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Abstract

Making use of the theory of symmetry transformations in PDE we construct new solutions of the Davey–Stewartson

(DS) equation. First, among its reductions one can find a time independent like-DS equation. Starting with the ex-

pressions of the well-known coherent structures of the DS equation, we can obtain solutions of this time independent

equation. From these solutions, families of solutions of DS equation depending on three arbitrary functions on t are
obtained. Besides, new solutions can also be constructed by applying some elements of the symmetry group to known

solutions of the model.

Among the solutions constructed using both approaches, one can find source and sink solutions, solutions describing

the creation, the diffusion or annihilation of a dromion (or in general, a set of localized structures), finite time blow-up

processes, instantaneous source solutions, and coherent structures moving at arbitrary velocities along arbitrary

curves.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

One of the best known 2+ 1 dimensional integrable systems that have been found to exhibit solutions describing

processes of interaction of exponentially localized structures is the Davey–Stewartson equation. An integro-differential

equation that can be written as a system of differential equations in the form:
* Co

E-m

0960-0

doi:10.
iqt þ qxx þ qyy þ 2qðUxx þ UyyÞ ¼ 0;

jqj2 ¼ 4Uxy :
ð1Þ
Among its applications, it is known as a model for water waves [4], ferromagnetism [10] or internal gravity waves [7],

to cite a few.

An important property of (1) is that the evolution associated to this equation conserves the mass for localized

solutions. Indeed, if we define the mass as
M ¼ 1

2

Z
R2

jqj2 dxdy;
it is easy to see that
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dM
dt

¼ i

2

Z
R2

~rrðq� ~rrq� q ~rrq�Þdxdy:
Consequently, if q is a localized solution of (1) it satisfies that dM=dt ¼ 0.

The basic solution of this equation is the dromion [2]. It is a localized structure that moves at a constant velocity in

the plane. Its analytic expression is given by
qðx; y; tÞ ¼ rðx; y; tÞ
sðx; y; tÞ ; Uðx; y; tÞ ¼ ln sðx; y; tÞ; ð2Þ
where
sðx; y; tÞ ¼ 1þ d1ep1Rðxþp1I tÞ þ d2ep2Rðy�p2I tÞ þ d3ep1Rðxþp1I tÞþp2Rðy�p2I tÞ;

rðx; y; tÞ ¼ ap2 exp
1

2
p�1ðx

�
þ p1I tÞ þ

1

2
p2ðy � p2I tÞ þ

i

4
ðjp1j2 þ jp2j2Þt

�
;

ð3Þ
with p1, p2, a, being arbitrary complex parameters, d1, d2 arbitrary real constants and
piR ¼ Re½pi�; piI ¼ Im½pi�; i ¼ 1; 2 and d3 ¼ d1d2 þ
jp2j2

4p1Rp2R
jaj2:
We plot this solution in Fig. 1, for the choice of parameters p1 ¼ 1
2
� i, p2 ¼ 1

2
þ 3

2
i, d1 ¼ d2 ¼ 1, a ¼ 1þ 2i. The main

property of the dromion, is that in solutions describing interacting processes, dromions emerge from the interaction

changing their form [6,9,12]. For example, solutions describing processes of fusion and fission of dromions have been

presented in [8]. Other basic solutions of (1), also coherent structures, can be found as degenerated cases of (2) and (3).

In this sense we have the kink, which is a localized on a ray, and corresponds to the choice of the parameters di ¼ 0,

dj; dk 6¼ 0, with i, j, k different, and the one dimensional soliton which corresponds to di ¼ dj ¼ 0, dk 6¼ 0. A kink so-

lution can be seen in Fig. 2, for the same parameters than the previous dromion but d2 ¼ 0.

On the other hand, most of the 2+ 1 dimensional integrable systems that have been studied from the point of view of

the theory of symmetry transformations in PDE have been found to admit infinite dimensional groups of symmetries
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Fig. 1. Dromion.
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Fig. 2. Kink.
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(see for example [5,17] for the KP equation or [3] for the Davey–Stewartson equation). Making use of these groups, new

solutions with interesting properties have been constructed [13,14].

