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Abstract

A theoretical procedure has been developed for deriving the evolution equation with time of the actual volume fraction transformed, for
integrating the above mentioned equation under non-isothermal regime, for deducing the kinetic parameters and for analyzing the glass-crystal
transformation mechanisms in solid systems involving formation and growth of nuclei. By defining an extended volume of transformed material
and assuming spatially random transformed regions, a general expression of the extended volume fraction has been obtained as a function
of the temperature. Considering the mutual interference of regions growing from separate nuclei (impingement effect) and from the above
mentioned expression the actual volume fraction transformed has been deduced. The kinetic parameters have been obtained, assuming that
the reaction rate constant is a time function through its Arrhenian temperature dependence. Besides, it has been shown that the different
models, used in the literature for analyzing the glass-crystal transformation, are particular cases of the general expression deduced for the
actual volume fraction transformed. The theoretical method described has been applied to the crystallization kinetics of the Sb0.16As0.36Se0.48

glassy alloy, thus obtaining values for the kinetic parameters that agree satisfactorily with the calculated results by the Austin–Rickett kinetic
equation, under non-isothermal regime. This fact shows the reliability of the theoretical method developed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The classical theory of nucleation and crystal growth has
been well developed over the last 60 years. The treatment of
condensed systems was adapted from the classical theory of
the vapour–liquid transition by Turnbull and Fisher[1]. A
full development of the theory is given by Christian[2] and
a relatively recent review published by Kelton[3]. The last
decades have seen a strong theoretical and practical interest
in the application of calorimetric analysis techniques to the
study of phase transformations[4–6]. This analysis is very
quick and needs very small quantities of glass samples to
obtain kinetic parameters of the quoted transformation. Two
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thermal analysis regimes are available: one is the isother-
mal regime[6,7] in which glass samples are quickly heated
up and held at a temperature above glass transition tem-
perature. In this regime, the glasses crystallize a constant
temperature. The other is so-called non-isothermal regime
[8–12] in which glass samples are heated up at a fixed heat-
ing rate. Generally, an isothermal experiment takes longer
time than a non-isothermal experiment, but isothermal ex-
perimental data can be interpreted by the well-established
Johnson–Mehl–Avrami (JMA) kinetic equation[13–16].
On the contrary, non-isothermal experiments themselves
are rather simple and quick, but assumptions are usually
required for data interpretation because there is no uniquely
accepted equation available for non-isothermal regime.
Therefore, the utilization of the non-isothermal regime has
produced a large number of mathematical treatments for an-
alyzing thermal process data. While all of the treatments are
based on the formal theory of transformation kinetics, they
differ greatly in their assumptions, and in some cases they
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lead to contradictory results. It was suggested by Hender-
son[17] in a notable work that many of the treatments are
based on an incomplete understanding of the formal theory
of transformation kinetics. Thus, many authors applied the
JMA kinetic equation to the non-isothermal crystallization
process[18], and although sometimes they appeared to get
reasonable activation energies, this procedure is not appro-
priate when their expressions are deduced from the JMA
equation considering isothermal transformation conditions
[19].

In the present work, a theoretical method has been devel-
oped for obtaining an evolution equation with time for the
actual volume fraction transformed, bearing in mind the mu-
tual interference of regions growing from separated nuclei
(impingement effect). From the quoted equation, the kinetic
parameters and the glass-crystal transformation mecha-
nism have been deduced by means of differential scanning
calorimetry (DSC), using non-isothermal regime. In addi-
tion, this paper applies the developed method to the anal-
ysis of the crystallization kinetics of the Sb0.16As0.36Se0.48
glassy semiconductor. The values obtained for the quoted pa-
rameters are in good agreement with the calculated results by
other kinetic equations. As an example, the above mentioned
agreement with the obtained results by the Austin–Rickett
(AR) equation under non-isothermal regime can be quoted.

