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A Structure Theory for Jordan H *-Pairs.

A. J. CALDERON MARTIN (*) - C. MARTIN GONZALEZ (*)

Sunto. — I concetto di H *-coppia di Jordam, appore, tn modo naturale, nello studio de-
gli H *-sistems tripli di Lie ([8]). Di fatto, nel [4, Th. 3.1] st prove che il problema
della classificazione degli H *-sistemi tripli di Lie st riduce a provare [esistenza di
certi inviluppi di L *-algebre ¢ in [3] si prova anche che ¢ posstbile associare H*-
coppie topologicamente semplici non quadratiche di J ordan ad wi'ampia classe di
H *-sistemi tripli di Lie e che poi gli inviluppi precedenti possono essere oftenuti
da wn'opportuna classificazione, in termini di H*-coppie associative, di queste
coppie. In questo lavoro viene dato un teorema di classificazione delle H*-coppie
topologicamente semplici non quadratiche di J ordan in termini di H *-coppie as-
sociative e di certuni loro anti-isomorfismi. Vengono anche enunciate alcune con-
seguenze di questa clussificazione.

Summary. — Jordan H *-pairs appear, in a natural way, in the study of Lie H *-triple
systems ([8]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification
of Lie H*-triple systems is reduced. to prove the existence of certain L *-algebra en-
velopes, and it is also shown in [3] that we can associate topologically simple non-
quadratic Jordan H *-pairs to a wide class of Lie H *_triple systems and then the
above envelopes can be obtained from a suitable classification, in terms of associa-
tive H *-pairs, of these pairs. In this paper we give classification theovem for topo-
logically simple non-quadratic Jordan H*-pairs in terms of associative H *-pairs
and certain of their anti-isomorphisms. Some consequences of this classification
are also stated.

1. - Introduction.

Recall that an H *-pair A = (A *, A~) is a pair of Hilbert spaces over the
complex numbers with involution, in which the inner products (:|-), the pair
triple products {,-,) and involution * are «compatible». By applying the
structure theory of Jordan H *-triple systems developed by A. Castellén, J.A.
Cuenca and C. Martin in [9, 11], one could describe topologically simple Jor-
dan H *-pairs, however, we use entirely different methods to classify topologi-
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cally simple Jordan H *-pairs. In fact, we note that the introduction of tech-
niques of tight evelopes, D’ Amour’s extension theorems, Zel'manov polynomi-
als and dual spaces methods in the treatment of problems of Jordan H *-the-

ory, motivated in part by Rodriguez’s paper [24], is perhaps the most interest-
ing novelty in this paper.

The paper is organized as follows. In the second section we give the prelim-
inary results on associative and Jordan pairs and we obtain in the third section
a structure theory for topologically simple non-quadratic Jordan H *-pairs in
terms of topologically simple associative H *-pairs, by forgetting their Hilbert
space structures and starting with the remaining purely algebraic information

available on them. Jordan H *-pairs with zero annihilator are well related to
hermitian Hilbert triples introduced and classified by W. Kaup in [17, 18], (see

Remark 3). However, the new approach we give allows us to prove the exis-

tence of associative H *-algebra envelopes for certain topologically simple Lie
H *-triple systems, (what implies the classification of the last ones). We also
extend one of the results of [24] and [2] (see Remark 1).

2. — Definitions and preliminary results.

2.1. On associative pairs.

Let A= (A%, A”)be a pair of modules over a commutative unitary ring X,
and (-, A XA X A’—A?, two trilinear maps written

(&, 9, 2) =>4, Y, 2)

for ce {+, —}. Then A is called an associative pair if the following identities
are satisfled:

«xs Y, Z), u ‘U) = (937(’&{, Z, ’M.), ’U> =

for @, 2, veA? and y, ued ~°

The definitions of homomorphism, epimorphism, monomorphism and isc-
morphism are the usual ones, The opposite pair A of the pair A= (A", A7)
is the pair (A ~, A™) with the same triple products. An anti-homomorphism
from 4 to B is a K-linear mapping v = (v 7, v 7) from the pair A to the pair B¥
satisfying v ({x, ¥, #)) = (¥°(2), v ~(y), v“(x)) for all x, 2e A? and ye A "
An anti-isomorphism v = (v*, v~ ) will be called involutive if v ~7v° = Id. An
ideal I=(*,I") of A is a couple of K-submodules such that

(I°, A=, A°Y+ (47, =%, A%} + (A°, A=°, [°)cI".