In this work, we apply the techniques of this theory (they are thoroughly described, for example, in [1,15,16]) to (1)

in order to find new solutions of this system. Making use of them together with some known solutions of (1) we can

construct new solutions. Among these, we find source solutions, solutions describing diffusion processes, finite time

blow-up, dromions and other coherent structures travelling to arbitrary velocities along arbitrary curves, etc.

The work is organized as follows: in Section 2 we recall the results of [3] for the symmetry group of transformations

admitted by (1) and obtain the reductions to PDEs in two independent variables. In Section 3 we use both, the re-

ductions and the elements of the symmetry group in order to construct new solutions of (1) with interesting properties.

Finally, we summarize in Section 4 the main results in the work.
2. The symmetry group

In this section we recall some of the results in [3] for (1) and compute the reductions to PDEs in two independent

variables. We must point out that in [3] the reductions are obtained for the elements in an optimal system. Then,

solutions related to other reductions can be obtained by applying the elements of the group. However, as we see below,

the expressions of the solutions found from the reductions are more manageable and easier to interpret than those

obtained by applying the elements of the group. For this reason we prefer look for the reduction related to the general

element of the symmetry group.

The general element of the Lie algebra of the symmetry group of transformations of (1) [3] is given by
V1ðf Þ þ V2ðgÞ þ V3ðhÞ þ V4ðmÞ þ V5ðnÞ
with
V1ðf Þ ¼
1

2
f 0ðtÞx o

ox
þ 1

2
f 0ðtÞy o

oy
þ f ðtÞ o

ot
þ 1

192
f 000ðtÞðx4 þ y4Þ o

oU

þ
�
� 1

2
f 0ðtÞv� 1

8
f 00ðtÞðx2 þ y2Þw

�
o

ov
þ 1

8
f 00ðtÞðx2

�
þ y2Þv� 1

2
f 0ðtÞw

�
o

ow
;

V2ðgÞ ¼ gðtÞ o

ox
þ 1

24
x3g00ðtÞ o

oU
� 1

2
xg0ðtÞw o

ov
þ 1

2
xg0ðtÞv o

ow
;

V3ðhÞ ¼ hðtÞ o

oy
þ 1

24
y3h00ðtÞ o

oU
� 1

2
yh0ðtÞw o

ov
þ 1

2
yh0ðtÞv o

ow
;

V4ðmÞ ¼
1

4
m0ðtÞx2 o

oU
� mðtÞw o

ov
þ mðtÞv o

ow
;

V5ðnÞ ¼
1

32
ðx2

�
� y2Þn1ðtÞ þ xn2ðtÞ þ yn3ðtÞ þ n4ðtÞ

�
o

oU
;

ð4Þ
where we have put q ¼ vþ iw, with v and w real functions of the independent variables. It is clear that the group element

generated by V5ðnÞ transforms a given solution of (1), qðx; y; tÞ, Uðx; y; tÞ, into the solution
qðx; y; tÞ; Uðx; y; tÞ þ 1

32
ðx2 � y2Þn1ðtÞ þ xn2ðtÞ þ yn3ðtÞ þ n4ðtÞ:
From the point of view of the applications, one is usually interested in jqðx; y; tÞj2. Thus, we can consider that the

transformation generated by V5ðnÞ is trivial, and we take as the general element of the Lie algebra:
V1ðf Þ þ V2ðgÞ þ V3ðhÞ þ V4ðmÞ ð5Þ
with V1ðf Þ, V2ðgÞ, V3ðhÞ and V4ðmÞ given by (4).

The symmetry group can be integrated from (5) and (4) [3], and in this way, given a solution of (1), a new solution

can be obtained, by applying to the first one an element of the group. Due to the involved expression of the general

element of the group (see [3]) and due also to the fact that we can use the composition operation in the group, we just

provide here the expression of the new solution QðX ; Y ; T Þ eUU ðX ; Y ; T Þ in terms of the known solution qðx; y; tÞ, Uðx; y; tÞ,
in the cases g � h � m � 0 and f � 0, respectively. In the first case we have
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QðX ; Y ; T Þ ¼ f ðT Þ
f ðtÞ

