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Abstract

A theoretical procedure has been developed for deriving the evolution equation with time of the actual volume fraction transformed, for
integrating the above mentioned equation under non-isothermal regime, for deducing the kinetic parameters and for analyzing the glass-crystal
transformation mechanisms in solid systems involving formation and growth of nuclei. By defining an extended volume of transformed material
and assuming spatially random transformed regions, a general expression of the extended volume fraction has been obtained as a functior
of the temperature. Considering the mutual interference of regions growing from separate nuclei (impingement effect) and from the above
mentioned expression the actual volume fraction transformed has been deduced. The kinetic parameters have been obtained, assuming the
the reaction rate constant is a time function through its Arrhenian temperature dependence. Besides, it has been shown that the different
models, used in the literature for analyzing the glass-crystal transformation, are particular cases of the general expression deduced for the
actual volume fraction transformed. The theoretical method described has been applied to the crystallization kineticg @PhesS®) 45
glassy alloy, thus obtaining values for the kinetic parameters that agree satisfactorily with the calculated results by the Austin—Rickett kinetic
equation, under non-isothermal regime. This fact shows the reliability of the theoretical method developed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction thermal analysis regimes are available: one is the isother-
mal regime[6,7] in which glass samples are quickly heated
The classical theory of nucleation and crystal growth has up and held at a temperature above glass transition tem-
been well developed over the last 60 years. The treatment ofperature. In this regime, the glasses crystallize a constant
condensed systems was adapted from the classical theory ofemperature. The other is so-called non-isothermal regime
the vapour—liquid transition by Turnbull and FisHaj. A [8-12]in which glass samples are heated up at a fixed heat-
full development of the theory is given by Christifg] and ing rate. Generally, an isothermal experiment takes longer
a relatively recent review published by Keltf8]. The last time than a non-isothermal experiment, but isothermal ex-
decades have seen a strong theoretical and practical interegterimental data can be interpreted by the well-established
in the application of calorimetric analysis techniques to the Johnson—Mehl-Avrami (JMA) kinetic equatiofi3-16]
study of phase transformatiof$-6]. This analysis is very ~ On the contrary, non-isothermal experiments themselves
quick and needs very small quantities of glass samples toare rather simple and quick, but assumptions are usually
obtain kinetic parameters of the quoted transformation. Two required for data interpretation because there is no uniquely
accepted equation available for non-isothermal regime.
e Therefore, the utilization of the non-isothermal regime has
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la Materia Condensada, Facultad de Ciencias, Universidad atéz,C . .
Apartado 40, 11510 Puerto Realadiz, Spain. Tel.+34-95-601-6323; alyzing thermal process data. While all of the treatments are
fax: +34-95-601-6288. based on the formal theory of transformation kinetics, they
E-mail addressjose.vazquez@uca.es (Jaxguez). differ greatly in their assumptions, and in some cases they

0925-8388/$ — see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.jallcom.2003.09.029



178 J. Vazquez et al./Journal of Alloys and Compounds 370 (2004) 177-185

lead to contradictory results. It was suggested by Hender- Defining and extended volume of transformed material

son[17] in a notable work that many of the treatments are and assuming spatially random nucleati®/21,22] the ele-

based on an incomplete understanding of the formal theory mental extended volume fractiorxglin terms of nucleation

of transformation kinetics. Thus, many authors applied the frequency per unit volumdy, (), is expressed as

JMA kinetic equation to the non-isothermal crystallization .

procesq18], an_d a!though spmetlmes they appe_zared to get gy, — ve Iy (D)dr = gly (1) (l—[/ u;(t/)dt/) de @)

reasonable activation energies, this procedure is not appro- P

priate when their expressions are deduced from the JMA

equation considering isothermal transformation conditions When the crystal growth rate is isotropie; = u, an