A pair A will be called simple if and only if (47, A
ideals are 0 and A.
Let us see a first example of an associative pair. A dual pair of vector

(@, y,(2, u, v))

“? A% # 0 and its only
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spaces over a division K-algebra 4 is a triple (X, X', k) such that X is a left A-
vector space, X' is a right d-vector space and & is a non-degenerate bilinear
form k : X X X' — A. One can consider the X '-topology of X (and the X-topolo-
gy of X'), see [16, Chapter IV Section 6]. If we have two dual pairs (X, X', k)
and (Y, Y', g), one can define L(X, Y) as the set of all continuous linear maps
from X to Y (and F(X, Y) the subset of all finite rank elements of L(X, ¥)).
Any subpair of (L(X, Y), L(Y, X)) containing (F(X, ¥), F(Y, X)) with the
triple products (x, ¥, #)° := xyz, is a prime associative pair with nonzero socle
(see [12]). If fe L(X, Y), we define the adjoint of f, denoted by /", as the only
element fYe L(Y"', X') such that g(f(x), y') = h{x, fiy ")) for any x e X and
y'eY’ (see [16, Chapter IV, Theorem 1, p. 72] for existence and unique-
ness).

In [16, Proposition IV. 8.1], it is shown that fe F(X, Y) if and only if f(t) =

Eh(t z/)y; for all teX, with {x/}}.; in X’ and {y;}{_; in ¥, (the map
t-—»h(t z") y will be denoted by ®y) We note the following rules govern-
ing the «product» @: For all we X, ', o/, 22 €X', ¥, 1, e ¥, y' €Y’ and
ped,

@) (@ +22)Qy =0/ QY + 2 QY

(i) '@y +y) =2' By + 2" Y,

(ili) 'y @y =a" Quy

) (' @u)z' @y)=2"gly, ¥y )O%

W @@=y

The basic reference for definitions and notations about dual pairs theory
will be [16, Chapter IV].

A couple e=(e*,e”) of a pair A=(A"*, A7) is called an idempotent if

{gf, 67, 8" =ur.
We recall that the (11)-Peirce space of A associated to e, denoted by
Ay (e) = (Aj (e), Ani (e)),
is defined as
Afi(e) = % wf) =

We shall need the following result that ean be found in [5]:

{2°eA”{x? e % e")=(e% e~

©’}.

LEmMA 1 ([5, Lemma 1]). — Let (X, X', h), (Y, Y, g) be dual pairs and
denote

=(F(X, Y), F(Y, X))
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1. For any e* eF(X,Y), e* =0, there exists e e F(Y, X) such that
(e*, e ) is an idempotent. Moreover, theve is a unique n e N such that e * =
n n

_%w,-’ ®y; and e~ = 21%, ®;, with {x:}, {&/}, {w:} and {y/} systems of

li-necwly independent vectors in X, X', Y and Y' respectively, satisfying
h(z;, x)) = g(y;, ¥i') = 045 (Kronecker delta).

9. Ife=(e*,e") is an idempotent of R, being e* = 2 x/ @y; and
i=1
o= $on
&

as in (1), then Ry} (e) is linearly genevated by {e;f; 1= o/ @y, 4,j=1, ..., n}
and R (e) is linearly generated by

sk

3. The sets {e;;} and {e;;} described in (2) are systems of linearly inde-
pendent vectors of Ry (e) and Ry (e) respectively.

{en; =4 @i, j=1, ...

4. If X and Y are infinite dimensional vector spaces, then for e, ey idem-
potents of R, there exists ey, another idempotent of R, satisfying

Ryt (1) U Ryi (e2) C Ryy (eg).
2.2. On Jordan pairs.

The basic reference for definitions and notations about Jordan pairs theory
will be [20]. Let us see some examples of Jordan pairs. The simple Jordan al-
gebra V=V(f) of a nondegenerate symmetric bilinear form gives rise to a
Jordan pair J=(V,V) by defining Q°(x) = Ulx), these Jordan pairs are
called of quadratic type.

