
Linear Algebra and its Applications 384 (2004) 135–154
www.elsevier.com/locate/laa

N-solutions to linear systems over Z�

Pilar Pisón-Casares a,∗, Alberto Vigneron-Tenorio b

aDpto de Álgebra, University of Sevilla, Apartado 1160, 41080 Sevilla, Spain
bDpto de Matemáticas, University of Cádiz, C/ Por-vera, 54, 11403 Jerez de la Frontera, Cádiz, Spain

Received 11 February 2003; accepted 15 January 2004

Submitted by J. Dias da Silva

Abstract

We show how Dickson’s lemma yields an algorithm for computing the general N-solution
to a linear system over Z. The method is based in determining several particular solutions. We
propose and compare two methods computing these particular solutions. The first one uses
techniques based on Gröbner Bases and the second one uses other traditional linear program-
ming methods.
© 2004 Elsevier Inc. All rights reserved.

AMS classification: 13P1O

Keywords: Diophantine equations; Integer programming; Gröbner bases

1. Introduction

We denote by N the set of non-negative integers, and by Z the set of integers.
We are interested in methods for computing N-solutions to linear system over Z.

Some geometrical and homological approaches are considered in [18]. We remind
that solving these systems in non-negative integer variables in known to be a NP-
complete problem.

There are some methods [2,3,13,14,17,19] which need an exhaustive search in a
large region. Therefore, they are not practical.

�Both authors supported by MCyT Spain, BFM2003-00933 and Junta de Andalucía FQM304.∗ Corresponding author.
E-mail addresses: ppison@us.es (P. Pisón-Casares), alberto.vigneron@uca.es (A. Vigneron-Tenorio).

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.01.003

136 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

A geometric algorithm in the case of one equation was given in [5]. The general-
ization of its techniques to the general case appeared in [7]. An alternative algebraic
method was given in [10]. All these works as well as other computational researches
can be found in [21].

The application of the Gröbner bases to integer programming problems comes
from [6,14]. Nevertheless, the practical behavior of Gröbner bases methods proposed
in [6,14,15] to solving large scale integer problems is hampered by the computation
of Gröbner bases, which is quite time consuming in general (see [12]). The main
drawback is that it is necessary to compute a Gröbner basis over a polynomial ring
with a lot of variables because Elimination Theory is used. New methods avoiding
this problem are considered in [9,11], and applied in [22] for computing particular
solutions.

The main result in this paper (Algorithm 5.3) is based on the following fact: The
general N-solution to a linear system over Z can be computed by using any method
for computing a particular N-solution. This conclusion comes from the fact that we
reduce the computation of the minimal N-solutions or vertices, to determining a
particular solution of the given system, and particular solutions of a finite number
of new systems where some variables have been fixed. The reduction consists of a
recursive process that we explain in Section 2.

On the other hand, we give a comparison of the practical performance of our
method (Algorithm 5.3) using Gröbner Bases (Algorithm 3.2) and using traditional
linear programming methods (Algorithm 4.9), concretely Farkas’ lemma. The com-
parison of running times between both methods is collected in Table in Section 5.
We conclude that Gröbner Bases provide an algorithm considerably faster that the
traditional methods.

The description of the algorithm based on Gröbner bases, Algorithm 3.2, is in
Section 3. The particular solutions are determined by using Algorithm 3.1, which
appears in [22].

The algorithm based on traditional linear programming methods, 4.9, is described
in Section 4. There is a classical result in Linear Programming (Proposition 4.1)
determining whether a given homogeneous system has a non-trivial N-solution, and
in this case, finding a particular solution. The idea appeared in [16]. The result is a
constructive version of Farkas’ lemma, because it is an effective method to determine
whether or not a vector is in the cone generated by a finite number of vectors. The
computational behaviour of this method is very good, but in the recursive scheme that
we propose, the non-homogeneous systems appear even if one starts with a homo-
geneous one. For this reason, we have looked for a generalization of Proposition 4.1
in the non-homogeneous case, and for that we have used the orthogonal projection
vector and a technical result (Proposition 4.5). Then, we get a new method to obtain
particular solutions (Algorithm 4.9).

Finally, in the Section 5 we describe our main algorithm (Algorithm 5.3), we
see some examples and give a table with the computation time to compare the two
proposed methods, Table in Section 5.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 137

We have implemented our algorithm in MapleV and it is available by ftp at anon-
ymous ftp.uca.es/pub/matematicas/nsol.zip

The comparison with the computational techniques summarized in [21] is not
explored.

2. The general solution to a homogeneous system

Let M be a p × q Z-matrix. Let S := {s ∈ Nq | Ms = 0}. S is clearly a semigroup
of Nq with zero element. We will see that it is finitely generated.

Definition 2.1. s ∈ S − {0} is a vertex if s = � + �, �, � ∈ S, implies s = � or s = �.

We denote V S := set of vertices of S.

Remark 2.2. V S generates S.

Notice that V S is the set of the non-null elements in S which are minimal for the
natural partial order in Nq :

� � � ⇐⇒ � − � ∈ Nq .

This means that the set V S is the Hilbert basis of the system.

Notation 2.3. If H ⊂ Nq , 1 � i � q, α ∈ N, we denote:

• H(i, α) := {� = (γ1, . . . , γq) ∈ H | γi = α}.
• If H /= {0}, V H := {� ∈ H − {0} | � is minimal for <}.
• If H = {0}, V H := {0}.

We call vertices of H the elements in V H .
Dickson’s lemma (see for example [1]) states that V H is a finite set. This result

is a corollary of our following lemma.

Lemma 2.4 (Dickson’s lemma). Let H ⊂ Nq, s = (s1, . . . , sq) ∈ H, s /= 0, and let

F = {s} ∪
q⋃

i=1

si−1⋃
α=0

V (H(i, α)).

Then, V H = V F.

Proof. It is enough to prove that

∀� ∈ H ∃� ∈ F with � � �.

138 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

Let � be an element of H . If s � � there is nothing to prove. Otherwise, there exists
an i, 1 � i � q, such that δi < si . Then, for α = δi , � ∈ H(i, α) and there exists
� ∈ V (H(i, α)) with � � �. �

We can identify H(i, α) with a subset of Nq−1 and apply again 2.4 to find
V (H(i, α)). Then, by recurrence, to obtain the set V H it is enough to solve the
following problems:

If H ′ = H(i1, α1)(i2, α2) · · · (ir , αr), 1 � ij � q, αj ∈ N, 1 � j � r:

Problem 1. Determine if H ′ = ∅ or not. In the second case, get s ∈ H ′.