[19]. assumption which is agreement with the experimental evi-
In the present work, a theoretical method has been devel-dence, since in many transformations the reaction product

oped for obtaining an evolution equation with time for the 9grows approximately as spherical nodu[}, Eq. (2) can

actual volume fraction transformed, bearing in mind the mu- be written as

tual interference of regions growing from separated nuclei t m

(impingement effect). From the quoted equation, the kinetic dxe = glv(7) (/ ”(f/)d’/> dr ®3)

parameters and the glass-crystal transformation mecha- ’

nism have been deduced by means of differential scanningwheremis an exponent related to the dimensionality of the

calorimetry (DSC), using non-isothermal regime. In addi- crystal growth and the mode of transformation. An overview

tion, this paper applies the developed method to the anal-of the value ofm that occurs for different types of re-

ysis of the crystallization kinetics of the &tEASy 365&).48 action has been given in the literatui®. For interface-

glassy semiconductor. The values obtained for the quoted pa-controlled growth,m assumes the values 1, 2 and 3 for

rameters are in good agreement with the calculated results byone-, two- and three-dimensional growth, respectively. For

other kinetic equations. As an example, the above mentioneddiffusion-controlled growthmassumes the values 1/2, 1 and

agreement with the obtained results by the Austin—Rickett 3/2 for the respective dimensionalities of grovj#3].

(AR) equation under non-isothermal regime can be quoted. For the important case of isothermal transformation with

nucleation frequency and growth rate independent of time,

2. Theoretical development Eq. (3)can be integrated, resulting in

t
2.1. Nucleation, crystal growth and volume Xe = g'V”m/ (t —"dr = g'lyu"t" = (K" (4)
fraction transformed ‘
wheren = m + 1 for Iy # 0, ¢ is the new shape factor
The theoretical basis for interpreting DTA or DSC results andK is defined as the effective overall reaction rate con-

is provided by the formal theory of transformation kinetics = stant, which is usually assigned an Arrhenian temperature
[13-16,20] This formal theory is largely independent of the dependence:

particular models used in detailed descriptions of the trans-
formation mechanisms, and supposes that the crystal growthg = k4 exp <_£> (5)
rate, in general, is anisotropic. This rate in any direction can RT

be then represented in terms of the principal growth veloc-
ities, u; (i = 1,2 and 3) in three mutually perpendicular di-
rections[9]. In these conditions the one-dimensional growth
in an elemental time,tf can be expressed agt’)dt’, and
this growth for a finite time iSthui(t/)dt/.The volume of a
region originating at time = t (r being the nucleation pe-
riod) is then

where E is the effective activation energy, describing the
overall transformation process. It should be observeddhat
is proportional tdy u™. Hence, assumption of an Arrhenian
temperature dependence #is appropriate wheh, andu
vary in an Arrhenian manner with temperature.
In general, the temperature dependence of the nucleation
frequency is far from Arrhenian, and the temperature depen-
re dence of the crystal growth rate is also not Arrhenian when
Ur = gl__[fr ui(t)de 1) a broad range of temperature is considgg3]. Over a suf-
! ficiently limited range of temperature (such as the range of
where the expressiof; //ui(#')di’ condenses the product ~transformation peaks in DTA or DSC experiments), bgth
of the integrals corresponding to the values of the above @ndu may be described in zeroth-order approximation by
quoted subscriptandg is a geometric factor, which depends EN
on the dimensionality and shape of the crystal growth, and v = Ivo exp(—ﬁ_> (6)
therefore its dimension equation can be expressed as

[¢] = [L]*
Eg
(IL] is the length). u~ uoexp<—R—T> (7)

and
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whereEn and Eg are the effective activation energies for By using the substitution’” = Eg/RT, the integrall; is
nucleation and growth, respectively. transformed to the expression
CombiningEgs. (4)—(7)xesults in /
gEgs. (4)~(7¥ [
(EN + MEg) (®) L= R 22
RT :

and the overall effective activation energy for the transfor-
mation is expressed as