� ��ð1=2Þ

exp
i

8

f 0ðT Þ � f 0ðtÞ
f ðT Þ ðX 2

�
þ Y 2Þ

�
qðx; y; tÞ;

eUU ðX ; Y ; T Þ ¼ 1

192

2f ðT Þf 00ðT Þ � f 0ðT Þ2

2f ðT Þ2

"
� 2f ðtÞf 00ðtÞ � f 0ðtÞ2

2f ðT Þ2

#
ðX 4 þ Y 4Þ þ Uðx; y; tÞ;

ð6Þ
where
x ¼ f ðT Þ
f ðtÞ

� ��ð1=2Þ

� X ; y ¼ f ðT Þ
f ðtÞ

� ��ð1=2Þ

� Y ; t ¼ U�1ðUðT Þ � sÞ ð7Þ
and Z T
UðT Þ ¼ 1

f ðnÞ dn:
On the other hand, if f 6� 0 and g, h, m are arbitrary functions, one finds
QðX ; Y ; T Þ ¼ exp i
1

4

g0ðT Þ
gðT Þ X

2

��
þ 1

4

h0ðT Þ
hðT Þ Y

2 þ mðT Þs
��

qðX � gðT Þs; Y � hðT Þs; T Þ;

eUU ðX ; Y ; T Þ ¼ X 3m0ðtÞ
12gðT Þ �

ðX � sgðT ÞÞ3m0ðT Þ
12gðT Þ þ 1

96

X 4g00ðT Þ
gðT Þ

�
þ Y 4h00ðT Þ

hðT Þ

�
� 1

96

g00ðT Þ
gðT Þ ðX

�
� sgðT ÞÞ4 þ h00ðT Þ

hðT Þ ðY � shðT ÞÞ4
�
þ UðX � sgðT Þ; Y � shðT Þ; T Þ:

ð8Þ
2.1. Reductions to equations in two independent variables

Solutions of (1) invariant under the action of the symmetry group can be found as solutions of PDEs in two in-

dependent variables, the reduced equations. Next, we look for these reduced equations.

Reduction 1. If f 6� 0 the similarity independent variables are given by
rðx; y; tÞ ¼ f ðtÞ�1=2x� g1ðtÞ;
sðx; y; tÞ ¼ f ðtÞ�1=2y � h1ðtÞ;

ð9Þ
where
g01ðtÞ ¼
gðtÞ

f ðtÞ3=2
; h01ðtÞ ¼

hðtÞ
f ðtÞ3=2

:

The dependent variables of (1) q, U are given in terms of the similarity dependent variables q1 and U1 by
qðx; y; tÞ ¼ 1ffiffiffiffiffiffiffiffi
f ðtÞ

p exp i /0ðtÞ
��

þ 1

8
f ðtÞ�1=2x

 
� g1ðtÞ

!2

f 0ðtÞ þ 1

8
f ðtÞ�1=2y

 
� h1ðtÞ

!2

f 0ðtÞ

þ f ðtÞ�1=2x
�

� g1ðtÞ
� g1ðtÞf 0ðtÞ

4

�
þ f ðtÞg01ðtÞ

2

�
þ f ðtÞ�1=2y
�

� h1ðtÞ
�

h1ðtÞf 0ðtÞ
4

�
þ f ðtÞh01ðtÞ

2

���
� q1ðrðx; y; tÞ; sðx; y; tÞÞ ð10Þ
with Z

/0ðtÞ ¼

3f 0ðtÞðg1ðtÞg01ðtÞ þ h1ðtÞh01ðtÞÞ
4

 
þ ðg1ðtÞ2 þ h1ðtÞ2Þf 00ðtÞ

8
þ f ðtÞðg1ðtÞg001ðtÞ þ h1ðtÞh001ðtÞÞ

2
þ mðtÞ

f ðtÞ

!
dt

ð11Þ

and
Uðx; y; tÞ ¼ U1ðrðx; y; tÞ; sðx; y; tÞÞ þ x2
mðtÞ
4f ðtÞ

 
� f ðtÞg01ðtÞ

2

16

!
� y2f ðtÞh01ðtÞ

2

16
þ
x3 f 0ðtÞg01ðtÞ þ f ðtÞg001ðtÞ
� �

24
ffiffiffiffiffiffiffiffi
f ðtÞ

p
þ
y3 f 0ðtÞh01ðtÞ þ f ðtÞh001ðtÞ
� �

24
ffiffiffiffiffiffiffiffi
f ðtÞ

p þ 2f 00ðtÞf ðtÞ � f 0ðtÞ2

384f ðtÞ2
ðx4 þ y4Þ þ a1ðtÞxþ a2ðtÞy þ a3ðtÞ; ð12Þ
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where a1ðtÞ, a2ðtÞ and a3ðtÞ are certain functions of t with complicated expressions in terms of f , g1 and h1. From (1), it is