Problem 2. Obtain V H ′ for H ′ ⊂ N.

The usual version of Dickson’s lemma is clear now.

Corollary 2.5. V H is finite.

Proof. If H ′ ⊂ N, since N is a well ordered set, V H ′ is empty or has only a unique
element. Thus, by recursively applying 2.4, we obtain that the set V H is always
finite. �

We apply the above argument to the case H = S. From 2.2 and 2.5 it follows that
S is a finitely generated semigroup in Nq . We are interested in computing the gener-
ating set V S. Notice that, with the above notation, S(i, α) is the set of the N-solutions
to the linear system Mx = 0, where xi = α. This system can be non-homogeneous.

Remark 2.6. Consider the system Mx = c with M a p × 1 Z-matrix and c ∈ Zp.
Notice that it is obvious to determine whether or not there exists s ∈ N such that
Ms = c. Moreover, if there exists such an s, it is unique.

Then, in the case H = S, or more generally, in the case H = R where

R := {s ∈ Nq | Ms = c},
with c ∈ Zp, Problem 2 is easy because H ′ is unitary or empty (2.6). On the other
hand, Problem 1 is equivalent to determining whether or not there exists an N-solu-
tion to a linear system over Z and, in the case that there exists an N-solution, finding
a particular one. We can use every method solving this problem (see the introduction)
and obtain the following result.

Proposition 2.7. Let M be a p × q Z-matrix, and c ∈ Zp. Let

R := {s ∈ Nq | Ms = c}.
There exists an algorithm computing V R, by computing particular solutions of
integer systems.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 139

In particular, the algorithm computes a generating set of the semigroup

S := {s ∈ Nq | Ms = 0}.

In the next sections, we explain two algorithms computing the vertices of S and R,
Algorithms 3.2 and 4.9. Algorithm 3.2 uses the methods in [22] based on Semigroup
Ideals and Gröbner Bases. Algorithm 4.9 uses Classical Linear Programming.

3. Semigroup ideals methods

Let � ⊂ Zp be a finitely generated subsemigroup with zero element. Let
{n1, . . . , nr } ⊂ � be a set of generators for �.

Let k be a field. We consider A = k[X1, . . . , Xr] the polynomial ring in r indeter-
minates, and B = k[t±1 , . . . , t±p] = k[t±] the Laurent ring in p indeterminates. We

denote by tn = t
n1
1 · · · tnp

p , where n = (n1, . . . , np) ∈ Zp.
Let ϕ : A → B be the k-algebra homomorphism, defined by ϕ(Xi) = tni . We

denote I� := ker(ϕ).
In order to provide our first algorithm satisfying 2.7, we associate with the system

a semigroup � and determine a finite generating set of the ideal I�. In fact, in the
recursive process we will need to consider several semigroups like �, but only a
finite number of them.

The ideal I� is generated (see [20]) by the binomial set

B =
{

Xα − Xβ

∣∣∣∣∣
r∑

i=1

αini =
r∑

i=1

βini with αiβi = 0 ∀i

}
.

It is well known that by using the Implicitization Algorithm for rational parametri-
zations (see for example [8]) one can obtain a finite generating set of I� contained
in B, if the set {n1, . . . , nr} is given. However, new techniques, [9,11], improve this
algorithm in our particular case. Both are based on Gröbner Bases.

Let Mx = 0 be a system, where M is a p × q Z-matrix. Let � be the subsemi-
group of Zp generated by the column vectors of M , {n1, . . . , nq}. We have that
I� ⊂ k[X1, . . . , Xq].

Notice that ∃u ∈ Nq , u /= 0, such that Mu = 0, if and only if the binomial 1 − Xu

is in I�.
Moreover, Mu = 0 with u ∈ Nq implies that u = 0, it is equivalent to the fact

that the semigroup � satisfies � ∩ (−�) = {0}, because the unique way to write 0
as a linear combination of the generators of � is the trivial one.

The condition � ∩ (−�) = {0} guarantees Nakayama lemma for �-graded mod-
ules (see [4]), whence it is called Nakayama condition.

Then, � is Nakayama if and only if there exists no binomial 1 − Xα in I�.
Moreover, if C is a generating set of I� contained in B, there exists a binomial

1 − Xα in I� if and only if there exists a binomial ±(1 − Xβ) in C.

140 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

On the other hand, consider a system Mx = c, with c ∈ Zp, c /= 0. Set now �c as
the subsemigroup of Zp generated by the column vectors of M and c, {n1, . . . , nq, c}.
With this notation, we have now that I�c ⊂ k[X1, . . . , Xq+1].

Notice that ∃u ∈ Nq, such that Mu = c, if and only if ∃u′ = (u, 0) ∈ Nq+1, such
that (M | c)u′ = (M | c)eq+1, where eq+1 = (0, . . . , 0, 1) ∈ Nq+1.

Therefore, the N-solvability for the system is equivalent to the existence of a bino-
mial Xq+1 − Xα in I�c , where X does not contain the variable Xq+1. (It is enough
to take � = u.)

Suppose that �c is Nakayama, and let C be a generating set of I�c contained
in B. In particular, there is no binomial ±(1 − Xα) in C. Then, if there exists a
binomial Xq+1 − Xβ in I�c , where X does not contain the variable Xq+1, there exists
a binomial ±(Xq+1 − Xβ ′

) in C. Moreover, if Xβ ′
contains the variable Xq+1, since

�c ⊂ Zp is cancellative, we have that the binomial

±
(

1 − Xβ ′

Xq+1

)
∈ I�c .

But, it is a contradiction because �c is Nakayama.
Therefore, if �c is Nakayama, the system is N-solvable if and only if there exists

a binomial ±(Xq+1 − Xβ) ∈ C, where X does not contain the variable Xq+1 and C
is an arbitrary generating set of I�c contained in B.