(13)

n nE m
Ky exp “RT o Iyouo™ exp| —
This exponential integral of order two is a particular case of
that orderr, which we have evaluated by means of a set of
consecutive integrations by parts, obtaining the sum of the

g - (En+ mEg) ©) alternating series

" . e S (DR — 1]
Egs. (4) and (5have served as the basis of nearly all treat- Sy(z:,2) = p Z DIk (14)
ments of transformation in DTA or DSC experiments. It S (r=Dlz .

should be noted, however, that. (4) strictly applies only

to isothermal experiments, where an integration of the gen-
eral expression oEg. (3)is straightforward. Nevertheless,
Eq. (4) has been extensively used to derive expressions

Accordingly, takingr = 2 in Eq. (14)and considering that
in this type of series the error produced is less than the first
term neglectediqg. (13)becomes

desc_nblr_]g non-isothermal trar_lsformatlons. Expe_rlmental _ Eg iz e i _ i[ 2e_EG/RT_T26—EG/RTz]
studies interpreted on the basis of such expressions have'1 R |22 2 Ec T
often indicated good agreement between the overall effec- ! (15)

tive activation energyk, of Eq. (5)and activation energies
obtained by other methods, most notably activation energiesbearing in mind that in most crystallization reactiaris=

for viscosity or crystal growth. In spite of this it is more ac- Eg/RT > 1, usuallyE/RT > 25, it is possible to use only
curate to integrat&qg. (3)under non-isothermal conditions, the first term of the above mentioned series without making
according to the literaturfl0,23,24] any appreciable error.

In the present work, a theoretical method has been devel-  Substitutingeg. (15)into Eq. (11) by using the expansion
oped to integratd=qg. (3) under the above mentioned con- of the binomial-potential series and integrating the resulting
ditions and to obtain a general expression for the extendedexpression one obtains
volume fraction,xe, for each value of then exponent. In m
this sense, the case when nucleation and crystal growth oc-, — PZ(_]_)S (’”) (T2e Ec/RTym=s [, (5) (16)
cur simultaneously has been considered. Both the nucleation s §
frequencyEq. (6) and crystal growth rat&q. (7) may still .
be approximately described by Arrhenius-type laws at tem- with P = (p/B)(R/Ec)"

peratures lower than the peak temperatures for both quan-9€fined by

and wherel,(s) is an integral

tities. In this case, the temperature dependence of extended T o —(En+sEg)/RT,
volume fraction involves a range of particles that are nucle- 12(5) = /T e dr, 17)
ated at different temperatures and, thus, grow to different 0

final sizes when the sample is subjected to continuous heat-Replacing(En + SEg)/RT, with y, the integrall»(s) can be
ing. By considering the quoted fact of nucleation and crys- written as

tal growth simultaneous, which agrees with literat[&8], y @ e
Eq. (3)becomes Ip(s) = =M | —dy: (18)
. m Yo YVt
dxe = g|vou0mefEN/RTr (/ efEG/RT' dt/) dr (10) with M = [(EN + SEG)/R]2S+1-
! This integral is again evaluated accordind=m. (14)with
whereT; is the temperature at time r = 2s+ 2, yielding
Bearing in mind that a linear heating raf, is usually y
- | - > (=D*2s + k + 1)!
employed in non-isothermal experiments, tHee: Tp + ft, _ —yr . —(254+2)
: L I(s) = M | € 7y] > i (19)
whereTy is the initial temperature of the thermal treatment = (2s + Dlyx
and therefore d= d7/8, and the preceding relationship can h Yo
be rewritten as and with the above-mentioned assumptions for alternating
dxe = ply™e EN/RTe g (11) series and for most crystallization reactions, the preceding

equation can be rewritten as
wherep is a parameter equal @ U™ B~ andl; is an
: . _ -y, —(2s+2 —y0,—(25+2)
integral defined by Io(s) = M[e Yy~ @12 — gm0y (29 (20)

