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Abstract

Making use of the theory of symmetry transformations in PDEs we construct new solutions of a 2+ 1 dimensional

integrable model in the BKP hierarchy.

First, we analyze its reductions and we obtain a BKP equation independent on time. Starting with a solution of this

equation we find a family of solutions of the 2+ 1 dimensional BKP equation. These solutions depend on three arbitrary

functions on t.
On the other hand, new solutions can also be constructed by applying some elements of the symmetry group to

known solutions of the model.

We observed that the solutions found by using both approaches describe interesting processes. Among these so-

lutions we present source and sink solutions, solutions describing the creation or the diffusion (or both) of a breather,

finite time blow-up processes, finite time source solutions, line solitons and coherent structures moving at arbitrary

velocities.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Among the 2+ 1 dimensional integrable systems that have been found to exhibit solutions describing processes of

interaction of exponentially localized structures, one can find the 2+ 1 BKP system, i.e.
qTh
*Co

E-m

0960-0

doi:10.
qt ¼ qxxx þ qyyy þ 6ðqu1Þx þ 6ðqu2Þy ;
u1y ¼ qx; u2x ¼ qy :

ð1Þ
This system [3,8] is one of the first members of a hierarchy of integrable systems emerging from a bilinear identity

related to a Clifford algebra which is generated by two neutral fermion fields.

Note that (1) can be written as an integro-differential evolution equation, by taking into account that from the two

last equations of (1) one has that
u1ðx; y; tÞ ¼
Z y

qxðx; g; tÞdg þ ~uu1ðx; tÞ;
is work has been partially supported by proyectos BFM2003-04174, from the DGES and FQM201, from Junta de Andaluc�ııa.

rresponding author.

ail addresses: elena.medina@uca.es (E. Medina), mariajose.marin@uca.es (M.J. Mar�ıın).

779/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

1016/j.chaos.2003.09.027

mail to: elena.medina@uca.es


1092 E. Medina, M.J. Mar�ıın / Chaos, Solitons and Fractals 20 (2004) 1091–1102
u2ðx; y; tÞ ¼
Z x

qyðn; y; tÞdn þ ~uu2ðy; tÞ:
In this way ~uu1 and ~uu2 play the role of potentials for the dependent variable of the evolution equation: qðx; y; tÞ. In [9]
it is proved that (1) admits exponentially localized solutions travelling at constant velocity and presenting an internal

oscillation, these solutions are referred to as breathers.

The analytic expression of this solution (see [9]) is given by
qðx; y; tÞ ¼ oxoy log aðx; y; tÞ;
u1ðx; y; tÞ ¼ o2x log aðx; y; tÞ; u2ðx; y; tÞ ¼ o2y log aðx; y; tÞ;
aðx; y; tÞ ¼ 1þ a1 exp½2k1Rðx� v1tÞ� þ a2 exp½2k2Rðy � v2tÞ� þ b exp½2k1Rðx� v1tÞ þ 2k2Rðy � v2tÞ�

þ exp½k1Rðx� v1tÞ þ k2Rðy � v2tÞ�Re½ic exp½iðk1I x� k2I y � xtÞ�;

ð2Þ
where
kjR ¼ ReðkjÞ; kjI ¼ ImðkjÞ; j ¼ 1; 2; b ¼ a1a2 þ
k1I k

2
I

4k1Rk
2
R

jcj2;

vj ¼ � ½ðkjÞ3�R
kjR

; j ¼ 1; 2; x ¼ �Im½ðk1Þ3 � ðk2Þ3�;
a1, a2 are arbitrary real parameters and kj, j ¼ 1; 2 and c are arbitrary complex parameters. We plot this solution in
Figs. 1–3 for the choice of the parameters k1 ¼ 1þ 2i, k2 ¼ 1

2
� 3

2
i, a1 ¼ 10, a2 ¼ 20, c ¼ 5� 4i, and for t ¼ 0; 1; 2 res-

pectively.

Moreover, it is also proved (see [9]) that in solutions describing interaction processes of breathers, they manifest

dynamical properties similar to the dromion solutions of the Davey–Stewartson equation [5–7], for instance they

change their form under interaction.

