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ABSTRACT

Lie triple systems appear as the natural ternary extension of Lie algebras. The
classification in the finite-dimensional setup (over an algebraically closed field

of characteristic zero) is well-known [Lister, W. G. (1952). A structure theory
of Lie triple systems. Trans. Amer. Math. Soc. 72:217–242]. In order to suggest
a possible approach to a structure theory of infinite-dimensional Lie triple
systems, we introduce and study split and locally finite Lie triple systems, stating

that under certain conditions the standard embedding of a split Lie triple system
is a split Lie algebra and that the standard embedding of a locally finite Lie triple
system is a locally finite Lie algebra. We also give a description of certain locally

finite simple split Lie triple systems.
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1. INTRODUCTION

The main tool used by Lister (1952) to study finite-dimensional Lie triple
systems is the standard embedding, this one being a two-graded Lie algebra
L ¼ L0 � L1, with L0 the span of fLðx; yÞ : x; y 2 Tg, where Lðx; yÞ denotes the left
multiplication operator in T , L1 :¼ T , and where the product is given by

½ðLðx; yÞ; zÞ; ðLðu; vÞ;wÞ�
:¼ ðLð½u; v; y�; xÞ �Lð½u; v; x�; yÞ þLðz;wÞ; ½x; y;w� � ½u; v; z�Þ:

Later, Faulkner (1980) gives an alternative approach to the classification of
Lie triple systems, also in the finite-dimensional setup, by introducing a Cartan
subalgebra H0 of the even part of the standard embedding, and a decomposition
of T as the direct sum of certain root spaces relative to H0.

In the framework of infinite-dimensional Lie algebras, Neeb, Stumme and other
authors have successfully developed over the recent years a theory of split and locally
finite Lie algebras (c.f. Bakhturin and Benkart, 1997; Bakhturin and Strade, 1995a,b;
Dimitrov and Penkov, 1999; Neeb, 2000, 2001; Neeb and Stumme, 2001; Stumme,
1999).

In this paper, we combine all the above ideas in order to introduce and study
split Lie triple systems of arbitrary dimension in Secs. 2 and 3, the main result being
Theorem 3.1 which states that under certain conditions the standard embedding of a
split Lie triple system is a split Lie algebra. In Sec. 4 we also state that the standard
embedding of a locally finite Lie triple system is a locally finite Lie algebra (Proposi-
tion 4.1), and obtain in Theorem 4.1 a description of an important class of locally
finite split simple Lie triple systems.

2. BASIC DEFINITIONS

Let K be a field of characteristic zero and let T be a vector space over K: We say
that T is a triple system if it is endowed with a trilinear map

h�; �; �i : T � T � T ! T ;

called the triple product of T .
A triple system T is called a Lie triple system if its triple product, denoted by

½�; �; ��, satisfies

(1) ½x; x; y� ¼ 0.
(2) ½x; y; z� þ ½y; z; x� þ ½z; x; y� ¼ 0 (Jacobi identity).
(3) ½x; y; ½a; b; c�� � ½a; b; ½x; y; c�� ¼ ½½x; y; a�; b; c� þ ½a; ½x; y; b�; c�.

for any x; y; z; a; b; c 2 T :
An ideal of a Lie triple system T is a subspace I for which ½I;T ;T� � I: Let us

observe that ½I;T ;T � � I implies that ½T ; I;T � � I and ½T ;T ; I� � I: A Lie triple
system T is called simple if the product is nonzero and its only ideals are f0g and T :
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A two-graded K-algebra A is a K-algebra which splits into the direct sum
A ¼ A0 � A1 of subspaces (called the even and the odd part, respectively) satisfying
AaAb � Aaþb for any a; b in Z2: A homomorphism f between two-graded algebras
A and B is a homomorphism which preserves gradings i.e.,

fðAaÞ � Ba

for all a 2 Z2: A graded ideal of a two-graded algebra A¼A0 � A1 is an ideal I of A
such that there exist two subspaces I0 and I1 with I¼ I0 � I1 and Ia � Aa for any
a 2 Z2: A two-graded algebra A is graded-simple if the product is nonzero and its
only graded ideals are f0g and A:

The standard embedding of a Lie triple system T is the two-graded Lie algebra
L ¼ L0 � L1, L0 being the K-span of fLðx; yÞ : x; y 2 Tg, where Lðx; yÞ denotes
the left multiplication operator in T , Lðx; yÞðzÞ :¼ ½x; y; z�; L1 :¼ T and where the
product is given by

½ðLðx; yÞ; zÞ; ðLðu; vÞ;wÞ�
:¼ ðLð½u; v; y�; xÞ �Lð½u; v; x�; yÞ þLðz;wÞ; ½x; y;w� � ½u; v; z�Þ:

Let us observe that L0 with the product induced by the one in L ¼ L0 � L1

becomes a Lie algebra.
By using the same arguments as in the finite dimensional case, (see Lister, 1952,

Theorem 2.13), we can prove the following propositions

Proposition 2.1. A Lie triple system T is simple if and only if its standard
embedding is graded-simple.

Proposition 2.2. Let L ¼ L0 � L1 be a graded-simple two-graded Lie algebra. Then
either

(1) L is simple (in the ungraded sense) and the grading is given by

L ¼ SymðL; xÞ � SkwðL; xÞ
where x is an involutive automorphism of L, or

(2) L is isomorphic to L0 � L0 where L0 is a simple Lie algebra and the
product is

½ða; bÞ; ðc;dÞ� ¼ ð½a; c� þ ½b;d�; ½a;d� þ ½b; c�Þ:

3. SPLIT LIE TRIPLE SYSTEMS

3.1. Definitions and Basic Properties

Given an element x of a Lie algebra L; we denote by adðxÞ the adjoint mapping
defined as adðxÞðyÞ ¼ ½x; y� for any y 2 L:
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Following Neeb (2000), Stumme (1999) and Schue (1960, 1961), we recall that a
splitting Cartan subalgebra H of a Lie algebra L is defined as a maximal abelian
subalgebra, (MASA), of L satisfying that the adjoint mappings adðhÞ for h 2 H

are simultaneously diagonalizable. If L contains a splitting Cartan subalgebra H,
then L is called a split Lie algebra. This means that we have a root decomposition
L ¼ H � ðLa2L LaÞ where La ¼ fva 2 L : ½h; va� ¼ aðhÞva for any h 2 Hg for a
linear functional a 2 H� and L :¼ fa 2 H�nf0g : La 6¼ 0g. The subspaces La for
a 2 H� are called root spaces of L (respect to H) and the elements a 2 L [ f0g are
called roots of L respect to H.

Definition 3.1. Let T be a Lie triple system, let L ¼ L0 � L1 be its standard
embedding, and let H0 be a MASA of L0. Following the ideas in Faulkner (1980),
for a linear functional a 2 ðH0Þ� we define the root space of T (respect to H0) asso-
ciated to a as the subspace Ta :¼ fta 2 T : ½h; ta� ¼ aðhÞta for any h 2 H0g: The
elements a 2 ðH0Þ� satisfying Ta 6¼ 0 are called roots of T respect to H0 and we
denote L1 :¼ fa 2 ðH0Þ�nf0g : Ta 6¼ 0g.

Let us observe that T0 ¼ ft0 2 T : ½h; t0� ¼ 0 for any h 2 H0g: In the following,
we shall denote by L0 the set of all nonzero a 2 ðH0Þ� such that L0

a :¼
fv0a 2 L0 : ½h; v0a� ¼ aðhÞv0a for any h 2 H0g 6¼ 0:

Lemma 3.1. Let T be a Lie triple system, let L ¼ L0 � L1 be its standard embed-
ding, and let H0 be a MASA of L0. If a; b; g 2 L1 [ f0g and d 2 L0 [ f0g. Then,

(1) If ½Ta;Tb� 6¼ 0 then aþ b 2 L0 [ f0g and ½Ta;Tb� � L0
aþb:

(2) If ½L0
d;Ta� 6¼ 0 then dþ a 2 L1 [ f0g and ½L0

d;Ta� � Tdþa.
(3) If ½Ta;Tb;Tg� 6¼ 0 then aþ bþ g 2 L1 [ f0g and ½Ta;Tb;Tg� � Taþbþg:

Proof. (1) For any x 2 Ta, y 2 Tb and h 2 H0, we have ½h; ½x; y�� ¼
� ½½h; y�; x� þ ½½h; x�; y� ¼ ðaþ bÞðhÞ½x; y�: Therefore, ½Ta;Tb� � L0

aþb:

(2) and (3) The proof is similar to 1. &

Let us observe that if ½Ta;T0� 6¼ 0 then a is a root of L0 relative to H0 and if
½L0

a;T0� 6¼ 0 then a is a root of T relative to H0:

Definition 3.2. Let T be a Lie triple system, let L ¼ L0 � L1 be its standard embed-
ding, and let H0 be a MASA of L0. We shall call that T is a split Lie triple system
(respect to H0Þ if:

(1) T ¼ T0 � ðLa2L1 TaÞ:
(2) ½T0;T0;T� ¼ 0.

Proposition 3.1. Let T be a split Lie triple system respect to H0, then L0 is a split
Lie algebra respect to the splitting Cartan subalgebra H0.

Proof. We first prove that
P

b2L0 L0
b is a direct sum, (let us note that we can also

apply Moody and Pianzola, 1995, 2.1 Prop.1). If x 2 L0
a \
P

b 6¼a L
0
b; we can write
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x ¼Pb 6¼a xb with xb 2 L0
b, and x ¼ xa with xa 2 L0

a. From Lemma 3.1, we deduce for
any y 2 Tg and g 2 L1 [ f0g, that

½x; y� 2 Taþg \
X
b 6¼a

Tbþg

and therefore ½x; y� ¼ 0 for any y 2 T . As x is a linear map on T , satisfying
xðyÞ ¼ ½x; y�, we deduce that x ¼ 0: Let us also check that H0 þ ðLb2L0 L0

bÞ is a
direct sum. If x 2 H0 \ ðLb2L0 L0

bÞ we can write x ¼Pb2L0 xb, with xb 2 L0
b, and

x ¼ h0 2 H0. For h 2 H0, we have

0 ¼ ½h;h0� ¼ ½h; x� ¼
X
b2L0

½h; xb� ¼
M
b2L0

bðhÞxb;

so bðhÞxb ¼ 0 and xb ¼ 0, since bðH0Þ 6¼ 0. We conclude x ¼ 0: Thus
H0 � ðLb2L0 L0

bÞ � L0:
Let us observe that the maximal abelian character of H0 in L0 implies H0 ¼ L0

0:
Finally, as

L0 ¼ ½T ;T� ¼
X

a;g2L1[f0g
½Ta;Tg�

�
X

a;g2L1[f0g
L0
aþg � H0 �

 M
b2L0

L0
b

!
;

the proof is complete. &

3.2. Types of Roots–Integrable Roots

In this subsection we distinguish the various types in the root system of a split
Lie triple system, taking particular notice of the integrable roots.

Lemma 3.2. For nonzero root vectors t	a 2 T	a the subalgebra of the standard
embedding,

Lðta; t�aÞ :¼ spanKfta; t�a; ½ta; t�a�g

is of one of the following types:

(1) If ½ta; t�a� ¼ 0; then Lðta; t�aÞ is two dimensional abelian. We say that
Lðta; t�aÞ is of abelian type.

(2) If ½ta; t�a� 6¼ 0 but að½ta; t�a�Þ ¼ 0; then Lðta; t�aÞ is a three dimensional
algebra. We say that Lðta; t�aÞ is of nilpotent type.

(3) If að½ta; t�a�Þ 6¼ 0; then Lðta; t�aÞ 
 slð2;KÞ. We say that Lðta; t�aÞ is of
simple type.