This expression is approximated by(s) = Me™y~(>+2) jf

T
— —Eg/RT /
h / . € dr (12) itis assumed thafy « T, so thatyg can be taken as infinity.
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This assumption is justifiable for any heating treatment that 0.34
begins at a temperature where nucleation and crystal growth
are negligible, i.e. belowg (glass transition temperature)
for most glass-forming systenfia3]. 0.30 1
Substituting the last value obtained fio(s) in Eq. (16)
introducing the parameter
0.26
R\" & s m -1
0=R(—) Y (-1 (En + SEg)
Ec s
5=0 0.22 -
and defining the reaction rate constant Xe
Ky = Kyge (EN+MEs)/(m+DRT 0.18 -
[Kvo = (glvoug™Y )] (21)
with an Arrhenian temperature dependence, the extended 0.14 ]
volume fraction, under non-isothermal regime, is expressed
as " 0.10 1
Ksz m 3
w=o(™5) @2)
B
0.06 . : : .
which, as can be observed, is a general expression for all pos- 402 404 406 408 410 412
sible values of thenexponent, which, as it is well know, de- T(K)

pends on the dimensionality of the crystal growth. Besides,
given that in the present WOﬂEqS. (6) and (7)1ave been Fig. 1. Extended volume fraction transformed as function of tempera-

. . ) ture calculated fromEq. (22) with I'yo = 5 x 10fs™1, Ey = 17 keal
considered valid, the exponemt+ 1 equals the so-called MOLu'o — 4 x 10°s-L, Fo — 12kealmotL, § — 028K s and for

kinetic exponent. crystal growth in one (1), two (2) and three (3) dimensions.
It should be noted that the frequency fact&kgy =

(@lvoug)¥/ ™+ of Eq. (21)can be expressed by the re-
lationship Kvo = (I'vou’o™)Y ™+ which includes the
shape factorg, and where the dimension equation of each
of the quantities’vo andu’q is [T] 2.

The graphical representation Bfy. (22) shows the typ-
ical parabolic curve of the extended volume fraction as a
function of temperature in crystallization reactiofsg. 1
shows the representation of the quoted equation for some
selected kinetic parameters and for crystal growth in one,
two or three dimensions. It should be noted tkaffunc-
tion tends to infinity forT increasing and the corresponding
curves for differenm values intercept two against two.

Finally, as an illustration of the use &fq. (22) a reac-
tion with m = 3 (e.g. valid for recrystallization), nucleation
frequency and crystal growth rate accordind=igs. (6) and
(7), respectively, has been considered. Then (22)shows
that, for an experiment at constant heating raténcreases
approximately in proportion te?™+D = 8. For compari-
son, in an isothermal experiment, increases in proportion

ceases, although it continues normally elsewhere. This hap-
pens in most solid transformations. The problem is primar-
ily geometrical and through the concept of extended volume
may thus be separated from the kinetic laws of nucleation
and growth. We have now to find a relation between the
extended volumeVe, and the actual voluma/,. Consider
any small random region, of which a fractigh — V,,/ V)
remains untransformed at tinbeand whereV is the volume

of the whole assembly. During a further timé¢, the ex-
tended volume will increase by, and the true volume by
dVyp. Of the new elements of volume, which make ufpda
fraction (1 — Vp/ V)" on the average will lie in previously
untransformed material, and thus contribute Y4,dwhilst

the remainder of e will be in already transformed mate-
rial. Note thaty; will be termed the impingement exponent.
The above quoted result clearly follows only ¥gcan be
treated as a completely random volume element. Accord-
ingly, bearing in mind the hypothesis of random nucleation

to /1l = ¢4 L i ) ) ;
' it is possible to write the relation betwe#fy andVe in the
N f
2.2. Effect of impingement orm _~
| N vy = (1= ) dve=a—0"dve (23)
To obtain a general kinetic equation for the volume frac- Vv

tion transformed, the mutual interference of regions grow-
ing from separated nuclei must be considered. When two
such regions impinge on each other it is possible that the
two regions develop a common interface, over which growth (1 — x) " dx = dxe (24)

wherex = V,/V is the actual volume fraction transformed
and with dve = Vdxe, Eq. (23kan be expressed as
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Defining an impingement factéf = (y; — 1)1, the general in the resulting equation, the expression in square brackets
solution of the preceding differential equation is given as IS substituted by its value given tq. (28) one obtains
£= 1= Wt @ G () amaeen