2. Theoretical development

2.1. Nucleation, crystal growth and volume
fraction transformed

The theoretical basis for interpreting DTA or DSC results
is provided by the formal theory of transformation kinetics
[13–16,20]. This formal theory is largely independent of the
particular models used in detailed descriptions of the trans-
formation mechanisms, and supposes that the crystal growth
rate, in general, is anisotropic. This rate in any direction can
be then represented in terms of the principal growth veloc-
ities, ui (i = 1,2 and 3) in three mutually perpendicular di-
rections[9]. In these conditions the one-dimensional growth
in an elemental time, dt′, can be expressed asui (t′)dt′, and
this growth for a finite time is

∫ t
τ
ui(t

′)dt′.The volume of a
region originating at timet = τ (τ being the nucleation pe-
riod) is then

vτ = g
∏
i

∫ t

τ

ui(t
′)dt′ (1)

where the expression
∏

i

∫ t
τ
ui(t

′)dt′ condenses the product
of the integrals corresponding to the values of the above
quoted subscripti andg is a geometric factor, which depends
on the dimensionality and shape of the crystal growth, and
therefore its dimension equation can be expressed as

[g] = [L]3−i

([L] is the length).

Defining and extended volume of transformed material
and assuming spatially random nucleation[9,21,22], the ele-
mental extended volume fraction, dxe, in terms of nucleation
frequency per unit volume,IV(τ), is expressed as

dxe = vτIV(τ)dτ = gIV(τ)

(∏
i

∫ t

τ

ui(t
′)dt′

)
dτ (2)

When the crystal growth rate is isotropic,ui = u, an
assumption which is agreement with the experimental evi-
dence, since in many transformations the reaction product
grows approximately as spherical nodules[2], Eq. (2) can
be written as

dxe = gIV(τ)

(∫ t

τ

u(t′)dt′
)m

dτ (3)

wherem is an exponent related to the dimensionality of the
crystal growth and the mode of transformation. An overview
of the value ofm that occurs for different types of re-
action has been given in the literature[2]. For interface-
controlled growth,m assumes the values 1, 2 and 3 for
one-, two- and three-dimensional growth, respectively. For
diffusion-controlled growth,massumes the values 1/2, 1 and
3/2 for the respective dimensionalities of growth[23].

For the important case of isothermal transformation with
nucleation frequency and growth rate independent of time,
Eq. (3)can be integrated, resulting in

xe = gIVu
m

∫ t

τ

(t − τ)mdτ = g′IVumtn = (Kt)n (4)

wheren = m + 1 for IV �= 0, g′ is the new shape factor
andK is defined as the effective overall reaction rate con-
stant, which is usually assigned an Arrhenian temperature
dependence:

K = K0 exp

(
− E

RT

)
(5)

where E is the effective activation energy, describing the
overall transformation process. It should be observed thatKn

is proportional toIV um. Hence, assumption of an Arrhenian
temperature dependence forK is appropriate whenIV andu
vary in an Arrhenian manner with temperature.

In general, the temperature dependence of the nucleation
frequency is far from Arrhenian, and the temperature depen-
dence of the crystal growth rate is also not Arrhenian when
a broad range of temperature is considered[23]. Over a suf-
ficiently limited range of temperature (such as the range of
transformation peaks in DTA or DSC experiments), bothIV
andu may be described in zeroth-order approximation by

IV ≈ IV0 exp

(
−EN

RT

)
(6)

and

u ≈ u0 exp

(
−EG

RT

)
(7)
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whereEN and EG are the effective activation energies for
nucleation and growth, respectively.

CombiningEqs. (4)–(7)results in

Kn
0 exp

(
−nE

RT

)
∝ IV0u0

m exp

[
− (EN + mEG)

RT

]
(8)

and the overall effective activation energy for the transfor-
mation is expressed as

E = (EN + mEG)

n
(9)

Eqs. (4) and (5)have served as the basis of nearly all treat-
ments of transformation in DTA or DSC experiments. It
should be noted, however, thatEq. (4)strictly applies only
to isothermal experiments, where an integration of the gen-
eral expression ofEq. (3) is straightforward. Nevertheless,
Eq. (4) has been extensively used to derive expressions
describing non-isothermal transformations. Experimental
studies interpreted on the basis of such expressions have
often indicated good agreement between the overall effec-
tive activation energy,E, of Eq. (5)and activation energies
obtained by other methods, most notably activation energies
for viscosity or crystal growth. In spite of this it is more ac-
curate to integrateEq. (3)under non-isothermal conditions,
according to the literature[10,23,24].