In the case �c non-Nakayama, to find a similar condition we will need to consider
a Gröbner basis of I�c with respect to a suitable monomial order. Fix a monomial
order giving priority to the last variable. This means that �, � ∈ Nq+1 with αq+1 <

βq+1 implies � < �. It is well known that the reduced Gröbner basis of I�c is con-
tained in B (see [20]). Let G be this Gröbner basis. It is clear that there exists a
binomial Xq+1 − Xβ in I�c if and only if there is a binomial ±(Xq+1 − Xβ ′

) in G,
where X does not contain the variable Xq+1. Therefore, this condition is equivalent
to the N-solvability for the system.

Particular N-solutions to a linear diophantine system can be computed by means
of Semigroup Ideals as follows.

Algorithm 3.1. Particular N-solution by means of Semigroup Ideals ([22])
Input: A system Mx = c, where M is a p × qZ-matrix and c ∈ Zp.

Output: A vector u ∈ Nq such that Mu = c, u /= 0 if it exists, or ∅ in the case there
is no u ∈ Nq such that Mu = c.

1. If c = 0
– Take � to be the subsemigroup of Zp generated by the column vectors of M,

{n1, . . . , nq}.
– Compute a generating set of I�, C.

– If there is a binomial ±(1 − Xα) ∈ C, output u = � and STOP.

– Otherwise, output u = 0 and STOP.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 141

2. If c /= 0
– Take �c to be the subsemigroup of Zp generated by the column vectors of M

and c, {n1, . . . , nq, c}.
– Compute a generating set of I�c , C.

– If there is a binomial ±(Xq+1 − Xβ) ∈ C, where X does not contain the vari-
able Xq+1, output u = � and STOP. Otherwise, continue.

– If there is no binomial ±(1 − Xα) ∈ C, output ∅ and STOP. Otherwise, fix
a monomial order giving priority to the last variable, and take a Gröbner basis
for I�c , G.

– If there is a binomial ±(Xq+1 − Xβ) ∈ G, where X does not contain the vari-
able Xq+1, output u = � and STOP.

– Otherwise, output ∅ and STOP.

We can now describe a first algorithm satisfying Proposition 2.7.

Algorithm 3.2. Vertices by means of Semigroup Ideals
Input: A system Mx = c, where M is a p × q Z-matrix and c ∈ Zp.

Output: V R for R = {s ∈ Nq | Ms = c}.

1. If q = 1 use Remark 2.6 and STOP.

2. If q � 2, determine whether or not R = ∅ or {0} using Algorithm 3.1.

3. If R = ∅ or {0}, output V R = R and STOP.

4. Otherwise, take s = (s1, . . . , sq) ∈ R − {0}.
5. For i = 1, . . . , q, and α = 0, . . . , si − 1, compute V (R(i, α)) by recursively call-

ing Algorithm 3.2.

6. Compute V F for

F = {s} ∪
q⋃

i=1

si−1⋃
α=0

V (R(i, α)).

7. Output V R = V F.

Example 3.3. Consider the following system{
x1 − 2x2 + x3 + 2x4 = 0,

−2x1 − x2 − x3 + 2x4 = 0,
M :=

(
1 −2 1 2

−2 −1 −1 2

)
.

Let � be the subsemigroup of Z2 generated by the column vectors of M ,

� := 〈(1, −2), (−2, −1), (1, −1), (2, 2)〉.
The associated ideal of � is

I� =
〈
x2x5

3 − x3
1 , x3

2x3
3x2

4 − x1, x2
2x4

3x4 − x2
1 , x4

1x4 − x6
3 , x4

2x3
4x2

3 − 1, x1x2x4 − x3

〉
.

Since the binomial x4
2x2

3x3
4 − 1 ∈ I�, we obtain the particular N-solution s :=

(0, 4, 2, 3).

142 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

Now, in order to construct the set F in step 6 of Algorithm 3.2, we must determine
the sets V (R(i, α)) for i = 2, 3, 4 (notice that s1 = 0), and α = 0, . . . , si − 1.

We obtain R(2, 0) = {0} = V (R(2, 0)) using the fact that the ideal of the semi-
group

�20 := 〈(1, −2), (1, −1), (2, 2)〉 is I�20 = 〈
x4

1x3 − x6
2

〉
.

By similar arguments we obtain that R(2, 1) = ∅ = V (R(2, 1)) and V (R(2, 2)) =
V (R(2, 3)) = ∅.

In order to determine the vertices of R(3, 0) we obtain a particular N-solution
(2, 6, 0, 5) ∈ R(3, 0), R(3, 0)(1, 0) = {0} = V (R(3, 0)(1, 0)), R(3, 0)(1, 1) =
{0} = V (R(3, 0)(1, 1)), R(3, 0)(2, β) = ∅ = V (R(3, 0)(2, β)), for β = 0, 1, 2, 3,

4, 5, and R(3, 0)(3, β) = ∅ = V (R(3, 0)(3, β)) for β = 0, 1, 2, 3, 4. Therefore,
V (R(3, 0)) = {(2, 6, 0, 5)}.

Using similar arguments as in cases above, we obtain V (R(3, 1)) = {(1, 5, 1, 4)},
R(4, 0) = {0} = V (R(4, 0)), R(4, 1) = ∅ = V (R(4, 1)), and R(4, 2) = ∅ =
V (R(4, 2)).

Then, F = {0, (0, 4, 2, 3), (2, 6, 0, 5), (1, 5, 1, 4)}, and we conclude that V R =
V F = F − {0} is the Hilbert basis of the given system.

4. Classical linear programming methods

In this section we describe an alternative algorithm to 3.2. It is also based on 2.4,
but it computes the particular solutions by means of linear programming methods.

First, consider the homogeneous case. Let M be a p × q Z-matrix. Let

S := {s ∈ Nq | Ms = 0}.
Notice that if one is interested in the existence of a non-trivial N-solution to Mx = 0,
it is enough to study if there exists u ∈ Qq − {0} with ui � 0 for all i = 1, . . . , q,
such that Mu = 0.

Suppose that L is the Q-vector space of the solutions in Qq to the linear system
Mx = 0. Assume that b1, . . . , bn ∈ Qq is a basis of L. Let B be the n × q matrix
with row vectors bi . Denote a1, . . . , aq ∈ Qn the column vectors of B.

Notice that ∃u ∈ L − {0} with ui � 0∀i = 1, . . . , q if and only if

∃v ∈ Qn with v · ai � 0 ∀i = 1, . . . , q and v · ai > 0 for at least one i.

The relation between the vectors u and v is given by

u = v1b1 + · · · + vnbn = (v · a1, . . . , v · aq).