If A is an associative pair, then A7 will denote the symmetrized Jordan
pair of A, that is, the Jordan pair whose underlying K-module agrees with that
of A, and whose quadratic operators are given by Q“(x)y) = (x, ¥, ). Let
(X, Y, h) be a dual pair over a K-division algebra with involution (A, =), we
can define the opposite dual pair (¥, X, &), considering ¥ and X as left and
right A-vector spaces respectively, for the actions Ay := YA, xA =Tz for el
zeX,yeY and Aed, and defining h%: ¥ x X— A as h?(y, ) := h(x, y) for
(y, ®) e Y X X. Then, other examples of Jordan pairs are any subpair of

(Sym(L(X, ¥), D, Sym(L(Y, X), D),

(where Sym(L(X, Y), 1) = {feL(X, ¥): f'=f} and Sym(L(Y, X), ) is de-
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fined similarly), containing

(Sym(F(X, Y), ), Sym(F(Y, X), 1)),
where the quadratic operators are @7(x)(y) =wxyx and | is the adjoint
operator
LX,Y)>LX,Y) or LY, X)—=LY,X)

and any subpair of

(Skaw(L(X, Y), ), Skw(L(Y, X), D)),

(where (Skuw(L(X, Y), D) = {feL(X, Y): f' = —f} and Skw(L(¥, X), ) is de-
fined similarly), containing

with the quadratic operators and [ as above.

23. On H*-pairs.

Let V=(V*, V") be a, non necessarily associative, complex pair with
triple products denoted by {,,,}°, and let * = (**, % 7) be a couple of conju-
gate-linear mappings #“: V?—V ™7 for which %0 * "?=1Id and

W 9% 2" = e ™) e

forz?,z%eVandy “eV "% Then * = (* ", * ~)is called an involution of
V. We say that V'is an H *-pair if V* and V'~ are also Hilbert spaces over the
complex numbers with inner products (-|),: V7 x V°—C, endowed with an
involution * = (* ™, * 7) such that

@1 (%, 4% %) [t%) =@ (%) (@) W=

(y = I((wﬂ')#”, ta,{za)-«_">)vg = (zn I((y —0)1- ‘", (mq)*d’ t“))o

forz% 2%, t?eV? and 4y ~? € V7 The complete notation for an H *-pair would
be (V, *,(-| -)) but we will frequently speak of the /I *-pair V' (omitting the in-
volution and inner products).
We also recall that an H*-pair V is said to be topologically simple when
(P 1 20

and its only closed ideals, with respect to the norm topology, are {0} and V.
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A #-homomorphism f: V—W of H *-pairs is a homomorphism such that
Foo(@)*) = (f°(x)* for any x°e V°and e {+, — }. An * -isomorphism f
is said to be k-isogemic whenever (f°(x°)|f7(y"))=k(x"|y") for any
%%, y°eV?, and oe {+, —}, with & a positive real number. The pair

Ann(V) = (Ann(V ), Ann(V ™)

is a self-adjoint closed ideal of V that we call the Annihilator of V. Following
[7] it is easy to prove that any H *-pair V with continueus involution splits into
the orthogonal direct sum V= Ann(V) L U, where U=(U", U ") is an H*
subpair of V with zero annihilator. Moreover, each H *-pair V with zero annihi-
lator satisfies V= 11, where {I,},, (I,= (], I;)), denotes the family of
minimal closed ideals of V, each of them being a topologically simple H *-pair.
This reduces the study of this pairs to the study of the topologically simple
ones.

3. - Jordan H *-pairs.

3.1. Previous results.

We are primarily interested in infinite-dimensional pairs since any finite-
dimensional topologically simple H *-pair is simple, and it can be proved that
any simple finite-dimensional complex Jordan pair can be endowed with an
(essentially unique) structure of H *-pair. The existence of an H *-structure
can be seen as a consequence of [22, 3.3 Satz] and [23], while the essential
uniqueness of this H *-structure follows from [6] and [23]. As the classification
of simple finite-dimensional Jordan pairs over C has been previously consid-
ered (see [20]) we shall confine ourselves to the infinite dimensional case.

