are monoid morphisms. It is gfidiorward to check conditions (1)-(4) in
Definition 1.2. O

Because of Lemma 3.2, we have the dadacbnstruct a fractional skew monoid
ring of the form S°P x,/ (eAe) %o S. Since the maps, = o .4, are injective for all
s € S, the ring homomorphismaAe — S°P %,/ (eAe) *,, S going with the construction
of S%Px, (eAe) x4 S is injective by Corollary 1.11. Hence, we identéfyie with its image
in SOP %, (eAe) x4 S, asin 1.12.

Proposition 3.3. Under the assumptions 08.1, the rings S°P %,/ (eAe) %, S and
e(A x4 G)e are isomorphic as;-graded rings.

Proof. By the universal property off°P %, (eAe) x, S, there exists a unigue ring
homomorphismy : S°P sy (eAe) o S — e(A %4 G)e such thaty (s_aty) = (es Dal(te)
for all s, € S anda € eAe. Clearly, ¥ is G-graded. To see thaf is onto, consider
e(ag)e € e(A x G)e wherea € A andg € G, and writeg = st for somes, t € S. Then
we have

e(ag)e = eas e = (es_l) (as (ea)a,(e))(te) € w(SOp *q (eAe) *gy S),

which proves that/ is onto. It only remains to check thdt is one-to-one.

Sincey is G-graded, we only have to check thats_ar,) = 0 impliesa = 0, when
s,t € S anda € ps(eAe) p;. Note thatps, = o (1ea.) = a4(e), and likewisep, = o, (¢), SO
thata = a;(e)aa;(e). Now

0= (es_l)a(te) = eots_l(a(x,(e))(s_lt) = as_l(as(e)aa,(e))(s_lt) = ots_l(a)(s_lt),
whencer; 1(a) = 0 anda = 0, as desired. O

The following procedure gives a generic way to obtain a situation as in 3.1.
Example 3.4. Let «:G — Aut(A) be an action of an abelian group on a unital
ring A, and lete be an idempotent iM. SetS :={s € G | a5(e) < e}. Then S is a
submonoid ofG and G’ := S~1S is a subgroup ofG acting onA via «. Moreover,

e(A x4 GNe = SOP %,/ (eAe) %, S, whereo': S — EndieAe) is the induced action of
S oneAe by corner isomorphisms.
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Proof. Itis clear thatS is a submonoid o6, and we can apply Proposition 3.3 to get the
result. O

Now we go in the reverse direction, looking for a representation of a fractional skew
monoid ringS° x, A %, S as a corner ring of a skew group ring. Our original approach
utilized a direct limit construction based on ideas of Rgrdam [19]; that approach refuired
to be abelian. In the meantime, we learned of the work of Picavet [18], whose construction
we can make use of without needifigo be abelian.

3.5. Let A be a unital ring,G a group ands a submonoid oG such thatG = §~15.
Thus, S satisfies the left Ore condition, andtieéversibility holds trivially becaus$ has
cancellation. Letr: S — EndrtA) be an action of on A by corner isomorphisms, and for
s € S let ps denote the idempotent (1). We construct a ring~1A as in [18], but with
some changes of notation to fit our situation. As written, the development in [18] would
requireS to act onA by unital ring endomorphisms. However, almost all the results we
shall quote do not make use of this assumption, the exception being the question of an
identity—in our situationS~1A can be a non-unital ring.

First, define a relatior- on S x A as follows:

(s1,a1) ~ (s2,a2) if and only if there existr1, 2 € S such thatrs1 = tos2 and
oz (a1) = ar(a2).

This is an equivalence relation [18, Lemma 2.1], and we wgite] for the equivalence
class of a paifs,a). Let S~1A = (S x A)/~ be the set of these equivalence classes. The
left Ore condition guarantees “common denominatorsS i A: given anyx, x» € S~2A,
there exists € S anday, a2 € A such that each; = [s, a;]. By [18, Lemma 2.2 ff.], there

is a well-defined associative multiplication 6mt A as follows:

Given any(s1, a1l, [s2, az] € S~1A, choosery, 1, € S such thatrisy = 1252, and set
[s1,a1] - [s2, az] = [t151, oy (ar) o, (a2)].