Proof. This is an easy verification (cf. Stumme, 1999, Lemma I.2). &
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Definition 3.3. For a root a 2 L1 the subalgebras Lðta; t�aÞ are called test algebras
associated to a. We say that a root a 2 L1 is of nilpotent type if all test algebras
associated to a are of abelian or nilpotent type. Note that a root a 2 L1 with
�a 62 L1 is of nilpotent type. We call a root a 2 L1 of simple type if there exists an
associated test algebra of simple type. A root a 2 L1 of simple type is called integr-
able if there exists an associated test algebra Lðta; t�aÞ of simple type such that the
middle multiplication operators of T ,

MðtEaÞ : T ! T ;

MðtEaÞðtÞ :¼ ½tEa; t; tEa�, E 2 fþ;�g, are locally nilpotent. We denote by L1
i the set of

all integrable nonzero roots of T relative to H0:

Lemma 3.3. Let T be a split Lie triple system, let L ¼ L0 � L1 be its standard
embedding and let a 2 L1. then we have:

(1) MðtaÞðtÞ ¼ �ad2ðtaÞðtÞ, for any ta 2 Ta and for any t 2 T :
(2) ad3þ2nðtaÞð½t; t0�Þ ¼ ð�1ÞnMnþ1ðtaÞð½t; t0; ta�Þ, for any n 2 N, ta 2 Ta and

t; t0 2 T :

Proof.

(1) It is clear.
(2) ad3þ2nðtaÞð½t; t0�Þ ¼ �ad2þ2nðtaÞð½t; t0; ta�Þ

¼ �ð�MðtaÞÞnþ1ð½t; t0; ta�ÞÞ
¼ ð�1ÞnMnþ1ðtaÞð½t; t0; ta�Þ: &

Proposition 3.2. Let T be a split Lie triple system, let L ¼ L0 � L1 be its standard
embedding and let a 2 L1. Then, for any ta 2 Ta, MðtaÞ is locally nilpotent on T if
and only if adðtaÞ is locally nilpotent on L.

Proof. Suppose that MðtaÞ is locally nilpotent on T . Let be x ¼ x0 þ x1 2 L, with
x0 2 L0 and x1 2 L1. There exists m 2 N such that MmðtaÞðx1Þ ¼ 0. By Lemma 3.3-1
we also have ad2mðtaÞðx1Þ ¼ 0. As x0 ¼Pq

i¼1½ti; t0i� with ti; t
0
i 2 T , if we consider

for each ½ti; t0i� the element ½ti; t0i; ta� 2 T , there exists mi 2 N such that
Mmið½ti; t0i; ta�Þ ¼ 0, and by Lemma 3.3-2, ad3þ2ðmi�1ÞðtaÞð½ti; t0i�Þ ¼ 0. By denoting
r ¼ maxf2m;

S
i¼1;...;q 3þ 2ðmi � 1Þg, we conclude that adrðtaÞðxÞ ¼ 0 and therefore

adðtaÞ is locally nilpotent on L.
By Lemma 3.3-1, it is clear that if adðtaÞ is locally nilpotent on L, then MðtaÞ is

locally nilpotent on T . &

Proposition 3.3. Let T be a split Lie triple system, let L ¼ L0 � L1 be its standard
embedding and let Lðta; t�aÞ be a test algebra associated to a 2 L1 such that Mðt	aÞ
are locally nilpotent. Then L is a locally finite Lðta; t�aÞ-module with respect to the
adjoint representation.
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Proof. By Proposition 3.2, the adjoint mappings adðt	aÞ are locally nilpotent on L.
By using now the same arguments as for slð2;KÞ (cf. Moody and Pianzola, 1995,
Proposition 2.4.7) we complete the proof. &

Proposition 3.4. Let T be a split Lie triple system, let L ¼ L0 � L1 be its standard
embedding and let a 2 L1

i . Then we have:

(1) dimTa ¼ 1:
(2) T	ð2n�1Þa ¼ L0

	2ma ¼ 0 for n > 1 and m � 1.
(3) If a 2 L0, then �a 2 L0 and dimL0

a ¼ dimL0
�a:

(4) If a 62 L0, then Za \ L1 ¼ 	a and Za \ L0 ¼ ;:
(5) There exists a unique element ha ¼ ½ta; t�a� with aðhaÞ ¼ 2:
(6) For each b 2 L1 we have bðhaÞ 2 Z:
(7) Ka \ L1 � � 12Z�a:
(8) Ka \ L1

i �
�	 1

2 a;	a;	2a
�
:

Proof. Since a is integrable, we find t	a 2 T	a such that

Lðta; t�aÞ 
 slð2;KÞ

and Mðt	aÞ are locally nilpotent. We may w.l.o.g. assume that að½ta; t�a�Þ ¼ 2; and
denote ha :¼ ½ta; t�a�:

(1) and (2) We consider the Lðta; t�aÞ-submodule of L

V :¼ Kt�a þ H0 þ
X1
n¼1

Tð2n�1Þa þ
X1
n¼1

L0
2na:

By Proposition 3.3, L is a locally finite Lðta; t�aÞ-module and, as a submodule of a
locally finite module, V is also locally finite. In particular, V is a sum of finite dimen-
sional simple Lðta; t�aÞ-submodules by Weyl’s theorem. Hence the representation
theory of slð2;KÞ implies that the set of ha-eigenvalues on V is symmetric with

dimV mðhaÞ ¼ dimV�mðhaÞ
for each m 2 K. Now V�2ðhaÞ ¼ Kt�a implies that dimV 2ðhaÞ ¼ dimTa ¼ 1 and
furthermore that

dimV 2ð2n�1ÞðhaÞ ¼ dimTð2n�1Þa ¼ 0

for n> 1, and dimV 2ð2nÞðhaÞ ¼ dimL0
2na ¼ 0 for n � 1: Likewise we obtain

dimT�ð2n�1Þa ¼ 0 for n > 1, and dimL0
�2na ¼ 0 for n � 1:

(3) We have

V 0 :¼ Ta þ T�a þ H 0 þ
X1
n¼0

T	2na þ
X1
n¼1

L0
	ð2n�1Þa

is an Lðta; t�aÞ-submodule of L: By arguing as in (1), we prove (3).
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(4) Since by (1), dimTa ¼ dimT�a ¼ 1, and by (3) L0
a ¼ L0

�a ¼ 0, we can
check that

V 00 :¼ Ta þ T�a þ H 0 þ
X1
n¼0

T�2na þ
X1
n¼2

L0
�ð2n�1Þa

is an Lðta; t�aÞ�submodule of L: By arguing as in (1), we obtain

T	2na ¼ L0
	ð2n�1Þa ¼ 0

for n � 1. From (2) we complete the proof.

(5) Since both spaces T	a are one dimensional and do not commute, the space
½Ta;T�a� is one dimensional. Hence the element ha is uniquely determined by
aðhaÞ ¼ 2:

(6) Since L is a locally finite Lðta; t�aÞ�module and bðhaÞ is the eigenvalue of
adðhaÞ on the root space Tb; this is a consequence of the finite dimensional represen-
tation theory of slð2;KÞ.

(7) Let b ¼ ca 2 L1 with c 2 K. Then 5. and 6. imply that c 2 1
2Z:

(8) If, in addition, b is integrable, then we also have that 1=c 2 1
2Z and

thus 4=2c 2 Z: Since 2c divides 4 it equals 1, 2 or 4, so that we may have
c 2 �	 1

2 ;	1;	2
�
. &

We have seen that for integrable roots the root spaces T	a are one dimensional,
showing that the test algebras Lðta; t�aÞ do not depend on the choice of t	a.

Definition 3.4. We say that a simple root a of T is abelian simple if L0
a ¼ 0: If

L0
a 6¼ f0g, (and by Proposition 3.4-3, L0

�a 6¼ f0g), a is called strongly simple if there
exist nonzero elements e0	a 2 L0

	a such that, for any E 2 fþ;�g, ½tEa; e0Ea� ¼ 0 for
some 0 6¼ tEa 2 TEa, and ½e0a; e0�a� 6¼ 0. Finally, we say that a simple root a is weakly
simple if L0

a 6¼ f0g and it is not a strongly simple root. We call an abelian simple root
a abelian integrable if a is also an integrable root. A strongly simple root a is said to
be strongly integrable if a is also an integrable root and the adjoint mappings
adðe0	aÞ are locally nilpotent on L0. We denote by L1

a;i (resp. L
1
s;i) the set of all abelian

integrable (resp. strongly integrable) nonzero roots of T relative to H0:

It is clear that if a 2 L1
a;i (resp. a 2 L1

s;i), then �a 2 L1
a;i (resp. �a 2 L1

s;i).