IfJ=(J*, J )is a Jordan H *-pair, we define the polarized Jordan triple
system of J as the Jordan H *-triple system T with Hilbert space J* LJ~
whose quadratic operator P and involution are given by

P@)y) =@ (x )y ) Q (&~ Ny™)

and (@, & ) =), (@) forall (x*, 27 ),(y ™, y ) eT (see [6] or [§]
for definition of H *-triple system). As we proved in [2, Proposition 1] that any
topologically simple Jordan H *-pair is prime, non-degenerate and with non-
zero socle, and its polarized triple system inherits these «characteristics», we
can derive from the classification of prime, non-degenerate Jordan triple sys-
tems with non-zero socle in [15, Theorem 7], that the underlying Jordan pair J
of an infinite dimensional topologically simple non quadratic Jordan H *-pair
is one of the following:

Type (): J is a subpair of (L(X, Y), L(Y, X))’ containing (F(X, ¥),
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F(Y, X)) with the quadratic operators Q°(x)(y) = myx, being (X, X') and
(Y, Y') dual pairs over C.

Type (ii): J is a subpair of

(Sym(L(X, Y), ), Sym(L(Y, X), ))

containing (Sym(F(X, ), ), Sym(F(Y, X), )), where (X, Y, h), (¥, X, BoP)
are a dual pair and its opposite over C, the quadratics operators are
Q7(x)(y) = wyx
and || is the adjoint operator.
Type (iii): J is a subpair of

(Skw(L(X, ), 1), Skuw(L(Y, X), )

containing (Skw(F(X, Y), ), Skw(F(Y, X), I), with (X, ¥, k), (Y, X, k), the
quadratic operators and [ as in the previous type.

Topologically simple Jordan H *-pairs of types (i) and (ii) have been stud-
ied in [2] and [5] respectively. It is proved in these references that the ones of
type (i) are k-isogenie, ( * -isometrically isomorphic up to a positive factor of
the inner produet), to A” with A a topologically simple associative H *-pair,
and that the ones of type (ii) are k-isogenic to

J=(Sym(A ™, &7), Sym(A~, £7))

with A= (A", A~) as above and &= (&%, £7) an involutive = -anti-isomor-
phism from 4 to A.
We proceed to study the remaining type.

3.2. Study of Jordan H *-pairs such that their underlying Jordan pairs ave
of Type (iii).

We are going to prove in this section that if J is a subpair of

(Skaw(L(X, ), 1), Skw(L(Y, X), 1)

containing (Skw(F(X, Y), I), Skw(F(Y, X), ), where (X, Y, k), (¥, X, h°P)
are a dual pair and its opposite over C, the quadratic operators are
Q%(x)(y) = xyx and [ is the adjoint operator, then J is k-isogenic to

(Skw(A™, E7), Skw(A~, £7))
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with A=(A%, A7) a topologically simple associative H *-pair and &=
(€7, E7) an involutive # -anti-isomorphism from A to A . The techniques we
shall use are the dual vector spaces methods in Jordan pairs theory introduced
in [2] and [5]). Many technical differences with the situations that we find in
these references lead us to develop § 3.2 in detail.

We recall that any complex pair V= (V ™, V) is a real pair restricting the
field of scalars to R. This real pair is denoted by V® = ((V )R, (V" )F).

We shall also need the following result due to A. D’Amour:

We say that a Zy-graded associative algebra A = A, A, with graded invo-
lution & is a Zg-graded d-envelope for a Jordan triple system T if Tc
Sym(Ay, 0) and T generates A.

A Z,-graded -envelope A is d-tight if every nonzero graded d-ideal [ =1°
of A satisfies [ N T # 0. The hypothesis Z(T;) # 0 imposed in the next theorem
means that the Zel'manov polynomials, (defined in [14]), do not vanish on T;.
As a consequence 7 is of hermitian type (following MeCrimmons’s terminolo-
gy). The Zelmanov polynomial were applied in [21] to the study of strongly
prime quadratic Jordan algebras, and then in [1] to Jordan triple systems and
pairs. The nature of such polynomials permits to discern whether a given Jor-
dan system has a hermitian part or not [21, p. 143].