(This multiplication rule is simpler than the Ore—Asano rule for multiplication of
noncommutative fractions, because the clagsas] model elements that would have the
form ots_l(a) if oy extended to an automorphism of an overringiof It is routine to build

a well-defined, commutative, associative additionSoR A by the corresponding rule:

Given any(s1, a1], [s2, az] € ST1A, choosery, 1, € S such thatrysy = 1252, and set
[s1, a1l + [s2, az] = [t151, osy (a1) + o, (a2)].

The distributive law is also routine, and §o1A becomes a (possibly non-unital) ring. In
fact, for[s,a]l € S~1A we have[l, 1] - [s, a] = [s, psa] and[s, a] - [1, 1] = [s, aps].

Next, we extend to an action ofS on S~1A. Since this is done without proof in
[18, Theorem 2.4 ff.], we sketch the details.

Lemma 3.6. The action ofr on A extends to an actioa: S — Aut(S~1A) as follows

Given anys € S and [t,a] € S~1A, chooses’, ' € § such thats’s = ¢z, and set
as([ta a]) - [S/a al’(a)]'
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Proof. First, lets € S and [t1,a1] = [f2,a2] in S7YA. Let s1,u1, s2, u2 € S such that
s1s = w1ty andsos = uoto; we must show thalksy, a,, (a1)] = [s2, o, (a2)]. There exist
r1,r2 € S such thatr1s; = roso, and eachis;, ay,, (@)1 = [risi, aru; (a;)]. Hence, we may
assume that; = so. Note that nowt 111 = uatr.

Since [t1, a1] = [t2, a2], there existvy, v2 € S such thatviry = votr and oy, (a1) =
ay, (a2). Further, there arp, g € S with pvy = qui. Thenpuvotr, = puity = quaty = quots,
and sopvp = qup. After replacingss, u1, s2, up by gsi, qu1, gs2, quz, we may assume
that pv; = u; for i = 1,2. Consequentlyg,, (a1) = ay,(a2), whence[s, oy, (a1)] =
[s2, o, (a2)]. Thereforex, ([t, a]) is well-defined.

Considers € S and[z, a1, [, a2] € S"1A. Choose’, i’ € S such thak’s = ¢'¢; then

as([t. a1l - [1, a2]) = ay([t, a1a2]) = [s', ay (a1a2) |
=[s" ar(aD)] - [, ar(@2)] = as([t, a1l) - s ([, a2]).

and similarly for addition. This shows that; is a ring endomorphism of~A. If
oy ([t, a1]) = a([t, az]), there existui, up € S such thatuys” = uzs’ and oy, (a1) =
oy, (az). Since thenuy = up, it follows that [, a1] = [¢,a2]. Thus, «;, is injective.
Moreover, for any[r,a] € S~1A we see thata,([ts,al) = [t,a]. Thereforea, €
Aut(S~1A).

It is clear thatw is the identity map. Finally, considet, sp € S and[r,a] € S~1A.
There exists, r2 € S such thats)s, = 2t, S0 thatay, (1, a]) = [s5, ar,(a)]. There exist
s1.11 € S such thatsysy = t155, S0 thatay, ([s5, a;,(a)]) = [s7, o (a)]. But sys1s2 =
nitat, and S0, ([1, al) = [s, anr,(a)] = ay (a5, ([t, al)). Therefore the map: S —
Aut(S~1A) is a monoid homomorphism.o

There is a shortcut that can be taken for part of the above work. The given action of
induces oA the structure of a left module over the monoid riA§. Moreover,S is a left
denominator set ifZ.S, and the Ore localizatioS ~1(ZS) is just the group ringZG. By
standard localization theory, there exists a module of fractforist, which is a leftZG-
module. Thus, one obtains the constructioisot A as an additive group and the action of
S on S~1A by Z-module automorphisms.

