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This work presents a comparative study of two alternative proce-
dures for the estimation of surface temperature of a heated body
from transient interior temperature measurements. This Inverse
Heat Conduction Problem (IHCP) is solved (in both procedures)
by using the Function Speci®cation Method. A numerical test was
used in order to compare the best estimation achieved in each
procedure. The in uences of the time step size, the total number of
measurements and the noise level in the measurement have been
considered in the estimation. Two criteria (minimization of total
error and residual principle [3]) are used to choose the best
hyper-parameter (r). The comparisons con®rm that the proce-
dures and criteria used provide similar results, nevertheless this
study reveals slight differences with respect to the accurate and
the CPU time. [DOI: 10.1115/1.1738420]

Keywords: Conduction, Heat Transfer, Inverse, Numerical Meth-
ods

Introduction

As it is well known, the main dif®culty of the Inverse Heat
Conduction Problem (THCP) is the great ampli®cation of the mea-
surement errors. The in uence of the more important factors in
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this problem can be discussed considering the exact solution of
Burggraf [1]. Many methods have been reported to solve THCPs,
among the more versatile (applicable to solve multidimensional
and non-linear THCP) the following can be mentioned: Tikonov
regularization [2], iterative regularization [3], molli®cation [4]
and function speci®cation method[1]. Several types of the un-
known boundary conditions are considered in the IHCPs. In many
problems, the unknown boundary condition is stated as type 2 (or
Newman's condition ). This one can be considered the most usual
procedure because, once the heat “ux has been estimated, the
temperature ®eld (including the surface temperature) and heat
transfer coef®cient can be calculated in a “post-processor” [5,6].
Nevertheless, depending on the methodology and the application
considered, the procedures can be different. For example, in ref-
erence [7] surface temperature and heat ux are estimated simul-
taneously in steady-state, and in [8] temperature ®eld and heat
transfer coef®cient are estimated simultaneously in a transitory
and nonlinear problem. In other cases, the sequence of calcula-
tions is the following: ®rst, the surface temperature (or Dirichlet's
condition) is estimated, and then heat ~ux and heat transfer coef-
®cient are calculated[9,10].

The purpose of this technical note is to present a comparative
study of two alternative procedures in order to estimate surface
temperature: Procedure IDFirst, the surface heat “ux history is
estimated by solving the THCP, and then the discrete form of
Duhamel'’s integral is used to calculate the surface temperature.
Procedure IIDThe surface temperature is estimated through a di-
rect formulation of the corresponding THCP. In both procedures,
the classic Function Speci®cation Method (FSM) proposed by
Beck [1] has been used. It is expected that different procedures
provide similar results. Nevertheless, in an THCP problem, it is
suitable to carry out a comparative study. This is due to the ill-
posed nature of the IHCP and the different sensitivity coef®cients
used. The comparison is made by taking into account the best
estimation achieved in each procedure using a numerical test. In
order to obtain the best estimation, it is necessary to consider a
criterion that permits an adequate choice of the hyperparameter. In
the FSM, the hyperparameter is the number of future temperature
used (r), and the criteria considered are (1) the minimization of
total error, and (2) the residual principle [3]. The two criteria have
been applied in both procedures.

Analysis

In order to validate the inverse algorithm, the previous formu-
lation of the direct problem will be necessary. The following one-
dimensional problem of heat conduction will be considered: a ~at
plate exposed to a heat “ow that varies in time in a triangular
fashion (Fig. 1(a)). The opposite face is insulated. The mathemati-
cal formulation will be used in dimensionless form in order to
simplify the notation. A more detailed description of this linear
problem can be found in reference [1]. The problem is governed
by the differential equation Eq. (1). The boundary conditions are
indicated in Fig. 1(a). It is noted that 7 represents the dimension-
less duration of the triangular heating (in this case 7=1.2). Finally,
the initial condition is: 7(x,0)=0.