THEOREM 2 ([13, Theorem B]). - For i =1, 2 let T} be a prime Jordan triple
system with Z(T;) # 0 and Zy-graded o-tight algebra envelope A;. Then any
isomorphism f: Ty— T, extends uniquely to a graded d-isomorphism

B Al_>A2.

LeMMA 3. — Let (M;, M;, k), 1 =1, 2, be complex selfdual pairs relative to
hermitian forms h;. Assume that for any 0=m;eM; (i=1,2) such that
hi(mg, m;) =0, we have that k;(my, mi) =0 for all m; in M; such that
m; ¢ Cm;.

1. If e is an idempotent of B 1= (F(M,, Ms), F(M,, M) with rank(e) =
3 (as linear map), then there exist two idempotents of R, fi and f5, with the
property of being selfadjoint, ((fP)=F£79), and such that Ry (e) =R (f)
and R (e) =Ry (f).

2, If M, i=1, 2, are mfinile dimensional vector spaces, then for fi, f
selfadjoint idempotents of R, there exists another selfadjoint idempotent of
R, fy, satisfying Bn(fi) U Ry (fo) c Ry (fy).

Proor. - (1) For simplicity of notation we write (-, -) instead of %, through-
out the Proof. Fix e= (e ™, ¢ ) an idempotent of (F(M,, M,), F(My, My)),

(3
such that e * = '21 #;®y;, n =8, with {2, ..., x,} and {y,, .-., ¥, } free sets
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of vectors of M, and M, respectively (see Lemma 1). Since (-, -) is a hermitian
form, we have linearly independent vectors {#,...,#%,} in M; such that
E({2y, ooy 2o }) = LH{E, ., By }), @, %) =0 if 127 and (&, £)e {1, -1}
We claim that there are no ¢, k& such that (x;, &;) = 1 and (%;, &) = — 1. Indeed,
in the opposite case, the elements &; + &, and &;, j ¢ {i, &}, satisty (&; + &, & +
%) =0 and (Z; + &, &) = 0, being

{&; + &, & }

linearly independent vectors, a contradiction with the hypothesis. There-
fore,

(&;, &;) = koij
with k a fixed element of {1, —1}. In a similar way, we can take {%, ..., ¥.}
linearly independent vectors in M, such that L({yy, ..., ¥} =
L({#h, ..., Gu}) and (@i, ;) = pdy with p a fixed element of {1, —1}. Taking

mto account Lemma 1- (2), it is easy to prove that fi=

(A7, fi) with i =
E kx; @py; and fi = Z Y @ki; is the first selfadjoint idempotent which

we are looking for. In the same manner, we can find another selfadjoint idem-
potent f; such that B (e) =R (fz).

(2) According to Lemma 1-(4), we have ¢ an idempotent of R such that
R (fi) U R (fz)c Ry (e), moreover, by Lemma 1-(2) we always can take e
such that rank(e) = 3. We conclude from applying (1) to e that there exists a
selfadjoint idempotent f; of B satisfying R (f1) U Rii (fp)cRii (f2), hence
that

Bt (NP URT () c (R (AN,
and finally that Ryj (f;) U Ry (fs) cRy7 (f;) which is our claim.

LemMA 4. — Let J be a complex topologically simple Jordan H *-pair such
that J is a subpair of (Skw(L(X, T), ), Skw(L(Y, X), D)) containing

(Skw(F(X, Y), Iy), Skw(F(Y, X), 1)),

where (X, Y, h), (Y, X, h™) are an infinite-dimensional dual pair and
its opposite, and 1, is the adjoint operator, (;: L(X,¥Y)—LX,Y),
he LY, X) =LY, X)), then:

1. There exist two selfdual pairs (M;, M;, h;) i =1, 2, an isomorphism
@ of associative pairs and a conjugate-linear involutive anti-automorphism
+' onto the associative pair (F(X, Y), F(Y, X)) extending * , such that the

3
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Jollowing diagram commutes:

(F(X, V), F(Y, X)) >  (FX,1),FY,X)
@ ] ! @
(F(Mth), F(MZ,M1)) = (F(Mu Mz), F(M21 M1))

fz

I, being the adjoint operator

(Mz: F(My, Mp)— F(M,, My), ls: F(M,, M) —F(M,, M,)).