In the present work, a theoretical method has been devel-
oped to integrateEq. (3) under the above mentioned con-
ditions and to obtain a general expression for the extended
volume fraction,xe, for each value of them exponent. In
this sense, the case when nucleation and crystal growth oc-
cur simultaneously has been considered. Both the nucleation
frequency,Eq. (6), and crystal growth rate,Eq. (7), may still
be approximately described by Arrhenius-type laws at tem-
peratures lower than the peak temperatures for both quan-
tities. In this case, the temperature dependence of extended
volume fraction involves a range of particles that are nucle-
ated at different temperatures and, thus, grow to different
final sizes when the sample is subjected to continuous heat-
ing. By considering the quoted fact of nucleation and crys-
tal growth simultaneous, which agrees with literature[10],
Eq. (3)becomes

dxe = gIV0u0
me−EN/RTτ

(∫ t

τ

e−EG/RT′
dt ′
)m

dτ (10)

whereTτ is the temperature at timeτ.
Bearing in mind that a linear heating rate,β, is usually

employed in non-isothermal experiments, thenT = T0+βt,
whereT0 is the initial temperature of the thermal treatment
and therefore dt = dT/β, and the preceding relationship can
be rewritten as

dxe = pI1
me−EN/RTτ dτ (11)

wherep is a parameter equal togIV0 u0
mβ−m and I1 is an

integral defined by

I1 =
∫ T

Tτ

e−EG/RT′
dT ′ (12)

By using the substitutionz′ = EG/RT′, the integralI1 is
transformed to the expression

I1 = EG

R

∫ zτ

z

e−z′
dz′

z′2
(13)

This exponential integral of order two is a particular case of
that orderr, which we have evaluated by means of a set of
consecutive integrations by parts, obtaining the sum of the
alternating series

Sr(zτ, z) =
[

−e−z′

z′r

∞∑
k=0

(−1)k(k + r − 1)!

(r − 1)!z′k

]zτ
z

(14)

Accordingly, takingr = 2 in Eq. (14)and considering that
in this type of series the error produced is less than the first
term neglected,Eq. (13)becomes

I1 = EG

R

[
e−z

z2
− e−zτ

z2
τ

]
= R

EG
[T 2e−EG/RT−T 2

τ e−EG/RTτ ]

(15)

bearing in mind that in most crystallization reactionsz′ =
EG/RT′ 
 1, usuallyE/RT′ ≥ 25, it is possible to use only
the first term of the above mentioned series without making
any appreciable error.

SubstitutingEq. (15)into Eq. (11), by using the expansion
of the binomial-potential series and integrating the resulting
expression one obtains

xe = P

m∑
s=0

(−1)s
(
m

s

)
(T 2e−EG/RT)m−sI2(s) (16)

with P = (p/β)(R/EG)
m and whereI2(s) is an integral

defined by

I2(s) =
∫ T

T0

T 2s
τ e−(EN+sEG)/RTτ dTτ (17)

Replacing(EN +sEG)/RTτ with yτ the integralI2(s) can be
written as

I2(s) = −M
∫ y

y0

e−yτ

y2s+2
τ

dyτ (18)

with M = [(EN + sEG)/R]2s+1.
This integral is again evaluated according toEq. (14)with

r = 2s+ 2, yielding

I2(s) = M

[
e−yτ y−(2s+2)

τ

∞∑
k=0

(−1)k(2s+ k + 1)!

(2s+ 1)!ykτ

]y
y0

(19)

and with the above-mentioned assumptions for alternating
series and for most crystallization reactions, the preceding
equation can be rewritten as

I2(s) = M[e−yy−(2s+2) − e−y0y
−(2s+2)
0 ] (20)

This expression is approximated byI2(s) = Me−yy−(2s+2) if
it is assumed thatT0 � T , so thaty0 can be taken as infinity.
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This assumption is justifiable for any heating treatment that
begins at a temperature where nucleation and crystal growth
are negligible, i.e. belowTg (glass transition temperature)
for most glass-forming systems[23].