Proposition 3.5. Let a 2 L1
s;i. Then there exist nonzero elements e0	a 2 L0

	a such that
að½e0a; e0�a�Þ 6¼ 0 and the adjoint mappings adðe0	aÞ are locally nilpotent on L0.

Proof. Let us fix nonzero elements e0	a 2 L0
	a such that, for any E 2 fþ;�g,

½tEa; e0Ea� ¼ 0 for some 0 6¼ tEa 2 TEa, ½e0a; e0�a� 6¼ 0, and the adjoint mappings adðe0	aÞ
are locally nilpotent on L0. Since

½½e0�a; ta�; ½e0a; t�a�� 2 ½T0;T0� ¼ 0;
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the Jacobi identity gives

½½½ta; t�a�; e0a�; e0�a� ¼ ½½ta; ½t�a; e
0
a��; e0�a�

¼ ½ta; ½½t�a; e
0
a�; e0�a��

¼ ½ta; ½t�a; ½e0a; e0�a���

so

að½ta; t�a�Þ½e0a; e0�a� ¼ að½e0a; e0�a�Þ½ta; t�a�

and the proposition follows from here. &

Proposition 3.6. If a 2 L1
s;i, then

(1) dimL0
	a ¼ 1.

(2) Za \ L1 ¼ f	ag:
(3) Za \ L0 ¼ f	ag:

Proof. (1) From Proposition 3.5, a is an integrable root of the split Lie algebra
L0, (see Proposition 3.1), in the sense of Stumme (1999, Definition I.3). Then, by
Stumme (1999, Proposition I.6) we have dimL0

	a ¼ 1.

(2) and (3) As by (1) and Proposition 3.4-1, dimT	a ¼ dimL0
	a ¼ 1, we have

½Ta;L
0
a� ¼ ½T�a;L

0
�a� ¼ 0.

Let us consider

V :¼ T0 þ H0 þ Ta þ T�a þ L0
a þ L0

�a þ
X1
n¼1

T�2na þ
X1
n¼2

L0
�ð2n�1Þa:

We can verify that V is an Lðta; t�aÞ-module, and by arguing as in Proposition
3.4-1, we conclude T�2na ¼ L0

�ð2m�1Þa ¼ 0, for n � 1 and m � 2. Proposition 3.4-2
completes the proof. &

Corollary 3.1. Let a 2 L1
s;i. Then we have:

(1) ½Ta;L
0
�a� 6¼ 0

(2) ½Ta;T0� 6¼ 0
(3) ½L0

a;T0� 6¼ 0

Proof. (1) and (2) Let us fix t	a 2 T	a such that að½ta; t�a�Þ ¼ 1, and 0 6¼ e0a 2 L0
a

satisfying ½ta; e0a� ¼ 0.
Let us consider

V :¼ K½½e0a; t�a�; t�a� �K½e0a; t�a� �Ke0a:
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We assert that V is an Lðta; t�aÞ-submodule of L. Indeed, this can be verified taking
into account the following identities:

Since ½H0;T0� ¼ 0,

½½½e0a; t�a�; t�a�; ta� ¼ �½½t�a; ta�; ½e0a; t�a�� � ½½ta; ½e0a; t�a��; t�a�
¼ �½½ta; ½e0a; t�a��; t�a�
¼ ½½½ta; t�a�; e0a�; t�a� � ½½½ta; e0a�; t�a�; t�a�
¼ ½½½ta; t�a�; e0a�; t�a� ¼ ½e0a; t�a�:

As ½ta; e0a� ¼ 0;

½½e0a; t�a�; ta� ¼ e0a;

and finally, by Proposition 3.6-2,

½½½e0a; t�a�; t�a�; t�a� � T�2a ¼ 0:

By arguing as in Proposition 3.4-1, we conclude that ½½e0a; t�a�; t�a� 6¼ 0, and from
here (1) and (2)

(3) From Proposition 3.5, we can fix e0	a 2 L0
	a such that ½tEa; e0Ea� ¼ 0 for some

0 6¼ tEa 2 TEa, E 2 fþ;�g, and satisfying að½e0a; e0�a�Þ 6¼ 0. By Jacobi identity, we
obtain ½½e0�a; ta�; e0a� ¼ �að½e0a; e0�a�Þta 6¼ 0, and (3) is proved. &

Lemma 3.4. Let a 2 L1
s;i. Then there exist nonzero elements ta 2 Ta; t0 2 T0, e

0
a 2 L0

a
such that ½e0a; t0� ¼ ta and ½ta; t0� ¼ e0a:

Proof. By Corollary 3.1 there exist t0a 2 Ta, t00; t
00
0 2 T0 and f0

a 2 L0
a such that

½t0a; t00� 6¼ 0 and ½f0
a ; t

00
0� 6¼ 0. If ½f0

a ; t
0
0� 6¼ 0 or ½t0a; t000� 6¼ 0 the proof is clear taking into

account that dimTa ¼ dimL0
a ¼ 1.

If ½f0
a ; t

0
0� ¼ 0 and ½t0a; t000� ¼ 0, let consider t0000 :¼ t00 þ t000: As ½t0a; t0000 � ¼ lf0

a and
½f0

a ; t
000
0 � ¼ bt0a with a; b nonzero elements of K, it is easy to check that

t0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=lbÞp

t0000 ; ta :¼
ffiffiffiffiffiffiffiffiffiffiffiffiðb=lÞp

t0a and e0a :¼ f0
a complete the proof. &

Proposition 3.7. Let T be a split Lie triple system respect to H0 and let L ¼ L0 � L1

be its standard embedding: Then H0 � T0 is a MASA of L:

Proof. It is easy to check, taking into account the definition of split Lie triple
system and Proposition 3.1. &

Proposition 3.8. Let T be a split Lie triple system respect to H0, let L ¼ L0 � L1

be its standard embedding and let a 2 L1
s;i. Then there exist two nonzero linear

functionals a1; a2 : H0 � T0 ! K such that L0
a � Ta ¼ La1 � La2 :

Proof. By Lemma 3.4 we can choose nonzero elements ta 2 Ta, t0 2 T0, e
0
a 2 L0

a
such that ½e0a; t0� ¼ ta and ½ta; t0� ¼ e0a: Since dimTa ¼ dimL0

a ¼ 1, we can determine,
for any t00 2 T0, the unique lt0

0
; bt0

0
2 K such that ½ta; t00� ¼ lt0

0
e0a and ½e0a; t00� ¼ bt0

0
ta.
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As ½T0;T0� ¼ 0 we have

0 ¼ ½½t00; t0�; ta� ¼ �½½t0; ta�; t00� � ½½ta; t00��; t0� ¼ ½e0a; t00� � lt0
0
½e0a; t0� ¼ bt0

0
ta � lt0

0
ta;

and therefore bt0
0
¼ lt0

0
:

Thus, we can define the mapping

da : T0 ! K by daðt00Þ :¼ lt0
0
:

Now, if we also define

a1; a2 : H0 � T0 ! K

by

a1ðh0 þ t00Þ :¼ aðh0Þ � daðt00Þ and a2ðh0 þ t00Þ :¼ aðh0Þ þ daðt00Þ;

we assert that La1 � La2 ¼ L0
a � Ta: Indeed,

½h0 þ t00; e
0
a þ ta� ¼ aðh0Þðe0a þ taÞ � lt0

0
ta � lt0

0
e0a

¼ ðaðh0Þ � daðt00ÞÞðe0a þ taÞ ¼ a1ðh0 þ t00Þðe0a þ taÞ;

therefore Kðe0a þ taÞ � La1 :
In a similar way we can verify that Kðe0a � taÞ � La2 . Then we have

L0
a � Ta ¼ Ke0a þKta ¼ Kðe0a þ taÞ þKðe0a � taÞ � La1 � La2 .