Then, it is enough to apply the following result which is a constructive version of
Farkas’ lemma. Its proof provides the correctness of Algorithm FP in [16] (Algo-
rithm 4.2). Geometrically, one looks for a hyperplane which leaves all the
vectors ai in the same closed semispace, and at least an ai is in the opened semispace.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 143

Proposition 4.1 (Effective Farkas’ lemma). Let a1, . . . , aq ∈ Qn. There exists an
algorithm to determine whether or not there exists a vector v ∈ Qn such that v · a1 >

0 and v · ai � 0 ∀i = 2, . . . , q. In the case that it exists, the algorithm gives such a
vector v.

Proof. We proceed by recurrence on q.
Suppose that q = 1. If a1 = 0, then there is no solution. Otherwise, if i is such

that a1i /= 0, take v having i-coordinate equal to a1i and 0 otherwise.
Assume that q � 2.
If there is no w ∈ Qn such that w · a1 > 0 and w · ai � 0, ∀i = 2, . . . , q − 1,

there is no v. If there exists w and w · aq � 0, take v = w. But if w · aq < 0, then let

(∗) a′
i = ai − w · ai

w · aq

aq ∀i = 1, . . . , q − 1.

If there exists w′ ∈ Qn such that w′ · a′
1 > 0 and w′ · a′

i � 0, ∀i = 2, . . . , q − 1, it is
enough to take

v = w′ − w′ · aq

w · aq

w,

because v · ai = w′ · a′
i , i = 1, . . . , q − 1, and v · aq = 0. Otherwise, we now prove

that there is no solution v. We proceed by induction.
If q = 2, since there is no w′, we have that a′

1 = 0. Then, a1 = λa2, with λ =
w·a1
w·a2

< 0. It is clear that there is no v.
Suppose the result true for any integer less than q. Then, since there is no w′,

there exists r (the number of times that one has used (∗)), 1 � r � q − 1, and for
any j = 1, . . . , r − 1, there exist lj with lj > lj−1, and wj , a(j)

1 , . . . , a(j)
lj

∈ Qn such
that:

1) a(1)
i = a′

i , ∀i = 1, . . . , q − 1.

2) wj · a(j)

1 > 0, wj · a(j)
i � 0, wj · a(j)

lj
< 0, ∀i = 2, . . . , lj − 1.

3) a(j+1)
i = a(j)

i − wj ·a(j)
i

wj ·a(j)
lj

a(j)
lj

, 1 � i � lj − 1.

4) a(r)
1 = 0.

Denote by

λ
(1)
i = − w · ai

w · aq

, i = 1, . . . , q − 1,

and

λ
(j+1)
i = −wj · a(j)

i

wj · a(j)
lj

, j = 1, . . . , r − 1, i = 1, . . . , lj − 1.

Notice that λ
(j)
i � 0, λ

(j)

1 > 0, ∀j , ∀i.

144 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

We will prove that

a(j)
i = ai +

q∑
l=i+1

µ
(j)
il al , with µ

(j)
il � 0,

∀j = 1, . . . , r , ∀i = 1, . . . , lj , ∀l = i + 1, . . . , q.
We proceed by induction on j . For j = 1, it is enough to notice that from (∗)

a(1)
i = a′

i = ai + λ
(1)
i aq .

Assume that it is true for j . We will prove it for j + 1. From 3),

a(j+1)
i = a(j)

i + λ
(j+1)
i a(j)

lj
, 1 � i � lj − 1.

We can use the induction hypothesis to write

a(j)
i = ai +

q∑
l=i+1

µ
(j)
il al , and a(j)

lj
= alj +

q∑
l=lj +1

µ
(j)
lj l al ,

and obtain the result.
Now, since a(r)

1 = 0, we have that

a1 = −
q∑

l=2

µ
(r)
1l ai , with µ

(r)
1l � 0.

It is clear that there is no v. �

The following algorithm satisfies Proposition 4.1.

Algorithm 4.2. Farkas ([16])
Input: Vectors a1, . . . , aq ∈ Qn.

Output: A vector v ∈ Qn such that v · a1 > 0 and v · ai � 0 for any i = 2, . . . , q, or
∅ in the case that there is no such v.

1. If q = 1:
– If a1 = 0, output ∅ and STOP.

– Otherwise, determine i with a1i /= 0 and output v having i-coordinate equal to
a1i and 0 otherwise and STOP.

2. If q � 2, determine if there exists w ∈ Qn such that w · a1 > 0 and w · ai � 0 for
every i = 2, . . . , q − 1, by recursively using Algorithm 4.2.

3. If there is no w, then output ∅ and STOP.

4. Otherwise:
– If w · aq � 0, output v = w and STOP.

– Otherwise, continue.
5. Let

a′
i = ai − w · ai

w · aq

aq ∀i = 1, . . . , q − 1.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 145

Determine if there exists w′ ∈ Qn such that w′ · a′
1 > 0 and w′ · a′

i � 0, ∀i =
2, . . . , q − 1, by Algorithm 4.2.

6. If there exists w′, output

v = w′ − w′ · aq

w · aq

w

and STOP.

7. Otherwise, output ∅.

Remark 4.3
1. The algorithm above allows us to determine if there exists µi � 0 such that a1 =∑q

i=2 µiai , or equivalently, if −a1 is in the cone of a2, . . . , aq , whence the name
Farkas’ lemma.

2. The above algorithm solves Problem 1 in the case H ′ = S. We describe this solu-
tion in Algorithm 4.4 below.

3. If S ⊂ N2, then since S(i, α) ⊂ N, Remark 2.6 and the remark above allow us to
compute V S using Lemma 2.4.

Algorithm 4.4. Particular N-solution to a homogeneous system
Input: A system Mx = 0, where M is a p × qZ-matrix.

Output: A vector u ∈ Nq, such that Mu = 0, u /= 0 if it exists.

1. If q = 1 use Remark 2.6.

2. If q � 2, let b1, . . . , bn ∈ Qq a basis of the Q-vector space given by Mx = 0.

Let B be the matrix with row vectors bi . Denote by a1, . . . , aq the columns of B.

3. While i = 1, . . . , q

– Determine if there exists a vector v such that v · ai > 0 and v · aj � 0, for any
j /= i and 1 � j � q, by Algorithm 4.2.