Substituting the last value obtained forI2(s) in Eq. (16),
introducing the parameter

Q = R

(
R

EG

)m m∑
s=0

(−1)s
(
m

s

)
(EN + sEG)

−1

and defining the reaction rate constant

KV = KV0e−(EN+mEG)/(m+1)RT,

[KV0 = (gIV0u0
m)1/(m+1)] (21)

with an Arrhenian temperature dependence, the extended
volume fraction, under non-isothermal regime, is expressed
as

xe = Q

(
KVT

2

β

)m+1

(22)

which, as can be observed, is a general expression for all pos-
sible values of themexponent, which, as it is well know, de-
pends on the dimensionality of the crystal growth. Besides,
given that in the present workEqs. (6) and (7)have been
considered valid, the exponentm + 1 equals the so-called
kinetic exponentn.

It should be noted that the frequency factorKV0 =
(gIV0u

m
0 )

1/(m+1), of Eq. (21) can be expressed by the re-
lationshipKV0 = (I ′

V0u
′
0
m)1/(m+1), which includes the

shape factor,g, and where the dimension equation of each
of the quantitiesI ′

V0 andu′
0 is [T]−1.

The graphical representation ofEq. (22)shows the typ-
ical parabolic curve of the extended volume fraction as a
function of temperature in crystallization reactions.Fig. 1
shows the representation of the quoted equation for some
selected kinetic parameters and for crystal growth in one,
two or three dimensions. It should be noted thatxe func-
tion tends to infinity forT increasing and the corresponding
curves for differentm values intercept two against two.

Finally, as an illustration of the use ofEq. (22), a reac-
tion withm = 3 (e.g. valid for recrystallization), nucleation
frequency and crystal growth rate according toEqs. (6) and
(7), respectively, has been considered. ThenEq. (22)shows
that, for an experiment at constant heating rate,xe increases
approximately in proportion tot2(m+1) = t8. For compari-
son, in an isothermal experiment,xe increases in proportion
to tm+1 = t4.

2.2. Effect of impingement

To obtain a general kinetic equation for the volume frac-
tion transformed, the mutual interference of regions grow-
ing from separated nuclei must be considered. When two
such regions impinge on each other it is possible that the
two regions develop a common interface, over which growth

Fig. 1. Extended volume fraction transformed as function of tempera-
ture calculated fromEq. (22), with I ′

V0 = 5 × 106 s−1, EN = 17 kcal
mol−1,u′

0 = 4 × 104 s−1, EG = 12 kcal mol−1, β = 0.28 K s−1 and for
crystal growth in one (1), two (2) and three (3) dimensions.

ceases, although it continues normally elsewhere. This hap-
pens in most solid transformations. The problem is primar-
ily geometrical and through the concept of extended volume
may thus be separated from the kinetic laws of nucleation
and growth. We have now to find a relation between the
extended volume,Ve, and the actual volume,Vb. Consider
any small random region, of which a fraction(1 − Vb/V)

remains untransformed at timet, and whereV is the volume
of the whole assembly. During a further time dt, the ex-
tended volume will increase by dVe, and the true volume by
dVb. Of the new elements of volume, which make up dVe, a
fraction (1 − Vb/V)

γi on the average will lie in previously
untransformed material, and thus contribute to dVb, whilst
the remainder of dVe will be in already transformed mate-
rial. Note thatγi will be termed the impingement exponent.
The above quoted result clearly follows only if dVe can be
treated as a completely random volume element. Accord-
ingly, bearing in mind the hypothesis of random nucleation
it is possible to write the relation betweenVb andVe in the
form

dVb =
(

1 − Vb

V

)γi
dVe = (1 − x)γidVe (23)

wherex = Vb/V is the actual volume fraction transformed
and with dVe = Vdxe, Eq. (23)can be expressed as

(1 − x)−γidx = dxe (24)
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Defining an impingement factorδi = (γi−1)−1, the general
solution of the preceding differential equation is given as

x = 1 − (1 + xeδi
−1)−δi (25)

It should be noted that theEq. (25)includes different models
used in the literature when the glass-crystal transformation
is analyzed, namely:

(i) Case of no impingement,γi = 0, x = xe
(ii) If the impingement exponent,γi = 1, δi → ∞ and