2.If 0=meM; (i=1,2) i4s such that hi(m;, m;) =0, then
hy(my, my') #= 0 for all m{ in M; such that m; ¢ Cm,.

3. h; (i=1, 2) is hermitian.

Proor. - (1) Consider the associative algebra

P FEOR  F(X, VR
Y, X  FOOR
R
with the gradingA0=(F‘§)“ P (F(YOX)R F(X(’)Y) )and with the
product ’
(051 fl)_(az fz)=(a1‘az"‘f1'9'2 a]'ﬁ+ﬁ'ﬁz)
n B \g2 B grastfigs g1zt fBiBe
where x-y =y ow.

We claim that (4, 8) and (A, §) are Z,-graded d-tight algebra envelopes
of the real polarized Jordan triple system 7T =Skw(F(X, ), )R

Skux(F(¥, X), D¥, with
L
g B - —g! a”)'

Indeed, it is clear that T'c Sym(A,, 6). In order to prove that T generates
A (and A), let us consider x; @y e F(Y, X)R, @y, @y = 0. If @, = Az, with L e
C, we can always find #/, 2y e X and y, y; € Y, such that {21, @, w/, s }isa
linearly independent set of vectors in X and #(x;, yi') =0, hiz, y/) = for
i,je {1, 2}, (by the density of ¥ in the conjugate space X* of X). Then,

Bl 1 ®ux= (2 @~ @2/ Nys U — 4/ Qys Nty @ty — 4 R7,),
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with
Y2 @yl —y ®ys e Skw(F(X, Y), DR

and
931’ ®.’172 — Lo ®m1’, Ho ®952’ — ﬂi’g' ®.’L’1 ES"C?A)(F(Y, X), ﬂ)R

If 2 = Az; with 1€ C, (3.1) can be followed from the previous case, taking into
account that we can find, as before, x,, 23 € X and y,, y3 € Y such that {a,, a3}
and {yz, y3} are linearly independent set of vectors satisfying h(x;, y) =1,
ie{2, 3}, and then x; @ Ax; = (2 @ A%y )(ys @ 15 ), @ 23). Therefore T gener-
ates F(Y, X)%. In a similar way we prove that T generates F(X ,PRandso T
generates A;. As ACAF @A, , then T generates A. Finally, as A is a simple al-
gebra because A4 is isomorphic to the simple algebra F(X® Y, X@ Y) being
this one simple by [16, p. 75], the d-tight condition holds clearly.

The infinite dimensional nature of 7' forces its hermitian character, and
this implies that the Ze’'manov polynomials do not vanish on 7. Thus Z(T) = 0
and by D’Amour’s theorem (Theorem 2), the involution * of J extends to a 6-
isomorphism of two-graded algebras v: A — A, hence by an easy argument
# = ((#)F,(#")7) with

( *,)+ = vIF(X. R: F(Xa Y)RQF(Y? X)R
and
(#')7 =2|py, xr: F(Y, XR>F(X, )R

is an involutive anti-automorphism of the associative pair (F(X, V)R,
F(Y, X)}). With [Theorem 4] we complete the proof of (1).

(2) Our proof starts with the observation that the isomorphism of associa-
tive pairs @ given by (1), implies the existence of a conjugate-linear involutive
anti-isomorphism of associative pairs ¢ = (¢ *, ¢ ) such that the following di-
agram commutes:

(F(X,Y), F(Y, X)) — (Y, X), F(X, Y))
@ I 1 ey
(F(My, My), F(M,, My)) — (F(Ms, My), F(M,, M,))
@

The identities [l;  *' = #'o[l; (consequence of the fact that v is a d-isomor-
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ﬁ)hism of two-graded algebras), @ov=c@ and Pl =@ D imply poll,=
90

Applying [12, Theorem 3] to @, we obtain linear or conjugate-linear home-
omorphisms ¢« : X— M, and f:Y— M, such that @ ~(f) :=aff .