Lemma 3.7. The rulea — [1, a] defines ars-equivariant ring embedding: A — S~1A
with image[1, 1]- S~1A - [1, 1].

Proof. It is clear that¢ is a ring homomorphism and that it iS-equivariant, i.e.,
¢(as(a)) = as(¢p(a)) for s € S anda € A. If a € ker¢), then[1,a] =[1,0], and so
as(a) =0 for somes € S. Sincew; is injective,a = 0. Thus,¢ is an embedding.

Sete = [1, 1] = ¢(1), and note that(a) = e¢(a)e for a € A. Recall thate[s, ale =
[s, psaps] for any s € S anda € A. Sincea;(A) = psAps, there existsh € A with
as(b) = psaps, whencee[s, ale = [s, as(b)] = [1, b]. Therefore the image ap equals
e(S71Aye. O

Proposition 3.8. Let G be a group andS a submonoid ofG such thatG = S~1S. Let
a:S — EndrA) be an action of on A by corner isomorphisms. Then there exist a unital
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ring B, an actiona : G — Aut(B), and an idempotert in B such thata,(e) < e for all
seSandS%Px, A x, S = e(B x5 G)e (asG-graded rings.

Proof. ConstructS~1A as above, set=[1, 1], and identifyA with the corner(S~1A)e
via Lemma 3.7. LetB be the unitization ofS~1A; then alsoA = eBe. In view of
Lemma 3.6,a extends to an actiols — Aut(S~1A), and thus to an actiof: G —
Aut(B). It is clear thatd,(e) < e for s € S, and we conclude from Proposition 3.3 that
e(B*y G)e = SPx; (eBe) %5 S = S %, A %, S asG-graded rings. O

4. Simplicity

We continue the general assumptions of 1.1 and 2.1, and seek conditiofis $n
and o under whichR = S°P x, A %, S is a simple ring. In the case of a group action
(i.,e., S =G anda: G — Aut(A)), sufficient conditions for simplicity are well known
[15, Theorem 2.3]: ifA is simple and the actiorr is outer, then the skew group ring
A x4 G is simple. It turns out that a suitable modification of the notion of an outer action
also leads to simplicity in our more general situation.

We shall say that a paiix;, «;), wheres, r € S, isinner provided there exist elements
u € psAp, andv € p,Aps such thatuv = p, vu = p; and a;(x) = ua, (x)v for all
x € A. Note that themsafl(x) =uxv for everyx € p;Apy, anda,a;l(x) = vxu for all
x € psAps. Let us say thak is outerin case(ay, «;) is not inner for any distinct, ¢ € S.

We will use the following standard terminology. Thepportof an element = r,
in R =@P, s Ry is the set Supp) = {x € G | r, # 0}. The lengthof r is the number of
elements in the support of and is denoted l&n).

Theorem 4.1. If A is simple andx is outer, thenR = S°P x, A %, S is simple.

Proof. Suppose thar is not simple. Letl be a proper nonzero ideal &, and letp € [
be a nonzero element with minimal length, say lengtiWrite p = Y7, (si)—ai (t;)+
where theslflti are distinct elements of~1S and eachq; is a nonzero element of
s Apy,. Observe thats1) 1 p(t1)— = a1 + YI_, p; where eachy; lies in thesys; 11, -
component ofR. Hence,(s1)+po(t1)— = a1 + >_;_o(u;)—bi(vi)+ where theui_lvi are
distinct elements of—1S, different from 1, and each; Du; Apy,. Moreover,ag # 0
implies (s1)+p(t1)— # 0, and so(s1)+p(f1)— has lengthn by minimality. Thus, after
replacingp by (s1)+p0(t1)—, we may assume that =1 = 1.
SinceA is simple,"7_; c;aid; = 1 for somec;, d; € A. Then we can replace by