F*T(x,t) _ dT(x,t)
axz - ot

0=sx=<l

M
The solution to this problem is based on the superposition of the
fundamental function 6(x,t), and it can be expressed as
0<t<7/2 T(x,t)=0(x,t)
2<t<t T(x,t)=6(x,t)—26(x,t—1/2)
t>17 T(x,t)=06(x,t)—26(x,t—7/2)+ 6(x,t—7)

where 6(x,t) represents the analytical solution [11] of the prob-
lem when g(¢)=t¢ for t>0:

@
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Fig. 1 (a) One-dimensional problem and heat “ow considered;
and (b) analytical solution of the problem at x=0 and at x=1
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For subsequent discussion, the solution, Eq. (2), will be evalu-
ated at two points of special interest: at x=1, where a sensor will
be placed, and at x=0, which corresponds to the surface tempera-
ture that will be estimated. Both functions are represented in Fig.
1(6).

The previous direct problem will be used as a test for the vali-
dation of the inverse problem. In the IHCP, the unknown bound-
ary condition at x=10 is stated as type-1 (or Dirichlet's condition),
and the objective is to estimate the surface temperature using the
discrete reading of temperature provided by a sensor located at
x=1. As the measured temperatures Y; are affected by errors, they
are simulated using the discrete values of the analytical (or exact)
temperature T;=T(1,¢;) (from Eq. (2)) at times ¢;=iA¢ (the time
intervals of the measurements). Then, random errors ¢; are added
according to: T;+¢;, where &;=Cu;. The random numbers u;
have been obtained using a random generator according to a nor-
mal (or Gaussian) distribution with zero mean, uncorrelated, and
unit standard deviation. The constant C is chosen, so that C
=0y, where oy is the standard deviation of measured tempera-
tures. FSM method is based on the speci®cation of the functional
form corresponding to an unknown input W. To avoid unnecessary
repetitions, the input denoted as W, can be used in this problem
for the surface heat “ux g (in procedure 1) or the surface tempera-
ture T (in procedure IT). The speci®cation of this method includes
only 7 future steps from the last estimated component (component
M—1). Then, the future components ¥;,, ¥y, 1, ..., Wit 1,
can be written in terms of ¥;,, and only this component is esti-
mated in each step. The temporary assumption can be made by
several ways. In this note the simplest form is used, that being a
piecewise constant form, and the r future components being as-
sumed temporarily constant. With this assumption, a particular
sequential inverse algorithm is derived from the minimization of
the difference (in the least squares sense) between the measured
() and calculated (7) temperatures within the interval of future
times. Details of this algorithm can be seen in reference [1]. The

estimated component, noted as ‘¥;, can be expressed as

11; _2;=1(YM+i—1_ M+i—1|"l’fut.=0)Zi
- 2
Dz

@

where subscript i denotes the future times. ?IM+,-_1|W,,,.=0 repre-
sents the calculated temperatures assuming that the future compo-
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nents ¥y, Wi, ..., Wyt are equal to zero. Z is the ®rst
derivative of calculated temperature with respect to ¥,. This
derivative, represents the sensitivity coef®cient to a unit step
change in the input, and can be obtained by analytical [11] or
numerical methods. In Eq. (4), Z; is evaluated at x=1 (sensor
location) and for the times ¢;=iAt, i=1,2,...,r.

Depending on the procedure used, different inputs and different
sensitivity coef®cients are used. Details of the two procedures are
described below.

Procedure 1. With this procedure, the previous estimation of
surface heat ux history 4 is necessary. Then, the surface tempera-

ture ?IS is calculated from . Accordingly, the input ¥ in the
inverse algorithm, Eq. (4), represents the surface ~ux history g,
and Z represents the respective sensitivity coef®cients. Once the
estimation of ¢ has been completed, we can recover the ®eld
temperature using the discrete form of Duhamel's integral, ac-
cording to

M
i(x,tM)=To+§,l d (i )Xot ®)

where the initial temperature, noted as 7y, will be Ty=0 in ac-
cordance with the mathematical formulation of the problem. In
agreement with the temporal assumption considered in the inverse
algorithm, Duhamel's integral is approximated by a constant
piecewise function centered at the middle of the time step (¢;+152)-
Consequently the sensitivity coef®cients X; represent the tempera-
ture response to a unit pulse in the input, and hence it is evident
that X;=Z;, —Z;. The surface temperature is obtained from Eq.
(5) by setting x=0.