Eq. (25)becomes

x= 1 − lim
δi→∞

[
1 +

(
δi

xe

)−1
]−δi

= 1 − exp(−xe)

= 1 − exp[(−Kt)n] (26)

(iii) When γi = 2, δi = 1 andEq. (25)can be written as

x = 1 − (1 + xe)
−1 = 1 − [1 + (Kt)n]−1 (27)

Both inEq. (26)and inEq. (27)an isothermal transformation
has been considered, and therefore, the extended volume
fraction is given byEq. (4), resulting in the JMAK equation
and the Austin–Rickett, respectively.

Finally, by substitutingEq. (22)into Eq. (25), one obtains

x = 1 −
[

1 + 1

δi
Q

(
KVT

2

β

)m+1]−δi
(28)

a general expression for the actual volume fraction trans-
formed in a non-isothermal process.

2.3. Deducing the kinetic parameters

The usual analytical methods, proposed in the literature
for analyzing the crystallization kinetics in glass-forming
liquids, assume that the reaction rate constant can be defined
by an Arrhenian temperature dependence. In order for this
assumption to hold, one of the following two sets of condi-
tions should apply:

(i) The crystal growth rate,u, has an Arrhenian tempera-
ture dependence and over the temperature range where
the thermoanalytical measurements are carried out, the
nucleation frequency is negligible (i.e. the condition of
site saturation).

(ii) Both the crystal growth rate and nucleation frequency
have Arrhenian temperature dependences.

In the present work, the second condition is assumed, and
therefore, the overall effective activation energy for crystal-
lization, E, is given byEq. (9). From this point of view, the
crystallization rate is obtained by deriving the actual volume
fraction crystallized [Eq. (28)] with respect to time, bearing
in mind the fact that, in non-isothermal processes, the re-
action rate constant is a function of time through its above
mentioned Arrhenian temperature dependence. Moreover, if

in the resulting equation, the expression in square brackets
is substituted by its value given inEq. (28), one obtains

dx

dt
= Q(m+ 1)

β

(
KVT

2

β

)m
(1 − x)(δi+1)/δi

×
(
T 2 dKV

dt
+ 2TβKV

)
(29)

The maximum crystallization rate is found making
dx2/dt2 = 0, resulting in

δi + 1

δi
(1 − xp)

1/δiQ

[
KV |pT 2

p

β

]m+1

= 1 − 1

m+ 1

×
[
T 2

p

(
dKV

dt

∣∣∣∣
p

)2

+2β2(KV |p)2−Tp
2 KV |p

d2KV

dt2

∣∣∣∣
p

]

×
[
Tp

dKV

dt

∣∣∣∣
p
+ 2βKV |p

]−2

(30)

where the subscript p denotes the quantity values corre-
sponding to the maximum crystallization rate.

Taking the first and the second derivative of the reaction
rate constant,KV, with respect to time, one obtains for the
maximum crystallization rate the following expressions for
the quoted derivatives

dKV

dt

∣∣∣∣
p

= βKV |p EN + mEG

(m+ 1)RT2
p

(31)

and

d2KV

dt2

∣∣∣∣
p

= β2KV |p EN + mEG

(m+ 1)RT3
p

[
EN + mEG

(m+ 1)RTp
− 2

]
(32)

SubstitutingEqs. (31) and (32)into Eq. (30)yields

δi + 1

δi
(1 − xp)

1/δiQ

[
KV |pT 2

p

β

]m+1

= 1 − 2

m+ 1

[
1 + EN + mEG

(m+ 1)RTp

] [
2 + EN + mEG

(m+ 1)RTp

]−2

(33)

assuming that the overall effective activation energy,E, is
given byEq. (9), and takingn = m + 1, as already stated,
the preceding equation can be rewritten as

δi + 1

δi
(1 − xp)

1/δiQ

[
KV |pT 2

p

β

]n

= 1 − 2

n

(
1 + E

RTp

)(
2 + E

RTp

)−2

(34)

which relates the crystallization kinetic parametersE, n and
δi to the quantity values that can be determined experimen-
tally, and which correspond to the maximum crystallization
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rate. Bearing in mind that in most transformation reactions
E/RTp 
 1 (usuallyE/RTp ≥ 25), already quoted assump-
tion, Eq. (34)becomes