– If there exists v, let u′ = (v · a1, . . . , v · aq) ∈ Qq . Output u = mu′, where m

is the least common multiple of the denominators of vi · aq, and STOP.

4. Output u = 0.

Recall that to carry out the recursive technique in Lemma 2.4 we need to find
a particular solution to a non-homogeneous system obtained by fixing a variable in
Mx = 0.

Let M ′ be a p × (q − 1) matrix over Z and c ∈ Zp. To determine if there ex-
ists u ∈ Nq−1 such that M ′u = c, we consider the homogeneous linear system with
matrix (−c | M ′), and let L ⊂ Qq be the Q-vector space of its solutions. Then, there
exists u ∈ Nq−1 if and only if there exists (1, u) ∈ L with u ∈ Nq−1.

Assume that b1, . . . , bn ∈ Qq is a basis of L. Let B be the n × q matrix with row
vectors bi . Denote by a1, . . . , aq ∈ Qn the column vectors of B.

146 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

Notice that ∃(1, u) ∈ L with u ∈ Nq−1 if and only if

∃v ∈ Qn with v · a1 = 1 and v · ai ∈ N, ∀i = 2, . . . , q.

The relation between the vectors u and v is given by

(1, u) = v1b1 + · · · + vnbn = (v · a1, . . . , v · aq).

Then, we consider the following problem:

Problem. Given vectors a1, . . . , aq ∈ Qn, determine whether or not there exists v ∈
Qn such that v · a1 = 1 and v · ai ∈ N , ∀i = 2, . . . , q.

We denote by W the Q-vector space generated by a2, . . . , aq . If a1 �∈ W , take â1 to
be the orthogonal projection of a1 onto W⊥. It is clear that â1 /= 0 and a1 · â1 > 0.
Then, it is enough to take

v = â1

a1 · â1
,

because v · a1 = 1 and v · ai = 0 for any i = 2, . . . , q.
If a1 ∈ W , we distinguish two cases:

– If a1 = ∑q

i=2 µiai with µi � 0, then there is no v (Remark 4.3.1).
– Otherwise, take a linear combination of type a1 = ∑q

i=2 µiai . Let A be the
(q − 1) × n matrix with row vectors ai , i = 2, . . . , q. Denote by L1 ⊂ Qq−1 the
Q-vector space generated by the column vectors of A. Suppose that Cx = 0 are
implicit equations of L1, and let

S1 = {s ∈ Nq−1 | Cs = 0}.
Consider {s1, . . . , sh} a generating set of the semigroup S1. Denote D =
(s1 | . . . | sh) and

(m1, . . . , mh) := (µ2, . . . , µq)D.

Then, we get the following result.

Proposition 4.5. With assumptions and notations as above, the following conditions
are equivalent:

1. ∃v ∈ Qn with v · a1 = 1 and v · ai ∈ N, ∀i = 2, . . . , q.

2. ∃w ∈ Nh such that m1w1 + · · · + mhwh = 1.

In that case, it is enough to take v as a particular solution of Ax = z, with z = Dw.

Proof. 1 ⇒ 2 Let z = Av. By 1, it is clear that z ∈ S1. Then, there exists w ∈ Nh

such that z = Dw. The linear combination a1 = ∑q

i=2 µiai and the equality v · a1 =
1, implies that (µ2, . . . , µq) · z = 1. Then,

m1w1 + · · · + mhwh = 1.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 147

2 ⇒ 1 Let z = Dw. Since z ∈ S1 ⊂ L1, we deduce that the ranks of A and (A | z)
are equal. Take v as a particular solution of Ax = z. Now, it is enough to notice that
the linear combination a1 = ∑q

i=2 µiai implies that

v · a1 = (µ2, . . . , µq)Av = (µ2, . . . , µq)Dw = 1. �

Remark 4.6
1. Notice that the proof does not use the hypothesis µi � 0 for at least one i, al-

though this case is solved by Farkas’s lemma.
2. From 4.3.3 we can determine the condition 1 in Proposition 4.5 for q = 3. Now,

applying 2.4 we can calculate V S for q = 3. Then, by recurrence, we obtain a
new method for computing vertices. In the last step, we need to find a particular
N-solution to a unique equation. For this we can use the method in [5].

Problem is solved by the following algorithm.

Algorithm 4.7
Input: Vectors a1, . . . , aq ∈ Qn, q � 2.

Output: A vector v ∈ Qn such that v · a1 = 1 and v · ai ∈ N, or ∅ in the case there
is no such v.

1. Consider W the Q-vector space generated by a2, . . . , aq .

2. If a1 �∈ W, take â1 the orthogonal projection of a1 onto W⊥. Output v = â1
a1·â1

and
STOP.

3. Otherwise, apply Algorithm 4.2 :
– If a1 = ∑q

i=2 µiai with µi � 0 (Remark 3.3.1), then output ∅ and STOP.

– Otherwise, continue.
4. Take a linear combination a1 = ∑q

i=2 µiai .

5. Let A be the matrix with row vectors ai , i = 2, . . . , q. Consider Cx = 0 implicit
equations of L1 ⊂ Qq−1 the Q-vector space generated by the column vectors of
A. Compute {s1, . . . , sh} a generating set of

S1 = {s ∈ Nq−1 | Cs = 0},

using Algorithm 4.9.

6. Let (m1, . . . , mh) = (µ2, . . . , µq)D, where D = (s1 | . . . | sh).

– If there exists w ∈ Nh such that m1w1 + . . . + mhwh = 1, output v a particular
solution of Ax = z with z = Dw and STOP (see Remark 4.6.2).

– Otherwise, output ∅.

Particular N-solutions can be computed by means of Classical Linear Programming
as follows.

148 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

Algorithm 4.8. Particular N-solution by means of Classical Linear Programming
Input: A system M ′x = c, where M ′ is a p × (q − 1)Z- matrix and c ∈ Zp.

Output: A vector u ∈ Nq−1 such that M ′u = c, or ∅ in the case there is no such u.

1. If c = 0, use Algorithm 4.4.

2. Otherwise, continue.
3. If q = 2, use Remark 2.6.

4. If q � 3, let M = (−c | M ′). Consider b1, . . . , bn ∈ Qq a basis of the Q-vector
space

L = {x ∈ Qq | Mx = 0}.
5. Let B be the matrix with row vectors bi , and let a1, . . . , aq ∈ Qn be the column

vectors of B. Apply Algorithm 4.7
– If there exists v ∈ Qn such that v · a1 = 1 and v · ai ∈ N, then output u where

(1, u) = v1b1 + . . . + vnbn = (v · a1, . . . , v · aq),

and STOP.