If ea1 þ ea2 2 La1 � La2 , we obtain that

½h0; ea1 þ ea2 � ¼ a1ðh0Þea1 þ a2ðh0Þea2 ¼ aðh0Þðea1 þ ea2Þ;

and therefore ea1þ ea2 2 L0
a � Ta. The proof is complete. &

Theorem 3.1. Let T be a split Lie triple system respect to H0 such that
L1 ¼ L1

a;i [ L1
s;i. Then its standard embedding L is split respect to H0 � T0.

Proof. First, if T0 ¼ 0 then H0 is a MASA of L. We assert that in this case
L0 \ L1 ¼ ;. Indeed, if a 2 L0 \ L1, a must be strongly integrable and by Corollary
3.1-1, T0 6¼ 0, a contradiction. Hence L0 [ L1 is the root system of L respect to H0,
and we have the splitting decomposition

L ¼ H0 �
 M

b2L0

L0
b

!
�
 M

a2L1

Ta

!
:

Second, if T0 6¼ 0 thenH0 � T0 is a MASA of L; and: If either a 62 L1 and a 2 L0,
(then ½T0;L

0
a� ¼ 0), or a is an abelian integrable root of T , (then ½T0;Ta� ¼ 0); we can

define the root a0 : H0 � T0 ! K as a0ðh0; t0Þ :¼ aðh0Þ for any ðh0; t0Þ 2 H0 � T0, the
associated root space being La0 ¼ L0

a in the first case and La0 ¼ Ta in the second one.
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If a is a strongly integrable root of T then, by Proposition 3.8, there exists two
nonzero roots of L respect to H0 � T0, a01 and a02, such that L0

a � Ta ¼ La0
1
� La0

2
: As

by Proposition 3.1, L ¼ H0 � ðLa2L0
L0
aÞ � T0 � ðLb2L1

TbÞ, we conclude that L

admits the splitting decomposition respect to H0 � T0 given by

L ¼ ðH0 � T0Þ �
�M

a0
La0

�
:

4. LOCALLY FINITE SPLIT LIE TRIPLE SYSTEMS

Definition 4.1. A Lie triple subsystem of a Lie triple system T is a submodule U

such that ½U ;U ;U� � U : We say that a Lie triple system T is locally finite if every
finite subset of T is contained in a finite dimensional subtriple of T :

We recall that a similar concept is defined for Lie algebras (c.f. Neeb, 2000 or
Stumme, 1999).

Proposition 4.1. The standard embedding L ¼ L0 � L1 of a locally finite Lie triple
system T is a locally finite Lie algebra.

Proof. Let V 0 be a finite subset of L0: By the construction of L0, the subset
V 0 can be described from a suitable finite subset V of T : As T is locally finite,
there exists a finite dimensional subtriple of T ; U , such that V is contained in
U . The Lie subalgebra of L generated by U is finite dimensional and V 0 is
contained in it. Therefore, L0 is locally finite. It is easy to conclude that L is also
locally finite. &

Let us note that in a locally finite split Lie triple system all abelian (resp.
strongly) simple roots of L1 are abelian (resp. strongly) integrable.

Theorem 4.1. Let T be a locally finite split simple Lie triple system such that
L1 ¼ L1

a;i [ L1
s;i. Then T is isomorphic to one of the followings:

(1) T ¼ L where L is a locally finite split simple Lie algebra.
(2) T ¼ SkwðL; xÞ with L as in the previous case and x an involutive

automorphism of L.

Proof. By Propositions 2.1 and 2.2, either T ¼ L or T ¼ SkwðL0; xÞ, where L;L0 are
simple Lie algebras and x is an involutive automorphism of L0. By Proposition 4.1,
L and L0 are locally finite. By Proposition 3.1, L is split and finally by Theorem 3.1,
L0 is split. The proof is complete. &

Remark 4.1. If T is of infinite dimension, following Neeb (2001), the algebra L of
Theorem 4.1, must be one of the following slðJ ;KÞ, dðJ ;KÞ or spðJ ;KÞ where J is an
infinite set whose cardinality equals the dimension of the Lie algebra.
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