B B

It should be noted that tHeq. (25)includes different models
used in the literature when the glass-crystal transformation x (TZdﬂ + 218 Kv) (29)
is analyzed, namely: dr
(i) Case of no impingemenf; = 0, x = xe Thze Taximum c_ryst_allization rate is found making
(ii) If the impingement exponent; = 1, 8; — oo and  @x°/dr“ =0, resulting in
Eqg. (25)becomes

m+1
5 +1 [ KvIpTE
10 w5 A-we [ﬁ
8\ i B
x=1— lim [1—1—(—) } =1— exp(—xe) 1
8i—00 Xe —1_
=1 — exp[(—K)"] (26) m+1 ,
i 72 ( 9Kv 282K loy? T2 K|, KV
(i) When y; = 2, 6; = 1 andEq. (25)can be written as X [ o | o ; +2B°(Kvlp)”—Tp" Kvlp oz ;
x=1-(1+x) t=1-[1+Kp"? 27) ) 5
Kv
BothinEq. (26)and inEq. (27)an isothermal transformation x [TF’ dr |, + 213KV|P} (30)

has been considered, and therefore, the extended volume
fraction is given byEq. (4) resulting in the JIMAK equation ~ where the subscript p denotes the quantity values corre-

and the Austin—Rickett, respectively. sponding to the maximum crystallization rate.
Finally, by substitutind=q. (22)into Eq. (25) one obtains Taking the first and the second derivative of the reaction
. rate constantky, with respect to time, one obtains for the
2\ m+1 8 . . . . .
_1 1 1 KyT (28) maximum crystallization rate the following expressions for
r=Loity Q B the quoted derivatives
. . dKv EN + MmEg
a general expression for the actual volume fraction trans- ——| = BKvlp—— == (31)
. . dr (m + 1)RT2
formed in a non-isothermal process. p p
and
2.3. Deducing the kinetic parameters 2Ky ) EN + MEs [ En + MEg
. . . 2 | = PRV SRS mr DRT, (32)
The usual analytical methods, proposed in the literature p P P

for analyzing the crystallization kinetics in glass-forming SubstitutingEqgs. (31) and (32)nto Eq. (30)yields
liquids, assume that the reaction rate constant can be defined i

by an Arrhenian temperature dependence. In order for this §; + 1 1, KV|pr2
assumption to hold, one of the following two sets of condi- 5—i( —xp) "0 5
tions should apply:

) ) 2 En + MmEg En + MEg -2
(i) The crystal growth ratey, has an Arrhenian tempera- =1- mr1 [l—i— (mN+ DRT i| [2—1— (mN+ DRT

ture dependence and over the temperature range where P P

the thermoanalytical measurements are carried out, the (33)

_ site saturation). _ given byEq. (9) and takingn = m + 1, as already stated,
(i) Both the crystal growth rate and nucleation frequency the preceding equation can be rewritten as
have Arrhenian temperature dependences.

2 n
In the present work, the second condition is assumed, and® 1(1 —xp)%iQ [M]
therefore, the overall effective activation energy for crystal- 8i P
lization, E, is given byEq. (9) From this point of view, the 2 E E \ 2
crystallization rate is obtained by deriving the actual volume =1— - <1 + R_Tp> <2 + R_Tp> (34)

fraction crystallized [Eq. (28] with respect to time, bearing
in mind the fact that, in non-isothermal processes, the re- which relates the crystallization kinetic parametérs and
action rate constant is a function of time through its above §; to the quantity values that can be determined experimen-
mentioned Arrhenian temperature dependence. Moreover, iftally, and which correspond to the maximum crystallization
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rate. Bearing in mind that in most transformation reactions