– Otherwise, output ∅.

We can now describe a second algorithm satisfying Proposition 2.7.

Algorithm 4.9. Vertices by means of Classical Linear Programming
Input: A system Mx = c, where M is a p × qZ-matrix and c ∈ Zp.

Output: V R for R = {s ∈ Nq | Ms = c}.

1. If q = 1 use Remark 2.6 and STOP.

2. If q � 2, determine whether or not R = ∅ or {0} using Algorithm 4.8.

3. If R = ∅ or {0}, output V R = R and STOP.

4. Otherwise, take s = (s1, . . . , sq) ∈ R − {0}.
5. For i = 1, . . . , q, and α = 0, . . . , si − 1, compute V (R(i, α)) by recursively call-

ing Algorithm 4.9.

6. Compute V F for

F = {s} ∪
q⋃

i=1

si−1⋃
α=0

V (R(i, α)).

7. Output V R = V F.

Remark 4.10. Notice that there is not circularity between algorithms above because
4.9 computes S ⊂ N2 by only Farkas’ lemma (see Remark 4.3.3).

Example 4.11. We consider the same system that in 3.3.
A basis of the Q-vector space given by Mx = 0 is b1 = (4, 0, −6, 1), and b2 =

(−3, 1, 5, 0). Let a1 = (4, −3), a2 = (0, 1), a3 = (−6, 5), and a4 = (1, 0).

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 149

Using Algorithm 4.4, we find v = (5/18, 1/3). Since (v · a1, . . . , v · a4) =
(1/9, 1/3, 0, 5/18), we obtain s = (2, 6, 0, 5) ∈ R.

As before, we compute a particular N-solution (0, 4, 2, 3) ∈ R(1, 0), and R(1, 0)

(1, 0) = {0}.
In order to compute V (R(1, 0)(1, 1)), using Algorithm 4.8, we need to consider

the homogeneous system with matrix(−2 1 2
−1 −1 2

)
.

A basis of the Q-vector space of its solutions is given by b′
1 = (2, 1, 3/2). Let a′

1 =
2, a′

2 = 1, and a′
3 = 3/2. We must determine whether or not there exists v′ ∈ Q such

that v′ · a′
1 = 1, and v′ · a′

i ∈ N, for i = 2, 3. In this case it is clear that there is no
such v′. Anyway we will use Algorithm 4.7 to show that there is not circularity
between the algorithms used in this method (Remark 4.10).

With the notation of Algorithm 4.7, we can consider a′
1 = µ2a′

2 + µ3a′
3, with

µ2 = 2 and µ3 = 0. Therefore,

A =
(

1
3/2

)
and Cx = 0.

We need to compute a generating set for the semigroup S1 = {s ∈ N2 | Cs = 0} using
Algorithm 4.9, which calls to Algorithm 4.8, and this, to Algorithm 4.4. As before,
we compute an element s′′ = (2, 3) ∈ S1. It is easy to see that S1(1, 0) = {(0, 0)} =
V (S1(1, 0)), S1(1, 1) = ∅ = V (S1(1, 1)), S1(2, 0) = {(0, 0)} = V (S1(2, 0)),
S1(2, 1) = ∅ = V (S1(2, 1)), S1(2, 2) = ∅ = V (S1(2, 2)). Therefore, V S1 = {(2, 3)}.

With the notation in Algorithm 4.7, we have D =
(

2
3

)
, and m = (2 0)D = 4.

It is clear that there exists no w ∈ N such that wm = 1. Therefore (Proposition 4.5),
R(1, 0)(1, 1) = ∅ = V (R(1, 0)(1, 1)).

By similar arguments to those above, we obtain R(1, 0)(1, β) = ∅, for β = 2, 3,
R(1, 0)(2, 0) = {0}, R(1, 0)(2, 1) = ∅, R(1, 0)(3, 0) = {0}, R(1, 0)(3, β) = ∅, for
β = 1, 2. Thus, V (R(1, 0)) = {(0, 4, 2, 3)}.

Now, we determine whether or not R(1, 1) = ∅ using Algorithm 4.8. We consider
the homogeneous system with matrix(

1 −2 1 2
−2 −1 −1 2

)
.

A basis of the Q-vector space is b′′
1 = (−3, 1, 5, 0) and b′′

2 = (4, 0, −6, 1). Let a′′
1 =

(−3, 4), a′′
2 = (1, 0), a′′

3 = (5, −6), and a′′
4 = (0, 1).

We must see whether or not there exists v′′ ∈ Q2 such that v′′ · a′′
1 = 1, and v′′ ·

a′′
i ∈ N, i = 2, 3, 4. With the notation in Algorithm 4.7, we can consider a′′

1 =
µ′

2a′′
2 + µ′

3a′′
3 + µ′

4a′′
4, with µ′

2 = −3, µ′
3 = 0, and µ′

4 = 4. (Notice that it is not
possible that µi < 0 for every i.)

150 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

Let A′ be the matrix

A′ :=

1 0

5 −6
0 1


 .

We need to compute the implicit equations, C′x = 0, of the Q-vector space generated
by the column vectors of A′. We consider C′ = (−5 1 6), and S′

1 = {s ∈ N3 | C′s =
0}. As before we obtain

V S′
1 = {(1, 5, 0), (6, 0, 5), (5, 1, 4), (4, 2, 3), (3, 3, 2), (2, 4, 1)}.

Then

D′ :=

1 6 5 4 3 2

5 0 1 2 3 4
0 5 4 3 2 1


 ,

and m′ := (−3 0 4)D′ = (−3 2 1 0 − 1 − 2). It is clear that there exists w′ ∈ N6

such that m′w′ = 1, for example w′ = (0, 0, 1, 0, 0, 0). We take v′′ = (5, 4) a par-
ticular solution of A′x = D′w′. Since (v′ · a′′

2, v′ · a′′
3, v′ · a′′

4) = (5, 1, 4), we obtain
(1, 5, 1, 4) ∈ R(1, 1).