It is also worth noting that the evolution associated to (1) conserved the mass, defined by
M ¼
Z
R2
qðx; y; tÞdxdy
for localized solutions. It is a consequence of the fact that the right-hand side of (1) is a divergence.
Fig. 1. Breather (2) for t ¼ 0 and the above parameters.

Fig. 2. Breather (2) for t ¼ 1 and the above parameters.



Fig. 3. Breather (2) for t ¼ 2 and the above parameters.
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On the other hand, most of the 2+ 1 dimensional integrable systems that have been studied from the point of view of

the the theory of symmetry transformations in PDEs have been found to admit infinite dimensional groups of sym-

metries (see for example [4,14] for the KP equation or [2] for the Davey–Stewartson equation). Making use of these

groups, new solutions with interesting properties have been constructed [10,11].

In this work, we apply these techniques to (1) in order to find new solutions of this system. More specifically, we get

the symmetry group admitted by (1) and the corresponding reductions to two independent variables PDE. Making use

of both, symmetry group and reductions, together with some known solutions of (1) we can construct new solutions.

Among these solutions we find sink and source solutions, solutions describing diffusion processes, finite time blow-up

solutions, coherent structures travelling to arbitrary velocities, along arbitrary curves, etc.
2. Reductions and equations of the group

In order to find the Lie algebra associated to the Lie group of symmetry transformations of the (2+ 1)-dimensional

BKP equation, we look for vectorial fields of the form:
V ¼ n1ðx; y; t; q; u1; u2Þ
o

ox
þ n2ðx; y; t; q; u1; u2Þ

o

oy
þ n3ðx; y; t; q; u1; u2Þ

o

ot
þ /1ðx; y; t; q; u1; u2Þ

o

oq

þ /2ðx; y; t; q; u1; u2Þ
o

ou1
þ /3ðx; y; t; q; u1; u2Þ

o

ou2
;

which leave invariant the third prolongation of the system (1). Using the algorithmic techniques (see for example

[1,12,13]) we find that the general element of the Lie algebra has the form
V1ðf Þ þ V2ðgÞ þ V3ðhÞ;
where
V1ðf Þ ¼
1

3
f 0ðtÞx o

ox
þ 1

3
f 0ðtÞy o

oy
þ f ðtÞ o

ot
� 2

3
f 0ðtÞq o

oq

þ
�
� 2

3
f 0ðtÞu1 �

1

18
f 00ðtÞx

�
o

ou1
þ
�
� 2

3
f 0ðtÞu2 �

1

18
f 00ðtÞy

�
o

ou2

V2ðgÞ ¼ gðtÞ o

ox
� 1

6
g0ðtÞ o

ou1
;

V3ðhÞ ¼ hðtÞ o

oy
� 1

6
h0ðtÞ o

ou2
;

ð3Þ
with f , g and h being arbitrary functions on the time variable t.
This general element of the Lie algebra has been obtained by making use of the program YaLie, for MATHEM-

ATICA, by D�ııaz. This program can be found in the web site: http://library.wolfram.com/infocenter/MathSource/4231/

http://library.wolfram.com/infocenter/MathSource/4231/
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2.1. Reductions to equations in two independent variables

Solutions of (1) invariant under the action of the symmetry group can be found as solutions of PDEs in two in-

dependent variables, the reduced equations. Next, we look for these reduced equations.

Reduction 1. If f 6� 0 the similarity independent variables are given by
r ¼ f ðtÞ�ð1=3Þx� g1ðtÞ; s ¼ f ðtÞ�ð1=3Þx� h1ðtÞ ð4Þ
where
g01ðtÞ ¼
gðtÞ

f ðtÞ4=3
; h01ðtÞ ¼

hðtÞ
f ðtÞ4=3

:

The dependent variables of (1) q, u1, u2 are given in terms of the similarity dependent variables q1, v1 and v2 by
qðx; y; tÞ ¼ f ðtÞ�ð2=3Þq1ðr; sÞ;

u1ðx; y; tÞ ¼ f ðtÞ�ð2=3Þv1ðr; sÞ �
1

18

f 0ðtÞ
f ðtÞ1=3

x� 1

6
f ðtÞg01ðtÞ;

u2ðx; y; tÞ ¼ f ðtÞ�ð2=3Þv2ðr; sÞ �
1

18

f 0ðtÞ
f ðtÞ1=3

y � 1

6
f ðtÞh01ðtÞ:

ð5Þ
Now, introducing (4) and (5) into (1) we obtain the reduced system
q1rrr þ q1sss þ 6ðq1v1Þr þ 6ðq1v2Þs ¼ 0;

v1s ¼ q1r; v2r ¼ q1s:
ð6Þ
Reduction 2. If f � 0 and g 6� 0 the similarity independent variables are
r ¼ hðtÞ
gðtÞ x� y and t;
while the dependent variables can be written as
qðx; y; tÞ ¼ q1ðr; tÞ;

u1ðx; y; tÞ ¼ v1ðr; tÞ �
g0ðtÞ
6gðtÞ x; u2ðx; y; tÞ ¼ v2ðr; tÞ �

h0ðtÞ
6gðtÞ y:
In terms of these variables (1) takes the form
q1t þ ð1� mðtÞ3Þq1rrr � 6mðtÞðv1q1Þr þ 6ðv2q1Þr þ nðtÞq1 ¼ 0;

v1r þ mðtÞq1r ¼ 0;

mðtÞv2r þ q1r �
1

6
ðm0ðtÞ þ nðtÞmðtÞÞ ¼ 0;

ð7Þ
where
mðtÞ ¼ hðtÞ
gðtÞ ; nðtÞ ¼ g0ðtÞ

gðtÞ :
Clearly (7) can be further simplified. In order to do that we need to distinguish the cases m 6� 0 and m � 0.

Case 2.1. If m 6� 0, from the two last equations in (7) we obtain
v1ðr; tÞ ¼ �mðtÞq1ðr; tÞ þ m1ðtÞ;

v2ðr; tÞ ¼ � 1

mðtÞ q1ðr; tÞ þ
1

6

mðtÞnðtÞ þ m0ðtÞ
mðtÞ r þ n1ðtÞ;
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with m1 and n1 arbitrary functions on t. Substituting these expressions in the first equation in (7) we have that
q1t þ 2nðtÞ
�

þ m0ðtÞ
mðtÞ

�
q1 þ 6ðn1ðtÞ � mðtÞm1ðtÞÞq1r þ nðtÞ

�
þ m0ðtÞ

mðtÞ

�
rq1r

þ 12 mðtÞ2
�

� 1

mðtÞ

�
q1q1r þ ð1� mðtÞ3Þq1rrr ¼ 0: ð8Þ
Case 2.2. If m � 0, (7) can be trivially solved and we get
q1ðr; tÞ ¼ pðtÞ; v1ðr; tÞ ¼ w1ðtÞ; v2ðr; tÞ ¼ � 1
6

nðtÞ
�

þ p0ðtÞ
pðtÞ

�
r þ w2ðtÞ;
where p, w1, w2 are arbitrary functions on t.

Reduction 3. If f � 0, g � 0, h 6� 0 the independent similarity variables are x and t while the dependent variables can be
written as
qðx; y; tÞ ¼ q1ðx; tÞ; u1ðx; y; tÞ ¼ v1ðx; tÞ; u2ðx; y; tÞ ¼ v2ðx; tÞ �
h0ðtÞ
6hðtÞ y:
Introducing this change of variables into (1) one obtains
q1t ¼ q1xxx þ 6ðq1v1Þx �
h0ðtÞ
hðtÞ q1; q1x ¼ 0; v2x ¼ 0
and consequently
q1ðr; tÞ ¼ pðtÞ; v1ðr; tÞ ¼
1

6

p0ðtÞ
pðtÞ

�
þ h0ðtÞ

hðtÞ

�
xþ w1ðtÞ; v2ðr; tÞ ¼ w2ðtÞ;
where, again, p, w1 and w2 are arbitrary functions on t.

2.2. Integration of the group

From the expression of the arbitrary element of the Lie algebra we can obtain the equations of the symmetry

transformation group, by solving a system of ordinary differential equations with respect to the parameter of the group.