δi + 1

δi
(1 − xp)

1/δiQ

[
KV |pT 2

p

β

]n
= 1 (35)

and the error introduced is not greater than 2.5%.
Substituting inEq. (35)the expressionQ(KV |pT 2

pβ
−1)n

taken fromEq. (28) and by making explicit the quantity
1 − xp, one obtains

1 − xp =
(

δi

δi + 1

)δi
(36)

an expression from which, the impingement factor,δi, can
be evaluated in a set of exotherms taken at different heating
rates, by using a method of successive approximations (e.g.
secant method). The corresponding mean value may be taken
as the most probable value of the impingement factor in the
glass-crystal transformation process.

SubstitutingEq. (36) into Eq. (35)and taking the loga-
rithm in the resulting expression leads to the relationship

ln
T 2

p

β
= E

RTp
− ln q (37)

which is a linear function, whose slope and intercept give
the overall effective activation energy,E, and the factorq =
Q1/nKV0 [Eq. (28)], which is related to the probability of
effective collisions for the formation of the activated com-
plex.

Finally, substituting inEq. (29) for the maximum crys-
tallization rate, the expressionQ(KV |pT 2

pβ
−1)n taken from

Eq. (28),introducingEq. (36) into the resulting expression
and considering the above quoted assumptionE/RTp 
 1,
one obtains

n = RT2
p

dx

dt

∣∣∣∣
p

[(1 − xp)
(δi+1)/δiβE]−1 (38)

an expression which permits the kinetic exponent,n, to be
calculated in a set of exotherms taken at different heating
rates. The corresponding mean value may be considered
as the most probable value of the kinetic exponent of the
transformation process.

It is important to remark that theEqs. (36) and (38)
give information about the mechanism of the transformation
through the parametersδi andn. Moreover, it should be noted
that when theδi parameter is taken as infinity,Eqs. (28)–(30)
for the maximum crystallization rate become exactly the
equations corresponding to the JMAK model, in the case of
glass-crystal transformations under non-isothermal regime,
namely

xp = 1 − exp[−Q(KV |pT 2
pβ

−1)n] (39)

dx

dt

∣∣∣∣
p

= nQ(KV |pT 2
pβ

−1)n(1 − xp)βT
−1
p [2 + E(RTp)

−1]

(40)

Q
[
KV |pT 2

pβ
−1
]n

= 1 − 2n−1[1 + E(RTp)
−1][2 + E(RTp)

−1]−2 (41)

The present fact shows again that the JMAK evolution
equation for the volume fraction transformed under non-
isothermal regime is a particular case,γi = 1, of the more
general transformation equation, which considers the im-
pingement effect between regions growing from separated
nuclei.

3. Experimental details

The Sb0.16As0.36Se0.48 glassy alloy was made from their
components of 99.999% purity, which were pulverized to
less than 64�m, mixed in adequate proportions, and intro-
duced into a quartz glass ampoule. The content of the am-
poule (7 g per batch) was sealed under a vacuum of 10-2 Pa
and heated in a rotating furnace at around 1225 K for 24 h,
submitted to a longitudinal rotation of 1/3 rpm in order to
ensure the homogeneity of the molten material. It was then
immersed in a receptacle containing water in order to so-
lidify the material quickly, avoiding crystallization of the
compound. The amorphous state of the material was con-
firmed by a diffractometric X-ray scan, in a Siemens D500
diffractometer. The homogeneity and composition of the
solid were verified through scanning electron microscopy in
a JEOL, scanning microscope JSM-820. The calorimetric
measurements were carried out in a Perkin-Elmer DSC7 dif-
ferential scanning calorimeter with an accuracy of±0.1 K.
Temperature and energy calibrations of the instrument were
performed, for each heating rate, using the well-known
melting temperatures and melting enthalpies of high-purity
indium and zinc supplied with the instrument. Powdered
samples weighing about 20 mg (particle size around 40�m)
were crimped in aluminium pans, and scanned at room tem-
perature through theirTg at different heating rates of 1, 2,
4, 8, 16, 32 and 64 K min−1. An empty aluminium pan was
used as reference, and in all cases, a constant 60 ml min−1