For simplicity of notation we write (-, ) instead of /. If (my, m,) = 0 and
(my, my') = 0 with m, ¢ Cm,, there exist 0 = 2y, 0 = 2 € X such that a(x,) =

my and a(#;) = m,, the density of the dual pairs, (see [16, Chapter IV, Seetion
61), gives us the existence of 0 =y, 0 # y,e ¥ such that (x;, ) =04, As

2 @ xy — 1, @y e Skw(F(Y, X), I,)

and
(0 @2 — 22 @1, Yo QY1 — U1 Ry, 1) Oty — 2, @y) = 2 Rty — 1, D,y
then
Dy @ s — B @) € Skw(F(My, My), ¢ ),
Dy @Y1 — th @ ya) € Skw(F (M, My), ¢ T)
and
(D(w, @2 — 2, ®t1y), PlYys @Y1 — Y1 @Ya), Pty Ry — 2, D ;) =
D) B ey — 12 D xy).
Since @~ (i ®x,)(2) = (B 7'(2), #1) alxz) and
D (2, ® a1 )(2) = (B7'(2), 2p) alay)

for all ze Ms, then [16, Lemma on page 72] implies the existence of 0 = g,
0 = my e M, st_:ach that @~ (2 @) =my ®my and @~ (1, @ x;) = M @my .
The commutativity @ of; = ¢ « @ and the identity @ ol =1, ¢ @ yield

plmg @my) =D~ (2 @) = md Qmy

and @(m, @my ) =m{ @m).
We can consider the completion

(Skw(F(M,, My), ¢ ), Skw(F(My, My), ¢ 7))
of the pre-Hilbert space structure induced on
(Skw(F(My, My), @ ), Skw(F(My, My), ¢ 7))

by the isomorphism ®. This completion has an H *-structure induced by the
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unique extension

6: J—’(S}’C’W(F{Ml, Mz), @ i )a S-IG’W(F(Mza Ml): 99— )):
by continuity of @. The identities (2.1) of the Jordan H *-pair

((Sk'W(F(MIs MZ)! QD-P)) Skw(F(MZ: Ml)l W_)), u23(| ))

give
llmg @y — plimg @) [P = (b — @(b) |b— (b)) =
(b — @(b), D2 @Y1 — 11 BYz), b — @(B)) |b — (b)) =
(DY @Yy — y1 ®y2) | {a — gla), b — ¢(b), a — ¢(a)))
being @ = m, @my and b =ms @m,. The facts that
{a, b, a) = (a, b, p(a)) = (a, @(b), a) = (¢a), b, a) =0
and the involutive anti-isomorphism character of ¢, enable us to write
(a—gla), b— @), a—@la))=0

m

and then |mg @ m; — @(mg ®my)|| =0, hence ms = 0 and m3’ = 0, a contradic-
tion.
(3) The bilinear forms k; and h, are alternate or hermitian, (see [12, Theo-

rem 4]). Suppose h, is alternate then A(my @ my) = limy @1y =1y @ Ams,
leC, myeM,; and mye M,. By (1), [ is the involution of a complex H *-pair
then (A(m; @ my — my @mg))! = Z(my @ mg —my @mg )" for

my @mg — mi @my e Skw(F(M,;, M), ¢ ),

now taking m; ® my —m{ ® my # 0 and A =1 we obtain a contradiction, and
consequently k; is hermitian.

THEOREM 5. — Let J be a topologically simple Jordan H *-pair such that J
is a subpair of (Skw(L(X, Y), D), Skw(L(Y, X), ) containing

(Skw(F(X, Y), D), Skw(F(Y, X), D)

where (X, Y, k), (Y, X, k) are an infinite dimensional dual pair and its
opposite pair, and 1 is the adjoint operator. Then J is k-isogenic to

(Skw(A™, £%), Skwl(A™, £7))
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with A=(A", A7) a topologically simple associative H *-pair and &=
(&%, E7) an involutive * -anti-isomorphism from A to A®.