In this way, starting with a known solution of (1) and applying elements of the symmetry group, new solutions can be

constructed. Due to the composition operation in the group, it is enough by computing the expression of the new

solutions in terms of the starting solutions, for elements with f arbitrary, g � 0, h � 0 and elements with g, h arbitrary
functions and f � 0. In order to get the equations of the transformation associated to V1ðf Þ we have to solve the system
dX
ds

¼ 1

3
Xf 0ðT Þ; X ð0Þ ¼ x;

dY
ds

¼ 1

3
Yf 0ðT Þ; Y ð0Þ ¼ y;

dT
ds

¼ f ðT Þ; T ð0Þ ¼ t;

dQ
ds

¼ � 2
3
Qf 0ðT Þ; Qð0Þ ¼ q;

dU1

ds
¼ � 2

3
U1f 0ðT Þ � 1

18
Xf 00ðT Þ; U1ð0Þ ¼ u1;

dU2

ds
¼ � 2

3
U2f 0ðT Þ � 1

18
Yf 00ðT Þ; U2ð0Þ ¼ u2:
From the solution of this system we obtain that if qðx; y; tÞ, u1ðx; y; tÞ, u2ðx; y; tÞ is a solution of (1) a new family of

solutions is given by
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QðX ; Y ; T Þ ¼ f ðT Þ
f ðtÞ

� ��ð2=3Þ

qðx; y; tÞ;

U1ðX ; Y ; T Þ ¼ f ðT Þ
f ðtÞ

� ��ð2=3Þ

u1ðx; y; tÞ �
x
18

f 0ðT Þ � f 0ðtÞ
f ðT Þ2=3f ðtÞ1=3

;

U2ðX ; Y ; T Þ ¼ f ðT Þ
f ðtÞ

� ��ð2=3Þ

u2ðx; y; tÞ �
y
18

f 0ðT Þ � f 0ðtÞ
f ðT Þ2=3f ðtÞ1=3

ð9Þ
where
x ¼ f ðT Þ
f ðtÞ

� ��ð1=3Þ

� X ; y ¼ f ðT Þ
f ðtÞ

� ��ð1=3Þ

� Y ; t ¼ U�1ðUðT Þ � sÞ ð10Þ
and
UðT Þ ¼
Z T 1

f ðnÞ dn:
Proceeding in the same way with the group element associated to the Lie algebra element V2ðgÞ þ V3ðhÞ, we obtain
that the new family of solutions is now given by
QðX ; Y ; T Þ ¼ qðX � sgðT Þ; Y � shðT Þ; T Þ;

U1ðX ; Y ; T Þ ¼ u1ðX � sgðT Þ; Y � shðT Þ; T Þ � s
6
g0ðT Þ;

U2ðX ; Y ; T Þ ¼ u2ðX � sgðT Þ; Y � shðT Þ; T Þ � s
6
h0ðT Þ:

ð11Þ
3. New solutions

In order to construct new solutions we can proceed in two ways. We can start with the reduced equations and look

for solutions of these equations, or we can apply the elements of the symmetry group of (1) to known solutions of this

system.

3.1. Solutions associated to the reductions

Let us start with the reduced equation (6). It is clear that this equation is satisfied by any solution of (1) independent

on t. Then, if we start with a solution of (1) that does not depend on t, using (4) and (5) we obtain a new family of

solutions of (1) which depend of three arbitrary functions on t.
It is easy to see that in order to find a time independent solution, we can start with the breather solution (2) and

choose the complex parameters kj, j ¼ 1; 2 such that ðkjÞ3, j ¼ 1; 2 are imaginary numbers and ðk1Þ3 ¼ ðk2Þ3, i.e.
k1 ¼ a

ffiffiffi
3

p

2

 
þ i

2

!
; k2 ¼ a

 
�

ffiffiffi
3

p

2
þ i

2

!
ð12Þ
with a being an arbitrary real parameter. Thus, we obtain the solution of (6) given by:
q1ðr; sÞ ¼ oros log aðr; sÞ; v1ðr; sÞ ¼ o2r log aðr; sÞ; v2ðr; sÞ ¼ o2s log aðr; sÞ
aðr; sÞ ¼ 1þ a1 exp½

ffiffiffi
3

p
ar� þ a2 exp½�

ffiffiffi
3

p
as� þ b exp½

ffiffiffi
3

p
aðr � sÞ�

þ exp

ffiffiffi
3

p

2
aðr

"
� sÞ

#
Re ic exp

i

2
aðr

		
� sÞ




;