Procedure II. With this procedure, the surface temperature
history ?;S is directly estimated from Eq. (4). Now, ¥ and Z rep-
resent the surface temperature and the respective sensitivity coef-
®cients. The estimation of surface temperature in this form has
been described by Woodbury [9]. Nevertheless, the purpose of
Woodbury's study was the surface “ux estimation, whereas this
study is focused on the surface temperature.

In order to compare the best estimation of surface temperature
by the two procedures (I and II), it is necessary to select the
optimal value of » for a given time step. In this comparison, the
following criteria are considered:

Criterion A. In an THCP there are two sources of error in the
estimation. The ®rst source is the unavoidable bias deviation (or
deterministic error) when »>1. The second source of error is the
variance due to the ampli®cation of measurement errors (stochas-
tic error), which can be very important, especially when the time
steps are small. The global effect of deterministic and stochastic
errors is considered in the mean squared error or total error. De-
tails of these types of error and the corresponding estimates can be
found in reference [1]. The estimates used in this study for the
bias (D), the variance (o) and the total error (S) are de®ned by
Egs. (6), (7), and (8), respectively.

1 N 12
D=[Nji§1 (\ﬁ,-l.,fo—*lf,-)z} ©
1 N 12
oy= m; (,‘ﬁi_\ﬁilay=0)2:| @)
1 N 12
s=ly12 <~1¥,-—~If,-)2} ®

where ‘l;,-|,,y=0 are the “virtual” estimations using errorless mea-

surements, and W; are the true values of input. The optimality
criterion is based on the minimization of S, which allows deter-
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mination of the necessary balance between the two error sources.
As it is evident, the interest of this criterion is mainly theoretical,
and it can only be useful in comparative studies.

Criterion B. This criterion is based on the residual principle

[3]. Once the vector of input (‘l; 1" o ) has been estimated, the
evaluation of the residual obtained from the comparison between
the measured temperatures Y; and the recovered temperatures

?I,-(r) is possible. The residual R is de®ned as
12

N
1
R()=| o= 2 (¥~ £(n)? ©)
N-173
For the procedure-I, ?I,-(r) can be obtained from Eq. (5) by
setting x=1 (sensor location). As T,=0, the Eq. (5) can be used

in same form to obtain T;(7) in procedure II, nevertheless the J,

components must be replaced by f';, and the sensitivity coef®-
cients X; represent the temperature response to a unit pulse of
imposed surface temperature. In the function speci®cation
method, the residual principle is satis®ed whenr is such that the
residual R assumes the closest (and superior) value to the standard
deviation of measurement [12]. This condition can be expressed
as follows: min, {R(r)=0y}.

Numerical Results

A numerical test was carried out for three cases and 24 sub-
cases. The results are presented in tabular and graphical forms,
and they correspond to the optimum r-value obtained by each
procedure (I and II), criterion (A and B) and level of noise, re-
spectively, as can be seen in Table 1. Each case corresponds to a
particular value of the total number of measurements (N) during
the time interval 7 and a size of time step (A¢). The parameters
At and N are modi®ed using the condition:A¢ N=7=1.2, so that,
N is increased gradually and the time step is reduced. Two levels
of noise measurements oy (0.001 and 0.01) are considered in each
case. Taking as reference the maximum increase of dimensionless
temperature at location sensor (0.3581), which corresponds to the
maximum of lower curve of Fig. 1(b), and considering (around the
exact temperatures) an error range between +2.5760y (or 99 per-
cent con®dence interva)), these noise levels correspond to percent-
ages error of 0.72 percent and 7.2 percent respectively. Finally it
is noted that estimates o7g, S and R are random variables. There-
fore, the choice of optimum value of » needs the application of