As in previous cases, we compute the sets R(1, 1)(1, δ) = ∅, δ = 0, . . . , 4,

R(1, 1)(2, 0) = ∅, R(1, 1)(3, δ) = ∅, δ = 0, . . . , 3, and we conclude that
V (R(1, 1)) = {(1, 5, 1, 4)}.

Similarly we obtain R(2, 0) = {0}, R(2, α) = ∅, α = 1, . . . , 3, but R(2, 4) /= ∅,
(0, 2, 3) ∈ R(2, 4) (consider R(2, 4) as a subset of N3). Moreover, R(2, 4)(2, 0) =
R(2, 4)(2, 1) = R(2, 4)(3, 0) = R(2, 4)(3, 1) = R(2, 4)(3, 2) = ∅. Then, V (R(2,

4)) = {(0, 4, 2, 3)}.
Similarly we obtain that V (R(2, 5)) = {(1, 5, 1, 4)}, V (R(4, 0)) = {0},

V (R(4, 1)) = V (R(4, 2)) = ∅, V (R(4, 3)) = {(0, 4, 2, 3)}, and V (R(4, 4)) =
{(1, 5, 1, 4)}.

Therefore F = {0, (2, 6, 0, 5), (0, 4, 2, 3), (1, 5, 1, 4)} and V R = V F = F − {0}
is the Hilbert basis of the given system.

5. The general solution to a non-homogeneous system

Let M be a p × q Z-matrix, and c ∈ Zp. Let

S := {s ∈ Nq | Ms = 0}, and R := {s ∈ Nq | Ms = c}.

Remark 5.1
1. If � ∈ R, then

� + S := {� + s | s ∈ S} ⊂ R.

2. If �, � ∈ R and � � �, then � ∈ � + S.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 151

Theorem 5.2. With assumptions and notations as above, if V R = {�1, . . . , �r}, then

(∗) R =
r⋃

i=1

(�i + S).

Therefore, there exists an algorithm computing all the elements in R.

Proof. The formula (∗) is clear by 5.1. Now, since it is possible to compute V R

and a generating set of S (Proposition 2.7), we get an algorithm computing all the
elements in R. �

Let M ′ = (−c | M), and S′ := {s′ ∈ Nq+1 | M ′s′ = 0}. Denote by

(V S′)0 := {s ∈ Nq | (0, s) ∈ V S′}, and (V S′)1 := {s ∈ Nq | (1, s) ∈ V S′}.
It is easy to see that V S = (V S′)0 and V R = (V S′)1. Then, we obtain the following
algorithm which satisfies Theorem 5.2.

Algorithm 5.3. General N-solution to a linear system
Input: A system Mx = c, where M is a p × qZ-matrix and c ∈ Zp.

Output: V S and V R.

1. Take M ′ = (−c | M), and S′ := {s′ ∈ Nq+1 | M ′s′ = 0}.
2. Compute V S′ using Algorithm 3.2 or Algorithm 4.9.

3. Output V S = (V S′)0 and V R = (V S′)1 and STOP.

Remark 5.4. Solving general systems of linear equations in non-negative integer
variables is known to be a NP -complete problem. Then, in some situations to intro-
duce an extra variable may drastically increase the complexity of solving the prob-
lem. In these cases, to compute directly V R and V S may be faster.

Example 5.5. Consider the following diophantine equation

x1 − 3x2 + 2x3 − 5x4 = 12.

We compute V S′ where

S′ = {s′ ∈ N5 | M ′s′ = 0}, M ′ = (−12 1 − 3 2 − 5).

V S′ = {(0, 1, 1, 1, 0), (0, 0, 2, 3, 0), (0, 0, 0, 5, 2), (1, 0, 0, 6, 0), (0, 0, 1, 4, 1),

(0, 1, 0, 2, 1), (0, 5, 0, 0, 1), (1, 12, 0, 0, 0), (0, 3, 0, 1, 1),

(1, 10, 0, 1, 0), (1, 8, 0, 2, 0), (1, 6, 0, 3, 0), (1, 4, 0, 4, 0),

(1, 2, 0, 5, 0), (0, 3, 1, 0, 0)}
Thus, if S is the semigroup of the N-solutions to x1 − 3x2 + 2x3 − 5x4 = 0, we
have that

152 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

V S = (V S′)0 = {(1, 1, 1, 0), (0, 1, 4, 1), (0, 0, 5, 2), (0, 2, 3, 0),

(1, 0, 2, 1), (5, 0, 0, 1), (3, 1, 0, 0), (3, 0, 1, 1)},
and

V R = (V S ′)1 = {(0, 0, 6, 0), (12, 0, 0, 0), (10, 0, 1, 0), (8, 0, 2, 0),

(6, 0, 3, 0), (4, 0, 4, 0), (2, 0, 5, 0)}.
Therefore,

R = [(0, 0, 6, 0) + S] ∪ [(12, 0, 0, 0) + S] ∪ [(10, 0, 1, 0) + S] ∪
[(8, 0, 2, 0) + S] ∪ [(6, 0, 3, 0) + S] ∪ [(4, 0, 4, 0) + S] ∪ [(2, 0, 5, 0) + S].

If one wants to use our implementation (see Introduction): Do the following:
> sol−general−nohomo([[1,-3,2,-5]],[12]);

It will be obtained as output

[[0, 0, 6, 0], [12, 0, 0, 0], [10, 0, 1, 0], [8, 0, 2, 0], [6, 0, 3, 0], [4, 0, 4, 0],
[2, 0, 5, 0]], [[3, 1, 0, 0], [0, 2, 3, 0], [0, 0, 5, 2], [0, 1, 4, 1],
[1, 1, 1, 0], [1, 0, 2, 1], [3, 0, 1, 1], [5, 0, 0, 1]]

Example 5.6. Consider the system{
x1 + 2x2 + 3x3 − 5x4 = 3
−2x1 − x2 + 4x3 + 5x4 = −3

V S′ = { (1, 1, 1, 0, 0), (0, 7, 0, 1, 2), (0, 5, 5, 0, 3), (10, 21, 0, 3, 0), (5, 14,

0, 2, 1) }. Thus, V S = (V S′)0 = {(7, 0, 1, 2), (5, 5, 0, 3)}, and V R = (V S′)1 =
{(1, 1, 0, 0)}. Therefore

R = (1, 1, 0, 0) + S.