ð13Þ
with b ¼ a1a2 � jcj2
12
, a1; a2 2 R, c 2 C arbitrary constants. Now, from (13) and using (4) and (5) we find the family of

solutions of (1)
qðx; y; tÞ ¼ f ðtÞ�ð2=3Þq1 f ðtÞ�ð1=3Þx
�

� g1ðtÞ; f ðtÞ�ð1=3Þy � h1ðtÞ
�

ð14Þ
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with q1 given by (13) and f , g1, h1 arbitrary functions on t. In order to analyze this family of solutions we start by
considering two particular cases:

The case g1 � 0, h1 � 0. In this case (14) takes the form
qðx; y; tÞ ¼ f ðtÞ�ð2=3Þq1 f ðtÞ�ð1=3Þx; f ðtÞ�ð1=3Þy
� �

: ð15Þ
It is easy to see that these solutions have the properties

• If limt!t1 f ðtÞ ¼ 0 then

qðx; y; tÞ ! Cdðx; yÞ as t ! t1;

where C is a fixed constant. Indeed, that is a consequence ofZ
R2
qðx; y; tÞuðx; yÞdxdy ¼

Z
R2
q1ðr; sÞuðf ðtÞ1=3r; f ðtÞ1=3sÞdrds:

Note that the same property holds if we replace t1 by �1.

• If limt!t2 f ðtÞ ¼ 1 then

qðx; y; tÞ ! q1ðx; yÞ as t ! t2

(and the same property holds if we replace t2 by �1).

• If limt!t3 f ðtÞ ¼ 1 then the amplitude of our solution tends to zero as t ! t3, in fact, the solution is diffusing into the
plane as t ! t3. As in the previous limits, the same property holds if we replace t3 by �1.

Taking into account the previous properties, it is clear that a great variety of solutions can be exhibited by choosing

in appropriate way the arbitrary function f ðtÞ. Some examples are:

• If we choose f ðtÞ ¼ e�t, the solution (15) behaves as a nonlocalized solution of amplitude tending to zero as t ! �1
(it can be interpreted as the radiation), as t increases the solution becomes exponentially localized, in particular for
t ¼ 0 it coincides with the static soliton (13) and as t ! 1, qðx; y; tÞ ! Cdðx; yÞ. Thus, this solution can be inter-
preted as a sink solution. It is clear that if we take f ðtÞ ¼ et the solution is a source solution in which

qðx; y; tÞ ! Cdðx; yÞ as t ! �1 and describes a diffusion process as t ! 1. These facts can be appreciated in Figs.

4–7 where we plot solution (13)–(15) with f ðtÞ ¼ e�t, a ¼ 1, a1 ¼ 10, a2 ¼ 20, c ¼ 5� 4i, and we have chosen t ¼ �2,
t ¼ 0, t ¼ 3 and t ¼ 8 respectively.

• If we choose f ðtÞ ¼ 1� t and consider the solution for t 2 ½0; 1Þ the solution describes a finite time blow up process.

In fact, the solution corresponds initially to (13) and qðx; y; tÞ ! Cdðx; yÞ as t ! 1�. For t ¼ 1, qðx; y; tÞ stops being a
solution of (1). We plot this solution in Figs. 8–11, for the same parameters that in the previous case, and for t ¼ 0:2,
t ¼ 0:5, t ¼ 0:9 and t ¼ 0:999, respectively.
Fig. 4. Solution (5), (13) with f ðtÞ ¼ e�t, g � h � 0 for t ¼ �2.

Fig. 5. Solution (5), (13) with f ðtÞ ¼ e�t, g � h � 0 for t ¼ 0.



Fig. 6. Solution (5), (13) with f ðtÞ ¼ e�t, g � h � 0 for t ¼ 3.

Fig. 7. Solution (5), (13) with f ðtÞ ¼ e�t, g � h � 0 for t ¼ 8.