Y cipdj =1+ (si)- ( > o (cjaiey, (d,-)> (t)+,
j=1 i=2 j=1

and so we may now assume that= 1. Of coursep # 1 becausd # R, whencen > 2.
Sets = s, t =12, anda = ap € p;Apy, SO that
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n
p=1+s_aty + Z(Si)—ai )+
i=3

For anyx € A, we havexp — px € I and

xp— px =5 (a5 (¥)a — acy (x))ty + Y (s:)-0i(ti)+

i=3
for some element$; € p,; Ap;, that we need not specify. Thugp — px has length less
thann, and saxp — px = 0 by the minimality ofz. Therefore

a5 (x)a = aay (x)

forall x € A. In particular,p;Aa = psApsa = as(A)a = ao; (A) = aAp;.
SinceA is simple,Ap;A = AaA = A, and so

aAps =aAp,Aps = psAaAps; = psAps,

whence there is somee p; Aps; such thatub = p,. Similarly, there is some € p; Ap;
such thata = p;. Butc = cp; = cab = p;b = b, so thatba = p;. Now

ao; (x)b = ag(x)ab = a(x) ps = a5 (x)

for all x € A, and so we conclude that the pdir;, «;) is inner. Sincex is assumed
to be outer, we must havwe= r. But thens, ', = s~1r = 1 = s; 11, contradicting the

distinctness of th@i_lti. Thereforer is simple. O
Corollary 4.2.If A is simple andp;s #* p; for all distincts, r € S, thenR is simple.

Corollary 4.3. If A is a directly finite simple ringp € A is a proper idempoteng.e.,
p #1),anda: A — pAp is a corner isomorphism, thefa™ =, A %, Z* is simple.

Proof. The idempotents corresponding to the monoid homomorpligm-> EndrA)
in this case are thex'(1) for i € Z*. Sincea(l) = p # 1, we have 1> a(1) >
a?(1) > ---, and it follows from the direct finiteness dfthata’ (1) * «/ (1) for all distinct
i,jeZ*. O

5. Purely infinite simplicity

We recall from [3] that a simple rind@ is said to bepurely infiniteif every nonzero
right ideal of T contains an infinite idempotent. This concept is left-right symmetric, as
the following characterization show§: is purely infinite if and only if(1) T is not a
division ring; (2) for every nonzero elemente T, there exist elements, y € T such that
xay = 1[3, Theorem 1.6]. For instance, the Leavitt algebras(k) andUx (k) are purely
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infinite simple rings [3, Theorems 4.2, 4.3]. As we have seen above (Examples 2.5 and 2.7),
the above mentioned algebras can be presented in theAbry B *, ZT. This suggests
that fractional skew monoidmgs might be purely infinite simple in some generality. Our
goal in this section is to establish sufficient conditions for a fractional skew monoid ring
R = S°Px, A x4 S to be a purely infinite simple ring, under the general assumptions of 1.1
and 2.1.

The following concept will be needed. A rinfj is said to bestrictly unperforated
provided the finitely generated projective right (or leftymodules enjoy the following
property: IfmA < mB for somem € N, thenA < B. (Herem A denotes the direct sum
of m copies ofA, and the notatiorX < Y means tha is isomorphic to groperdirect
summand off. Similarly, e < f, for idempotents, f € T, means that ~ ¢’ < f for
some idempotent’ in T.) Stated in terms of idempotents in matrix rings oferstrict
unperforationis the conditiofw: - p < m-q = p < ¢q), wherem - p denotes the orthogonal
sum of m copies of an idempotent. For instance, ultramatial algebras are strictly
unperforated [9, Theorem 15.24(a)]. Also, any purely infinite simple @ing strictly
unperforated, because < B for all nonzero finitely generated projectie modulesA
andB [3, Proposition 1.5].

Lemma 5.1. Assume tha# is simple and strictly unperforated, and that there existsS
such thatp, # 1. For any nonzero idempotenate A, there existew = u’/ € S for some
J € Nsuch thatp, <e.