Table 1 Summary of numerical results for optimum estima-
tions

P. oy C. r ors D S R
CASE-1, Ar=0.12, N=10
1 0.001 A/B 2 0.0049 0.0090 0.0100 0.0015
0.01 A/B 3 0.0187 0.0107 0.0209 0.0108
)i 0.001 A/B 2 0.0033 0.0060 0.0068 0.0039
0.01 A/B 3 0.0161 0.0211 0.0267 0.0156

CASE-2, At=0.03, N=40

0001 A 7%(6%) 0.0023  0.0034 00041  0.0018

1 B 6 ~ 0.0035 0.0021 0.0040 0.0012
001 A 10%9*) 0.0098 00101 00141 0.0107

B 10 ~ 00098 00101 0.0141 0.0107

0001 A 6 00035 00043 0.0056 0.0024

I B 5 00058 0.0023 0.0063 0.0014
001 A 9%(8*) 0.0140 0.0132 0.0193 0.0121

B 8 00179 0.0098 0.0204 0.0108

CASE-3, At=0.01, N=120

0.001 A 16%(17%) 0.0023 0.0017 0.0029 0.0011

I B 16 ~ 00023 00017 0.0029 0.0011
001 A 25%27%) 0.0077 0.0066 00101 <oy

B 28 © 0.0064 00091 00111 0.0106

0001 A  15%(16%) 0.0035 0.0027 00043 00016

i B 12 ° 00067 00012 0.0068 0.0011
001 A 22 00126 00082 00126 0.0147

B 21 00141 00072 00159 0.0105
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Fig. 2 Case-1: (a) Procedure-I; and (b) Procedure Il

Monte Carlo method. A total of 30 sets random errors have been
generated in each sub-case, and the results presented in Table 1
are the arithmetic mean of the corresponding estimates.

The ®rst case (case-1 in Table 1) considers a relatively large
time step Az=0.12. Due to their size, only ten measurements
(N=10) are included in the interval 7. For all subcases consid-
ered, the optimal 7-value has been r=2 (for oy=0.001) and r
=3 (for oy=0.01), with independence of criterion (A or B).
Graphical representations of 7'y versus time are plotted in Fig. 2.
Considering a visual inspection, the estimations obtained by both
procedures are similar. Nevertheless, taking into account the val-
ues of § in Table 1, for low noise, procedure 1T is slightly better
than procedure-1, and for high noise, the opposite occurs.

In the second case (case-2 in Table 1), the time step is At
=0.03. This value implies N=40, according to the previous con-
siderations. As it is expected, shorter time step requires larger
r-value in order to assure the stability. Comparing the tabulated
results to the corresponding to previous case, the estimations are
now slightly more accurate. In this case, the estimation of T by
procedure I is slightly better than the one obtained by procedure
1I. For sub-case procedure I and oy=0.001, the best estimation
corresponds to r=7 (criterion A) and »=6 (criterion B). Never-
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o1y —Exact
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01} ——
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04 02 0 02 04 t_0.6 08 1 12 14 16
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Fig. 3 Case-2: (a) Procedure-I; and (b) Procedure Il
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theless, a new statistical analysis reveals that the choice based on
criterion A is affected by uncertainty. If the arithmetic mean value
of § is recalculated a set of 30 times, according to the central limit
theorem, these mean values are nearly normally distributed. This
particular point has been corroborated using the Kolmogorov-
Smirnov test. This fact permits to establish con®dence intervals.
The 95 percent con®dence interval for S with =6 is: (0.0038,
0.0042) and the corresponding interval with »=7 is: (0.0039,
0.0041). There is obviously an overlapping, and any of the two
values can be considered as the optimum. The cases affected by
this type of uncertainty are noted in Table 1 with (¥). Similar
overlapping exists in the sub-case: procedure I, cy=0.01. On the
other hand, and considering the criterion B corresponding to pro-
cedure I and oy=0.01, the 95 percent con®dence interval for R
with =9 is as follows: (0.0097, 0.0105). As 0.0097<cy, this
implies that in some samples the residual principle is not statisti-
cally satis®ed, consequently the minimum r-value that satis®es
(with 95 percent con®dence the residual principle is =10 (see
Table 1). When procedure 11 is applied, only the estimations cor-
responding to a high noise level (oy=0.01) are affected by un-
certainty. The estimations obtained by procedure I and II are plot-
ted in Fig. 3. In each case two noise levels are considered. The
criteria selected have been: criterion A, in Fig. 3(a), and criterion
B, in Fig. 3(b).