n
E/RT Ky|poT2p7t
/RTp > 1 (usuallyE/RT, > 25), already quoted assump- Q [ vipTph ]

tion, Eq. (34)becomes =1-22"Y14 ERTy) Y2 + ERTy) Y2 (41)
8 + 1/5; |:KV|prz:|n . .
—A-xpig| —| =1 (35) The present fact shows again that the JMAK evolution
8i B equation for the volume fraction transformed under non-
and the error introduced is not greater than 2.5%. isothermal regime is a particular cage,= 1, of the more
Substituting inEq. (35)the expressiorQ(Kv|pT§ﬂ‘l)" g_eneral transformation equati(_)n, Which_considers the im-
taken fromEq. (28)and by making explicit the quantity ~Pingement effect between regions growing from separated
1 — xp, one obtains nuclei.
1—xp= (L)éi (36)
P 8 + 1

3. Experimental details
an expression from which, the impingement faétorcan
be evaluated in a set of exotherms taken at different heating The S 16As0.365.45 glassy alloy was made from their
rates, by using a method of successive approximations (e.gcomponents of 99.999% purity, which were pulverized to
secant method). The corresponding mean value may be takefess than 64m, mixed in adequate proportions, and intro-
as the most probable value of the impingement factor in the duced into a quartz glass ampoule. The content of the am-
glass-crystal transformation process. poule (7 g per batch) was sealed under a vacuum GfA®
SubstitutingEg. (36)into Eq. (35)and taking the loga-  and heated in a rotating furnace at around 1225K for 24 h,
rithm in the resulting expression leads to the relationship  submitted to a longitudinal rotation of 1/3rpm in order to
T2 E ensure the homogeneity of the molten material. It was then
In2 = _— — Ing (37) immersed in a receptacle containing water in order to so-
B R lidify the material quickly, avoiding crystallization of the
which is a linear function, whose slope and intercept give compound. The amorphous state of the material was con-
the overall effective activation enerdy, and the factog = firmed by a diffractometric X-ray scan, in a Siemens D500
0Y"Kyo [Eq. (28], which is related to the probability of  diffractometer. The homogeneity and composition of the
effective collisions for the formation of the activated com- solid were verified through scanning electron microscopy in
plex. a JEOL, scanning microscope JSM-820. The calorimetric
Finally, substituting inEq. (29)for the maximum crys- measurements were carried out in a Perkin-Elmer DSC?7 dif-
tallization rate, the expressiad(Ky | przﬂ—l)” taken from ferential scanning calorimeter with an accuracy4.1 K.
Eq. (28)introducingEqg. (36)into the resulting expression Temperature and energy calibrations of the instrument were

and considering the above quoted assumpHgRT, >> 1, performed, for each heating rate, using the well-known

one obtains melting temperatures and melting enthalpies of high-purity
dx 540) /55 @ 11 indium and zinc supplied with the instrument. Powdered

n= RT,Z) ar ) [(A- XP)( U BE] (38) samples weighing about 20 mg (particle size aroung @)

were crimped in aluminium pans, and scanned at room tem-

an expression which permits the kinetic exponento be perature through theify at different heating rates of 1, 2,
calculated in a set of exotherms taken at different heating 4, 8, 16, 32 and 64 K mint. An empty aluminium pan was
rates. The corresponding mean value may be consideredused as reference, and in all cases, a constant 60 mtmin
as the most probable value of the kinetic exponent of the flow of nitrogen was maintained in order to provide a con-
transformation process. stant thermal blanket within the DSC cell, thus eliminating