Using our implementation,
> sol−general−nohomo([[1,2,3,-5],[-2,-1,4,5]],[3,-3]);

we obtain

[[1, 1, 0, 0]], [[7, 0, 1, 2], [5, 5, 0, 3]]

Our practical performance is collected in the following table.1 We give the compari-
son of running times between the two proposed methods, as well the used particular
solution of the considered system used. (Notice that it bounds the searching space of
the particular solutions of the new systems where some variables are fixed).

We conclude Algorithm 5.3 has a better computational behaviour if one uses
Semigroup Ideals and Gröbner Bases (Algorithm 3.2), than if one instead uses Clas-
sical Linear Programming (Algorithm 4.9).

1 All the computations have been done using MapleV R3, AMD-K6II-350, 64Mb RAM.

P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154 153

Homogeneous systems Gröbner Bases Classical integer programming

(
3 −10 4

) 1 s,

s = [2, 1, 1]
3 s,

s = [10, 3, 0]

(
1 −3 2 −5

) 2 s,

s = [1, 1, 1, 0]
5 s,

s = [5, 0, 0, 1]

(
1 −2 1 2

−2 −1 −1 2

)
4 s,

s = [0, 4, 2, 3]
16 s,

s = [2, 6, 0, 5]

(
1 2 3 −5

−2 −1 4 5

)
5 s,

s = [7, 0, 1, 2]
7 s,

s = [5, 5, 0, 3]

(
3 −1 −2 −3

3 −7 2 −1

)
7 s,

s = [2, 1, 1, 1]
111 s,

s = [8, 6, 9, 0]

(
−4 1 0 −1 0 −2

0 −1 0 2 −3 1

)
5 s,

s = [0, 0, 1, 0, 0, 0]
1961 s,

s = [1, 8, 0, 4, 0, 0]




−1 2 −3 0 −1

0 1 0 −3 0

−1 −2 0 0 1


 4 s,

s = [0, 3, 0, 1, 6]
9 s,

s = [0, 3, 0, 1, 6]




−2 0 −1 0 1 0

0 0 2 0 −3 1

1 −3 0 1 −1 0

2 0 0 −2 1 0




17 s,

s = [1, 0, 2, 3, 4, 8]
500 s,

s = [1, 0, 2, 3, 4, 8]




0 −1 2 −3 0 0

1 0 1 0 −3 0

−1 4 −2 0 0 −1


 102 s,

s = [2, 2, 1, 0, 1, 4]
Stop to 40000 s,

s = [18, 6, 3, 0, 7, 0]

(
1 2 −3 −2 −4

2 −1 −3 2 5

)
49 s,

s = [1, 3, 1, 2, 0]
Stop to 40000 s,

s = [9, 3, 5, 0, 0]

154 P. Pisón-Casares, A. Vigneron-Tenorio / Linear Algebra and its Applications 384 (2004) 135–154

References

[1] T. Becker, V. Weispfenning, H. Kredel, Gröbner Bases. A Computational Approach to Commutative
Algebra, GTM 141, Springer, 1993.

[2] I. Borosh, A sharp bound for positive solutions of homogeneous linear diophantine equations, Proc.
Amer. Math. Soc. 60 (1976) 19–21.

[3] I. Borosh, L.B. Treybig, Bounds on positive integer solutions of linear Diophantine equations, Proc.
Amer. Math. Soc. 55 (1976) 299–304.

[4] E. Briales, A. Campillo, C. Marijuan, P. Pison, Minimal systems of generators for ideals of semi-
groups, J. Pure Appl. Algebra 124 (1998) 7–30.

[5] M. Clausen, A. Fortenbacher, Efficient solution of linear Diophantine equations, J. Symbolic Com-
put. 8 (1989) 201–216.

[6] P. Conti, C. Traverso, Buchberger algorithm and integer programming, in: Proceedings AAECC-9
(New Orleans), Springer LNCS 539, 1991, pp. 130–139.

[7] E. Cotejean, H. Devie (1994). An efficient Algorithm for solving systems of diophantine equations.
Information and Computation, 113 (1) (1991), 143–172.

[8] D. Cox, J. Little, D. O’Shea, Ideals, Varietes, and Algorithms, Undergraduate Texts in Mathematics,
Springer-Verlag, 1992.

[9] F. Di Biase, R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomor-
phisms, Experimental Mathematics, 4, 3 (1995) 227–234.

[10] E. Domenjoud, Outils pour la Déduction Automatique dans les Théories Associatives-Commuta-
tives. Thèse de doctorat d’Université, Université de Nancy I, 1991.

[11] S. Hosten, B.G. Sturmfels, An implementation of Gröbner Bases for integer programming, in:
E. Balas, J. Clausen (Eds.), Integer Programming and Combinatorial Optimization, LNCS 920,
Springer-Verlag, 1995, pp. 267–276.

[12] C. Moulinet-Ossola, Algorithmique des Réseaux et des Systèmes Diophantiens Linéaires, Thèse de
doctorat, Université de Nice Sophia-Antipolis, 1995.

[13] C.H. Papadimitriou, On the complexity of integer programming, J. Assoc. Comput. Mach. 28 (1981)
765–768.

[14] L. Pottier, Minimal solutions of linear diophantine systems: bounds and algorithms, in: R.V. Book
(Ed.), Proceedings of the 4th International Conference on Rewriting Techniques and Applications,
Lecture Notes in Computer Science 488, Springer-Verlag, 1991, pp. 162–173.

[15] L. Pottier, Sub-groups of Zn, Standard Basis, and Linear Diophantine Systems, INRIA Research
Report 1510, 1991.

[16] J.C. Rosales, On finitely generated submonoids of Nk , Semigroup Forum 50 (1995) 251–262.
[17] J.C. Rosales, P.A. Garcia-sanchez, Non negative elements of subgroups of Zn, Linear Algebra Appl.

270 (1998) 351–357.
[18] R. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics Vol.41, Bos-

ton Basel Berlin, Birkhäuser, 1996.
[19] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience series, John Wi-

ley-Sons, 1986.
[20] B. Sturmfels, Gröbner Bases and Convex Polytopes, vol. 8, AMS University Lectures Series, 1995.
[21] A.P. Tomas, On Solving Linear Diophantine Constraints, Tese de Doutoramento, Faculdade de Cien-

cias da Universidada do Porto, 1997.
[22] A. Vigneron, Semigroup ideals and linear diophantine equations, Linear Algebra Appl. 295 (1999)

133–144.