Proof. Setp; = p, = (1) for i > 0. SinceA is simple, there exists: € N such that
l<m-eand 1<m-(1— p1). Note that

m+l-prSm-p1®1lIm-pr@&m-(1—p1))~m-1L
Applying the isomorphisme’,: A — piApi, we obtain thatm + 1) - pi41 Sm - p; for
all ;. It follows by induction thaim + 1) - p; <m' - 1foralli.
Now choosej € N such thain/*1 < (m + 1)/, and observe that
m/ M pi<m+ ) pySml-L<mithe,
whencen/*1. p; <m/+1.e. Thereforep; < e, becauset is strictly unperforated. O

The following lemma is a variation oresults such as [9, Proposition 3.3].

Lemma5.2. If T is a simple ring containing an idempotenpt£ 0, 1, thenT is generated
(as aring by its idempotents.

Proof. Let T’ be the subring of" generated by the idempotents. Since- pt(1 — p) is
idempotent for any e 7, we see thapT (1 — p) € 7', and likewise(1 — p)Tp € T'. The
simplicity of T implies thatT (1 — p)T =T, whencepTp = [pT(1— p)Il(1— p)Tp] <
T’, and similarly(1 — p)T (1 — p) € T'. Thereforel' =T. O
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Theorem 5.3. Assume thad is a simple, strictly unperforated ring, in which every nonzero
right (left) ideal contains a nonzero idempotent. Assume alsathsibuter, and that there
existsu € S with p, # 1. ThenR = S°P %, A 4 S is a purely infinite simple ring.

Proof. The hypothesis that, # 1 will allow us later to apply Lemma 5.1. Moreover, it
implies thatR is not a division ring.

Let p be an arbitrary nonzero element 8 Choosep’, p” € R such thatp’pp” is
nonzero and has minimal length for such nonzero products, say len§ihce it suffices
to find x, y € R such thatxp’pp”y = 1, we may replace by p’pp”. Thus, without
loss of generality, all nonzero producic’ in R have length at leasi. Now write
p =Y i q(si)—ai(t;)+ where thesflt,- are distinct elements o§~1S and eachy; is
a nonzero element op,; Ap,;. As in the proof of Theorem 4.1, after replacipgby
(s1)+p(r1)— we may assume that =7, =1, so thato =a1+ Y 7_5(si)—a;(t;)+.

By our hypothesis on idempotents, there exigfss A such thataia; is a nonzero
idempotent. By Lemma 5.1, there existy € A such thatcaiayy = p, for somev € §.
Note thatv_xaiajyvy = 1. Hence, after replacing by v_xpajyv,, we may assume that
a1 = 1. We are thus done in case= 1.

Suppose that > 2, and sek = 52, t =12, anda = ap € p;Ap;. Thus,

n

p=1+s_aty + Z(si)fai () +
i=3

at this point. For any idempoteate A, we have

ep(L—e) =s-as(e)a(pi — @)ty + D (5:)-0i ().

i=3

Sinceep (1 — ¢) has length less tham, it must be zero, whencg (e)a(p; — a;(e)) = 0.
Thus, as(e)a = as(e)aa;(e). A symmetric argument involvingl — ¢)pe shows that
ao;(e) = as(e)aa(e), and sax; (e)a = aw;(e).

By Lemma 5.2 A is generated by its idempotents. Hence, it follows from the equations
as(e)a = awy;(e) thatas(x)a = aa; (x) for all x € A. As in the proof of Theorem 4.1, this
implies that the paites, o) is inner, yieldings = ¢ ands, ', = s; 1, which contradicts
our assumptions. Therefore= 1, and the proof is complete.c0

It is perhaps not so surprising that the purely infinite simple property carries over from
A to R under suitable conditions. More interesting is tRatan be purely infinite simple
even whenA is directly finite. We single out an important case of this phenomenon in the
following corollary.

Corollary 5.4. Suppose thatd is either a purely infinite simple ring or a simple
ultramatricial algebra over some field. Assume also thds outer, and that there exists
u € S with p, # 1. ThenR = S°P x, A %, S is a purely infinite simple ring.
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