It is important to remark that th&gs. (36) and (38)  thermal gradients and ensuring the validity of the applied
give information about the mechanism of the transformation calibration standard from sample to sample. Moreover, the
through the parametessandn. Moreover, it should be noted  nitrogen purge allows to expel the gases emitted by the re-
that when the; parameter is taken as infinifggs. (28)—(30)  action, which are highly corrosive to the sensory equipment
for the maximum crystallization rate become exactly the installed in the DSC furnace. The glass transition tempera-
equations corresponding to the JMAK model, in the case of ture was considered as a temperature corresponding to the
glass-crystal transformations under non-isothermal regime, inflection point of the lambda-like trace on the DSC scan, as

namely shown in theFig. 2 The volume fraction crystallized, at

xp=1- exp[—Q(KVIpTgﬁ_l)”] (39) any temperaturé is given asx = At/A, whereAis the to-
tal area of the exotherm between the temperaturevhere

d the crystallization is just beginning and the temperaiiyre

2= NQKv [pT3A™H" (1 — xp) BTy 12 + E(RTy) ] where the crystallization is completed aAg is the area

dr |, between the initial temperature and a generic temperature

(40) seeFig. 2
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Fig. 2. Typical DSC trace of SeAso3sS@.4s glassy alloy at a heating rate of 32 Kmih The hatched area shows, the area betweem; and T.

580 600 620 640 660

4. Results most crystallization processds > RT, the crystallization

kinetics of the alloy Sh16AS0.36S&).48 may be analyzed ac-
The typical DSC trace of $h6ASo 365&).48 chalcogenide cording to the theory developed Bection 2

glass obtained at a heating rate of 32 K mlirand plotted in With the aim of analyzing the above mentioned kinet-
Fig. 2 shows three characteristic phenomena, which are re-ics, the variation intervals of the quantities described by
solved in the temperature region studied. The first dhe-( the thermograms for the different heating rates quoted in
4742 K) corresponds to the glass transition temperaflye,  Section 3are obtained and given ifable 1 whereT; and

the secondX = 5621K) to the extrapolated onset crystal- Ty are the temperatures at which crystallization begins and

lization temperatureT,, and the third T = 5837 K) to the that corresponding to the maximum crystallization rate,
peak temperature of crystallizatioly, of the above men-

tioned chalcogenide glass. This DSC trace shows the typ-
ical behaviour of a glass-crystal transformation. The DSC 0.04
data for the different heating rate8, quoted inSection 3

show values of the quantitiég;, T, andT, which increase

with increasingg a property which has been reported in 3=64 K/min
the literature[25]. The ratio between the ordinates and the 0.03 |

total area of the peak gives the corresponding crystalliza-

tion rates, which make it possible to plot the curves of the
exothermal peaks representedig. 3. It may be observed
that the(dx/dr) |p value increases in the same proportion as

the heating rate, a property which has been widely discussed
in the literature25].

0.02

dx/dt (s™)

4.1. Glass-crystal transformation

0.01 1
The kinetic study of the glass-crystal transformations is

related to the knowledge of the reaction rate const&nt,

as a function of the temperature. In the present work it is
assumed that the quoted constant has an Arrhenius type 0.00
temperature dependence. Bearing in mind this assumption :
and that the nucleation frequency and crystal growth rate 500 520 540 560 580 600 620 640 660
have also Arrhenian temperature dependences, the overall T (K)

effective activation energ¥, for crystallization is given by

Fig. 3. Crystallization rate vs. temperature of the exothermal peaks at
Eq. (9) From this point of view, and considering that in different heating rates.
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Table 1

J. Vazquez et al./Journal of Alloys and Compounds 370 (2004) 177-185

following the secant method of successive approximations,

Characteristic temperatures and enthalpies of the crystallization processiha impingement factor has been evaluated for each heating

of the Sk 16AS0.365@.48 glassy alloy

Parameter Experimental value
Ty (K) 456.5-480.2

Ti (K) 518.0-571.3

Tp (K) 545.0-598.9

AT (K) 38.7-68.5

AH (mcalmgl) 5.2-8.4

In(T,216)

1.72 1.76 1.80 1.84

1.68

10%Tp(K)