Fig. 8. Solution (5), (13) with f ðtÞ ¼ 1� t, g � h � 0 for t ¼ 0:2.

Fig. 9. Solution (5), (13) with f ðtÞ ¼ 1� t, g � h � 0 for t ¼ 0:5.

Fig. 10. Solution (5), (13) with f ðtÞ ¼ 1� t, g � h � 0 for t ¼ 0:9.

Fig. 11. Solution (5), (13) with f ðtÞ ¼ 1� t, g � h � 0 for t ¼ 0:999.
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• If we choose f ðtÞ ¼ 1þ t2 the solution (15) describes a diffusion process for both limits t ! �1. It can also be seen

as the process of first, the creation of the coherent structure from the radiation and then, its diffusion to radiation

again.

The case f � 1. In this case (14) takes the form
qðx; y; tÞ ¼ q1ðx� g1ðtÞ; y � g2ðtÞÞ; ð16Þ
which describes a coherent structure corresponding to the statical localized solution (13) moving to an arbitrary velocity

along an arbitrary curve on the plane.

The general case. If f , g1 and h1 are arbitrary functions on t, Then, the solution describes an structure that depending
on the choice of f describes processes as those previously discussed, and besides, moves along an arbitrary curve to an
arbitrary velocity (depending on the choices of g1 and h1). We point out that in the case of collapse (blow up at a point),
one finds
qðx; y; tÞ ! Cdðxþ g1ðt1Þ; y þ h1ðt1ÞÞ as t ! t1;
if limt!t1 f ðtÞ ¼ 0, i.e. the collapse is in this case at an arbitrary point.

Another possibility for constructing solutions of (1) is looking for solutions of (8). It is worth to noting that for the

choice of the arbitrary functions n � m1 � n1 � 0, m � c (constant), Eq. (8) is the KdV equation
q1t þ 12 c2
�

� 1

c

�
q1q1r þ ð1� c3Þq1rrr ¼ 0: ð17Þ
Taking into account the similarity variables that lead us to these reduction, we have that if q1ðr; tÞ is a solution of
(17) then
qðx; y; tÞ ¼ q1ðcx� y; tÞ; u1ðx; y; tÞ ¼ �cq1ðcx� y; tÞ; u2ðx; y; tÞ ¼ � 1
c
q1ðcx� y; tÞ
is a solution of (1). Thus, (1) admits line solitons and interaction processes among line solitons as solutions.

3.2. Solutions associated to the action of the symmetry group elements

We can also construct new solutions of (1) by applying the symmetry groups admitted by this system to its known

solutions. In this sense, we note that large families of solutions of (1) are obtained in [9]. These solutions describe

processes of interaction of breathers, in which the interacting structures change their forms under the interaction, al-

though they conserve their velocities. The simplest of these structures is the breather (2). On the other hand, equations

(9), (10) or (11) allow us to construct new solutions starting with the known ones. In fact, let us present some examples.

Example 1. If we choose f ðtÞ ¼ e�t, g � h � 0 the new solution is given by
QðX ; Y ; T Þ ¼ ð1� se�T Þ�2=3 � qðð1� se�T Þ�1=3 � X ; ð1� se�T Þ�1=3 � Y ; T þ lnð1� se�T ÞÞ; ð18Þ
where qðx; y; tÞ is the solution we have applied the group element and s is the group parameter (we do not provide the
expression of the potentials U1, U2, as they are involved, easy to find from (9) to (10) and they are not useful for our

discussion). Now, from (18) we find:

• If s > 0, T 2 ð�1; ln sÞ, we have that Q ! 0 as T ! �1 for each ðX ; Y Þ, while QðX ; Y ; T Þ ! CdðX ; Y Þ as

T ! ðln sÞ�. Thus, if we take q as (2) the solution describes the creation of the breather and then, its finite time
blow-up to a point.

• If s > 0, T 2 ðln s;1Þ, taking into account that QðX ; Y ; T Þ � qðx; y; tÞ as T ! 1, we have the creation of a breather
from a finite time source.