flow of nitrogen was maintained in order to provide a con-
stant thermal blanket within the DSC cell, thus eliminating
thermal gradients and ensuring the validity of the applied
calibration standard from sample to sample. Moreover, the
nitrogen purge allows to expel the gases emitted by the re-
action, which are highly corrosive to the sensory equipment
installed in the DSC furnace. The glass transition tempera-
ture was considered as a temperature corresponding to the
inflection point of the lambda-like trace on the DSC scan, as
shown in theFig. 2. The volume fraction crystallized,x, at
any temperatureT is given asx = AT/A, whereA is the to-
tal area of the exotherm between the temperatureTi , where
the crystallization is just beginning and the temperatureTf ,
where the crystallization is completed andAT is the area
between the initial temperature and a generic temperatureT,
seeFig. 2.



J. Vázquez et al. / Journal of Alloys and Compounds 370 (2004) 177–185 183

Fig. 2. Typical DSC trace of Sb0.16As0.36Se0.48 glassy alloy at a heating rate of 32 K min−1. The hatched area showsAT, the area betweenTi and T.

4. Results

The typical DSC trace of Sb0.16As0.36Se0.48 chalcogenide
glass obtained at a heating rate of 32 K min−1 and plotted in
Fig. 2 shows three characteristic phenomena, which are re-
solved in the temperature region studied. The first one (T =
474.2 K) corresponds to the glass transition temperature,Tg,
the second (T = 562.1 K) to the extrapolated onset crystal-
lization temperature,Tc, and the third (T = 583.7 K) to the
peak temperature of crystallization,Tp, of the above men-
tioned chalcogenide glass. This DSC trace shows the typ-
ical behaviour of a glass-crystal transformation. The DSC
data for the different heating rates,β, quoted inSection 3,
show values of the quantitiesTg, Tc andTp, which increase
with increasingβ a property which has been reported in
the literature[25]. The ratio between the ordinates and the
total area of the peak gives the corresponding crystalliza-
tion rates, which make it possible to plot the curves of the
exothermal peaks represented inFig. 3. It may be observed
that the(dx/dt) |p value increases in the same proportion as
the heating rate, a property which has been widely discussed
in the literature[25].

4.1. Glass-crystal transformation

The kinetic study of the glass-crystal transformations is
related to the knowledge of the reaction rate constant,KV,
as a function of the temperature. In the present work it is
assumed that the quoted constant has an Arrhenius type
temperature dependence. Bearing in mind this assumption
and that the nucleation frequency and crystal growth rate
have also Arrhenian temperature dependences, the overall
effective activation energy,E, for crystallization is given by
Eq. (9). From this point of view, and considering that in

most crystallization processesE 
 RT, the crystallization
kinetics of the alloy Sb0.16As0.36Se0.48 may be analyzed ac-
cording to the theory developed inSection 2.

With the aim of analyzing the above mentioned kinet-
ics, the variation intervals of the quantities described by
the thermograms for the different heating rates quoted in
Section 3are obtained and given inTable 1, whereTi and
Tp are the temperatures at which crystallization begins and
that corresponding to the maximum crystallization rate,

Fig. 3. Crystallization rate vs. temperature of the exothermal peaks at
different heating rates.
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Table 1
Characteristic temperatures and enthalpies of the crystallization process
of the Sb0.16As0.36Se0.48 glassy alloy

Parameter Experimental value

Tg (K) 456.5–480.2
Ti (K) 518.0–571.3
Tp (K) 545.0–598.9
&T (K) 38.7–68.5
&H (mcal mg−1) 5.2–8.4

Fig. 4. Experimental plots of ln(T 2
p/β) vs.103/Tp and straight regression

line of Sb0.16As0.36Se0.48 alloy (β in K s−1).