In the third case (case-3 in Table 1) ?IS is estimated with a very
high temporal resolution. The estimations corresponding to sub-
cases of low noise level are the most accurate results, and for the
sake of clarity are not plotted. Considering the high noise level
and the residual principle (criterion B), the best estimations ob-
tained by procedure I and II are plotted in Fig. 4.

Finally, the computational time has also been evaluated. It is
evident that procedure I needs more computation time than the
used by procedure II. Moreover, the r-value used by procedure 1
(in the best estimation) is higher that the one used by procedure 11,
especially in cases of high temporal resolution. For example, com-
paring the estimation of surface temperature corresponding to Fig.
4, the CPU time required by procedure I and procedure II has
been 11.43 s. and 7.08 s, respectively. This advantage of proce-
dure 1T can be attractive in an on-line process. All numerical cal-
culations were performed on a personal computer with a Pentium
11T 700 MHz processor.

Conclusions

Two procedures in conjunction with two possible criteria have
been considered in this comparative study in order to estimate the
surface temperature. The results obtained in this numerical simu-
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lation reveal that, the accuracy of both procedures is similar, nev-
ertheless procedure I provides results slightly more accurate than
procedure II. On the other hand, procedure II requires less com-
putational time and needs a smaller number of future tempera-
tures. This fact suggests that procedure II can be more adequate in
those applications where the surface temperature must be esti-
mated in an on-line process of long duration.

A comparison has also been made between the criterion of
minimum mean squared error and the residual principle. Taking
into account the uncertainty in the determination of the optimum
r-value, this simulation con®rms that both criteria provide equal or
similar values in all the cases considered.
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Nomenclature

constant chosen

estimate of bias

dimensionless heat “ux

present time step

number of measurement during 7
integer

dimensionless temperature

initial temperature

number of future time steps
dimensionless time

estimate of residual

estimate of total error

Gaussian random numbers (normalized)
dimensionless coordinate
sensitivity coef®cient, Eq. (5)
measured temperature

sensitivity coef®cient, Eq. (4)

Greek Symbols
At

T a
I

N~N&8 0hXa vyolmgy =-a

dimensionless time step size
random error

analytical solution, Eq. (3)
standard deviation
dimensionless temporal interval
input unknown

39 o0
i

Subscripts

i

fut.
S

at time ¢;
future components
= surface location

Superscripts

A= estimated
* = uncertainty
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1 Introduction

Mixed (forced-free) convection heat transfer in vertical eccen-
tric annuli can be found in the drilling and cementing operations
of oil wells [1], double-pipe heat-exchangers, and cooling of ver-
tical electric motors and generators [2]. Most articles dealing with
eccentric annuli treated the fully developed forced ~ow and the
fully developed forced convection [3+9]. Sathymurthy et al. [10]
investigated the problem of fully developed mixed (combined
forced and free) convection for a Newtonian ~uid in an eccentric
annulus.