• If s < 0 (18) is a solution of (1) for T 2 R. We also have that as T ! �1, Q ! 0 for each ðX ; Y Þ, provided that q is a
bounded solution, while as T ! 1

QðX ; Y ; T Þ � qðx; y; tÞ:

Thus, for example if we choose for q the one breather solution, Q describe the creation of the breather from
the radiation. We can also obtain a solution in which the radiation evolve in several breathers interacting among them, if
we take for q a solution (see [9]) describing an interacting process among some breathers. We plot solution (18), (2) in
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Figs. 12–14 for the choice of parameters a1 ¼ 1, a2 ¼ 2, c ¼ �i, k1 ¼ 1� 2i, k2 ¼ 1
2
� i, s ¼ �1 and for t ¼ �5, t ¼ �1

and t ¼ 10 respectively.
Example 2. Another example can be obtained by taking f ðtÞ ¼ 1þ t2, g � h � 0. In this case we have
QðX ; Y ; T Þ ¼ ðsec sÞ4=3

ð1þ ðtan sÞT Þ4=3
q

ðsec sÞ2=3

ð1þ ðtan sÞT Þ2=3
X ;

ðsec sÞ2=3

ð1þ ðtan sÞT Þ2=3
Y ;

T � tan s
1þ ðtan sÞT

 !
; ð19Þ
• If T 2 ð�1;�cotan sÞ we have that the amplitude tends to zero as T ! �1 while

QðX ; Y ; T Þ ! CdðX ; Y Þ as T ! ð�cotan sÞ�:

Thus, the solution describes the creation of a localized structure (or a set of localized structures, depending on our

choice of q), and later a finite time blow-up to a point
• If T 2 ð�cotan s;1Þ we find

QðX ; Y ; T Þ ! CdðX ; Y Þ as T ! ð�cotan sÞþ;

where C is a fixed constant and provided that q is a localized solution. We also have that as T ! 1 the amplitude of

our solution tends to zero. Thus, if for example we choose for q the one breather solution, (19) describes a processes
in which a breather emerges from a source at a finite time and afterwards a diffusion process takes place. This solution
is illustrated in Figs. 15–17 for the same parameters of the breather than in the previous solution, s ¼ p

4
and t ¼ �0:9,

1, 10.
Fig. 12. Solution (18), (2) for t ¼ �5.

Fig. 13. Solution (18), (2) for t ¼ �1.

Fig. 14. Solution (18), (2) for t ¼ 10.



Fig. 15. Solution (19), (2) for t ¼ �0:9.

Fig. 16. Solution (19), (2) for t ¼ 1.

Fig. 17. Solution (19), (2) for t ¼ 10.
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Example 3. Finally, if we choose f � 0; g; h arbitrary functions, from (11) it is clear that the action of the group element

only modifies the two components of the velocity of the possible structures in the solution. The difference with (16) is

that we can apply (11) to any solution (interaction processes among breathers, interaction processes among line soli-

tons, other solutions discussed in this work,. . .) and not only to time independent solutions.
4. Conclusions

In this work we have made use of the theory of symmetry transformations in PDEs in order to construct new

solutions of a well known 2+1 dimensional integrable model, the BKP equation. Using these techniques, we char-

acterize solutions which describe interesting processes. For example, we can find:

• Sink solutions. Solutions verifying qðx; y; tÞ ! Cdðx� x0; y � y0Þ as t ! 1.

• Source solutions. Solutions verifying qðx; y; tÞ ! Cdðx� x0; y � y0Þ as t ! �1.

• Solutions describing blow-up at a point, at finite time, i.e. qðx; y; tÞ ! Cdðx� x0; y � y0Þ as t ! t�0 .
• Solutions describing the creation of a breather from a source at finite time, i.e. qðx; y; tÞ ! Cdðx� x0; y � y0Þ as

t ! tþ0 .
• Solutions describing the creation of a breather (or in general a set of interacting breathers) from the radiation, and

eventually its diffusion.

• Solutions describing the creation of a set of breathers which interact among them.

• Line solitons and interaction processes among them.

• Coherent structures moving at arbitrary velocities, along arbitrary curves.

Note that these techniques can also be applied to other integrable models which admit infinite dimensional groups

of symmetries. For example, we have constructed in this way new solutions of the KP equation [10], of the Davey–

Stewartson equation [11].
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