PROIOF. —_As (‘S.kw(F(X , ), 1, Skw(F(Y, X), ) is a non-zero ideal of J, the
topological simplicity of J and Lemma 4 allow us to suppose that (J,*,(-| ) isa
subpair of

(Skw(L(M,, My), @), Skw(L(Mz, My), ¢))

containing  (Skw(F(My, My), @), Skw(F(My, My), @), where (M;, M;, hy),
3 = 1{ 2, are under the hypothesis of Lemma 3 and ¢ is a conjugate-linear in-
volutive anti-isomorphism of associative pairs from

(L(My, M), L(M,, M,))

to (L(My, M,), L(M;, M)), and that (¢”)* = (a”)¥, [| being the adjoint of a’
with respect to h; for

a”t eSkw(F(M,, M), ) and a~ eSkw(F(M,, M,), ).

For simplicity of notation we write R instead of
(F(My, M), F(M;, My)).

Taking into account Lemma 3-(2), we can refine Loos’ result in [19, Theo-
rem 3] as in [2, Theorem 2] or [5, Theorem 2], so as to prove that the families
{Skuw(Ry;(f), @)} and {Ry;(f)} are direct systems of finite dimensional Jor-
dan and associative H *-pairs (relative to inclusion), respectively, when f
ranges over the directed set of the selfadjoint idempotents of R. Finally, by
applying direct limits arguments as in [2, Theorem 2] or [5, Theorem 2] we
complete the proof.

It follows easily as in [5, Corollary 1] the following

COIjOLLiQ.RY 1. = Let A=(A*,A") be a prime associative pair and
E=(E7,&7) an involutive anti-isomorphism from A to A. Suppose
that

J=(SkwA*, £7), Skuw(d ~, E7)),
(?f}heve Skaw(A°, 5”.) denotes {aeA%: £%(a) = —a}), is an infinite dimen-
safcmal and topologically simple Jovdan H *-pair. Then A is a topologically
simple associative H *-pair.

Summarizing we can claim:

‘ TI_{EOR_EM 6 (.Main Theorem). — Let J = (J *, J ~) be a topologically simple
infinite-dimensional non-quadratic Jordan H *-pair. Then, J is k-isogenic
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(isometrically * -isomorphic up to a positive factor of the inner products) to
one of the followings:

1. A7, where A is a topologically simple associative H *-pair.

2. Sym(A, E), where A is a topologically simple associative H *-pair
and & is an involutive * -anti-isomorphism from A to AP,

3. Skw(A, &), with A and & as tn the previous case.

We finally note that the classification of topologically simple associative
H*-pairs can be obtained easily from ([10, Main theorem]).

REMARK 1. — It is proved in [2] that if J is a topologically simple J ordan H *-
pair such that J is the symmetrized Jordan pair of A, for an associative pair 4,
then A is necessarily an associative topologically simple H *-pair and the inner
products and involution of J agree with the ones in A. This result supposes a
version for Jordan pairs of a previous result for Jordan algebras given in [24].
Corollary 1 extends the above results.

REMARK 2. — In [3, Theorem 3.1] we describe the equivalence between the
categories of topologically simple polarized L *_triples, (see [8] for definitions),
and topologically simple Jordan H *-pairs. From here, Theorem 6 allows us to
obtain easily a complete classification of topologically simple polarized
L *-triples.

REMARK 3. — Theorem 6 gives us a new approach to the structure theory of
infinite dimensional hermitian Hilbert triples given by W. Kaup in [17, 3.9] and
(18] (see the same references for definitions and details), taking into aceount
that

(i) Any hermitian Hilbert triple V gives us a Jordan H™-pair J(V) =
(V*, V™) defining V* :=V, V™ as V up to the scalar and inner products de-
fined by Av:= 2 and (u|v)" = W, where - and (-] -) are the scalar and in-
ner products of V. The triple products as an V and the involutions are the
identity.

(i) If (V*, V) is a Jordan H *-pair, then T(V*,V)) =V with the triple
product defined by {z,y, z} == {®, ¥™, z}* is a hermitian Hilbert triple,
and

(i) It is easy to prove that if Vis a hermitian Hilbert triple then

TJ(V) =V,
and that if (V*,V )isa Jordan H *-pair with zero annihilator then
JT(V, V™)
is a Jordan H *-pair *-isometrically isomorphic to (V™*, V7).
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