respectively, and&T is the width of the crystallization
peak. The crystallization enthalpy,&H, is also determined
for each heating rate. The data of ln(T 2

p /β) and 103/Tp
are fitted to a linear function by least squares fitting and
shown inFig. 4. From the slope and intercept of this fit,
according toEq. (37), both the overall effective activa-
tion energy,E, and the pre-exponential factor,q, of the
transformation are obtained. The results are the following:
E = 47.2 kcal mol−1and q = 4.89 × 1011 (K s)−1. More-
over, the experimental dataTp, xp and (dx/dt)|p, shown
in Table 2 allow to obtain the parameters: impingement
factor, δi, and kinetic exponent,n. By usingEq. (36)and

Table 2
Maximum crystallization rate, corresponding temperature and volume
fraction crystallized, kinetic exponent and impingement factor for the
different heating rates

β (K min−1) 103(dx/dt)|p (s−1) Tp (K) xp δi n

1 0.49 545.0 0.4711 0.7577 1.62
2 1.38 549.5 0.5367 1.5298 1.89
4 2.41 555.3 0.4096 0.4511 2.57
8 4.29 564.9 0.5721 2.6600 1.40

16 10.75 574.3 0.4807 0.8277 2.39
32 17.57 583.7 0.4792 0.8155 2.03
64 32.60 598.9 0.4320 0.5395 2.33

following the secant method of successive approximations,
the impingement factor has been evaluated for each heating
rate. The calculation of the kinetic exponent has been car-
ried out for each heating rate, by usingEq. (38)and from
the quoted experimental data, together with the above men-
tioned value of the activation energy and the corresponding
results of the impingement factor. The values both forδi
and for n are also given inTable 2. Bearing in mind that
the calorimetric analysis is an indirect method which only
makes it possible to obtain mean values for the parameters
that control the mechanism of a reaction, the quoted mean
values have been calculated, resulting in:〈δi〉 = 1.08 and
〈n〉 = 2.03. It should be noted that the preceding value of
the impingement factor suggests that the Austin–Rickett
kinetic equation(γi = 2, δi = 1), is more adequate than the
JMA equation (γi = 1, δi → ∞) to describe the mechanism
of the glass-crystal transformation of the semiconducting
Sb0.16As0.36Se0.48 glass. Of course, by using both equations
under non-isothermal regime. This fact explains that the
experimentalxp values range from 0.4096 to 0.5721 (see
Table 2), results which are relatively different ofxp = 0.63,
an approximately constant value, as it is required by JMA
kinetic equation.

Besides, from the mean value of the kinetic exponent,n,
it is possible to postulate a crystallization reaction mecha-
nism for the Sb0.16As0.36Se0.48 semiconducting alloy. Ma-
hadevan et al.[26] have shown thatn may be 4, 3, 2, or
1, which are related to different glass-crystal transformation
mechanisms:n = 4, volume nucleation, three-dimensional
growth;n = 3, volume nucleation, two-dimensional growth,
n = 2, volume nucleation, one-dimensional growth;n = 1,
surface nucleation, one-dimensional growth from surface to
the inside. Therefore, bearing in mind the above obtained
mean value,〈n〉 = 2.03, this glass-crystal transformation
may be relatively consistent with a one-dimensional growth
mechanism.

5. Conclusions

The developed theoretical method enables us to study
the evolution with the time of the actual volume fraction
transformed and to analyze the glass-crystal transforma-
tion mechanisms in solid systems involving formation and
growth of nuclei. This method assumes the concept of the
extended volume of transformed material and the condition
of randomly located nuclei, together with the assumption
of mutual interference of regions growing from separated
nuclei. By using these assumptions, we have obtained a gen-
eral expression for the actual volume fraction transformed,
as a function of the temperature in non-isothermal crys-
tallization processes. In the quoted expression the kinetic
exponent depends on both the nucleation frequency and the
dimensionality of the crystal growth. It should be noted that
the above mentioned expression also depends on the im-
pingement factor. The kinetic parameters have been deduced
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by using the following considerations: the condition of the
maximum crystallization rate and the quoted maximum
rate.

The theoretical method developed has been applied to the
experimental data corresponding to the crystallization kinet-
ics of the Sb0.16As0.36Se0.48 glassy alloy. The results ob-
tained for the kinetic parameters agree satisfactorily with
the calculated values by other mathematical treatments, con-
firming the reliability of the method developed.
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