Fig. 4. Experimental plots of IiT'2/B) vs. 103/ T,, and straight regression
line of Shy16AS0.36S&.48 alloy (8 in Ks™1).

respectively, andAT is the width of the crystallization
peak. The crystallization enthalpyH, is also determined
for each heating rate. The data of(Tif/g) and 16/T,
are fitted to a linear function by least squares fitting and
shown inFig. 4 From the slope and intercept of this fit,
according toEqg. (37) both the overall effective activa-
tion energy,E, and the pre-exponential factay, of the
transformation are obtained. The results are the following:
E = 47.2kcalmoflandg = 4.89 x 1011 (Ks)~1. More-
over, the experimental dat&,, x, and (dx/ds)|p, shown

in Table 2 allow to obtain the parameters: impingement
factor, §;, and kinetic exponenty. By using Eq. (36) and

Table 2

Maximum crystallization rate, corresponding temperature and volume
fraction crystallized, kinetic exponent and impingement factor for the
different heating rates

B (Kmin1)  10%(dxdt)], (51 Tp (K) % 8 n
1 0.49 5450  0.4711 07577 1.62
2 1.38 5495  0.5367 1.5298 1.89
4 2.41 555.3  0.4096 0.4511 257
8 4.29 564.9 05721 2.6600 1.40
16 10.75 5743  0.4807 0.8277 2.39
32 17.57 583.7  0.4792 0.8155 2.03
64 32.60 598.9 04320 05395 233

rate. The calculation of the kinetic exponent has been car-
ried out for each heating rate, by usifgl. (38)and from
the quoted experimental data, together with the above men-
tioned value of the activation energy and the corresponding
results of the impingement factor. The values both for
and forn are also given infable 2 Bearing in mind that
the calorimetric analysis is an indirect method which only
makes it possible to obtain mean values for the parameters
that control the mechanism of a reaction, the quoted mean
values have been calculated, resulting () = 1.08 and
(n) = 2.03. It should be noted that the preceding value of
the impingement factor suggests that the Austin—Rickett
kinetic equationy; = 2, §; = 1), is more adequate than the
JMA equation ¢; = 1, 8; — o0) to describe the mechanism
of the glass-crystal transformation of the semiconducting
Shy.16AS0.3656 .48 glass. Of course, by using both equations
under non-isothermal regime. This fact explains that the
experimentalx, values range from 0.4096 to 0.5721 (see
Table 2, results which are relatively different af = 0.63,
an approximately constant value, as it is required by JMA
kinetic equation.

Besides, from the mean value of the kinetic exponent,
it is possible to postulate a crystallization reaction mecha-
nism for the Sk 16AS0.365&.48 Semiconducting alloy. Ma-
hadevan et al[26] have shown thah may be 4, 3, 2, or
1, which are related to different glass-crystal transformation
mechanismsuz = 4, volume nucleation, three-dimensional
growth;n = 3, volume nucleation, two-dimensional growth,
n = 2, volume nucleation, one-dimensional growths= 1,
surface nucleation, one-dimensional growth from surface to
the inside. Therefore, bearing in mind the above obtained
mean value(n) = 2.03, this glass-crystal transformation
may be relatively consistent with a one-dimensional growth
mechanism.

5. Conclusions

The developed theoretical method enables us to study
the evolution with the time of the actual volume fraction
transformed and to analyze the glass-crystal transforma-
tion mechanisms in solid systems involving formation and
growth of nuclei. This method assumes the concept of the
extended volume of transformed material and the condition
of randomly located nuclei, together with the assumption
of mutual interference of regions growing from separated
nuclei. By using these assumptions, we have obtained a gen-
eral expression for the actual volume fraction transformed,
as a function of the temperature in non-isothermal crys-
tallization processes. In the quoted expression the kinetic
exponent depends on both the nucleation frequency and the
dimensionality of the crystal growth. It should be noted that
the above mentioned expression also depends on the im-
pingement factor. The kinetic parameters have been deduced
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