The main objective of this paper is to present an analytical
solution for the problem of fully developed laminar mixed con-
vection in vertical eccentric annuli under the thermal boundary
conditions of one isothermally heated cylinder while the other
cylinder is insulated. This analytical solution is used to obtain the
critical values of Gr/Re that create buoyancy effects that balance
the friction in the annulus. Flows having Gr/Re above these criti-
cal values would make the channel, which has a constant cross-
sectional area perpendicular to the “ow direction, acts as a dif-
fuser with possible incipient ~ow separation.

2 Problem Description

The geometry under consideration is shown in Fig. 1(a). This
eccentric geometry can easily be described by the bipolar coordi-
nate system (#, £ and z) shown in Fig. 1(b).
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A Newtonian ~uid at ambient temperature T, is forced to —ow
through this vertical annulus from its bottom. Free convection
exists inside this vertical channel as a result of heating one of its
walls at a uniform temperature (7,) different from that of the
ambient while keeping the other wall insulated. The uid is as-
sumed to have constant physical properties but obeys the Bouss-
inesq approximation (its density is allowed to vary with tempera-
ture in only the gravitational body force (buoyancy) term of the
vertical (axial) momentum equation). Body forces in other than
the vertical direction, viscous dissipation, internal heat generation,
and radiation heat transfer are absent. Using the appropriate coor-
dinate scale factors [11], the governing equations in bipolar coor-
dinates under the above-mentioned assumptions can be obtained.

3 Fully Developed Mixed-Convection Flow

3.1 The Fully Developed Velocity Pro®le. At large values
of the dimensionless axial distance Z the ~ow becomes fully de-
veloped with v =w=0 and du/dz=0. Hence the continuity equa-
tion and the inertia terms of the axial momentum equation vanish
while the £ and 7~momentum equations reduce to dp/dé=0 and
dp/dn=0, respectively. In the axial momentum equation, the
gravitational body force per unit volume F,= — pg and according
to the Boussinesq approximation: p=p,(1— 8|T—T,|). Hence,
F,=—p,g+p,gB|T—T,|. Using the dimensionless parameters
given in the nomenclature, one can write: F,=—p,g
+( poGr'yZ/D?,) 6. Accordingly, for a hydrodynamic fully devel-
oped mixed/forced “ow dp/dz=[(dp/dz)s;]=constant and the
resulting axial momentum equation reduces to

2 [
¢9zufd+ d ufd) _p ap’ p,Gry’

-2 "y 1
o0& on dz D} f") @

72

fa
For values of Pr<1, thermal full-development occurs before the
hydrodynamic full development and since the boundary condi-
tions under consideration have one wall isothermal, 6,,=1. With
07;=1 and using the dimensionless parameters given in the no-
menclature the above equation reduces to

. dpP Gr
aZde+ aZde_Hz dP\  Gr\ dZj ., Re
&2 an dZ), Re (cosh —cos £)?

@
where C* is a dimensionless constant that depends on the geom-
etry and is given by

C*=(sinh* 7,)/[4(1-N)*]. ©))

It is worth mentioning that Re and Gr cannot, in strict sense, be
independently varied for mixed-convection problems in vertical
channels. This is because the entrance velocity u, (which equals
to o under the steady-state steady- ow conditions) is physically
in uenced by the value of Gr, in vertical duct ~ows. However,
forced and free convection effects can be comparable when an
external ~ow is superimposed on a buoyancy-driven —ow. In such
a case, ' there exists a well-de®ned forced convection velocity”
[12]. Nonetheless, in the case under investigation, the governing
Eq. (2) will be handled for given values of the parameter Gr/Re,
rather than independent values of each.

Let C**=—{(dP/dZ).,—Gr/Re}, which is a dimensionless
quantity, and dividing both sides of (2) by C**

F(Uyy/C*¥) N F(Uypy/ C**) _ —C*
o2 I (cosh —cos £)?

De®ne the variable Uy, /C** as the modi®ed velocity pro®le
(Usam) then the above equation becomes

(92 dem (92 dem _ - C*
& 2 (cosh p—cos £)?
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