clear that we do not need these expressions. Now, introducing (9)–(12) into (1) we obtain the reduced system:
q1rr þ q1ss þ 2q1ðU1rr þ U1ssÞ ¼ 0;

jq1j2 ¼ 4Urs:
ð13Þ
Reduction 2. If f � 0, g; h 6� 0, the similarity independent variables are given by
rðx; y; tÞ ¼ hðtÞx� gðtÞy and t;
while dependent variables of (1) q, U are given in terms of the similarity dependent variables q1 and U1 by
qðx; y; tÞ ¼ exp i
1

4

g0ðtÞ
gðtÞ x

2

���
þ h0ðtÞ

hðtÞ y
2

�
þ mðtÞ

gðtÞ x
��

q1ðrðx; y; tÞ; tÞ;

Uðx; y; tÞ ¼ 1

96

g00ðtÞ
gðtÞ x4

�
þ h00ðtÞ

hðtÞ y4
�
þ 1

12

m0ðtÞ
gðtÞ x3 þ U1ðrðx; y; tÞ; tÞ:
Introducing these expressions into (1) we obtain the reduced system
iq1t þ ðgðtÞ2 þ hðtÞ2Þðq1rr þ 2q1U1rrÞ þ i r
g0ðtÞ
gðtÞ

��
þ h0ðtÞ

hðtÞ

�
þ 2

hðtÞmðtÞ
gðtÞ

�
q1r þ

i

2

g0ðtÞ
gðtÞ

�"
þ h0ðtÞ

hðtÞ

�
� mðtÞ2

gðtÞ2

#
q1 ¼ 0;

jq1j2 ¼ �4gðtÞhðtÞU1rr;
that can be easily transformed into a single equation of the form
iq1t þ ðgðtÞ2 þ hðtÞ2Þq1rr �
gðtÞ2 þ hðtÞ2

2gðtÞhðtÞ q1jq1j2 þ i r
g0ðtÞ
gðtÞ

��
þ h0ðtÞ

hðtÞ

�
þ 2

hðtÞmðtÞ
gðtÞ

�
q1r

þ i

2

g0ðtÞ
gðtÞ

�"
þ h0ðtÞ

hðtÞ

�
� mðtÞ2

gðtÞ2

#
q1 ¼ 0: ð14Þ
Note that in the particular case that g and h are constant and m � 0, Eq. (14) becomes the nonlinear Schr€oodinger
equation in 1+ 1 dimensions.

Reduction 3. If f � h � 0, g 6� 0, the similarity independent variables are y and t, while the dependent variables of (1) q,
U are given in terms of the similarity dependent variables q1 and U1 by
Uðx; y; tÞ ¼ 1

96

g00ðtÞ
gðtÞ x4 þ 1

12

m0ðtÞ
gðtÞ x3 þ U1ðy; tÞ;

qðx; y; tÞ ¼ exp i
1

4

g0ðtÞ
gðtÞ x

2

��
þ mðtÞ

gðtÞ x
��

q1ðy; tÞ:
ð15Þ
Introducing these expressions into (1) it is found the trivial solution q � 0 and U given by (15) with U1 an arbitrary

function of y and t.

Reduction 4. If f � g � 0, h 6� 0, the similarity independent variables are x and t, while the dependent variables of (1) q,
U are given in terms of the similarity dependent variables q1 and U1 by
Uðx; y; tÞ ¼ 1

96

h00ðtÞ
hðtÞ y4 þ 1

12

m0ðtÞ
hðtÞ x2y þ U1ðx; tÞ;

qðx; y; tÞ ¼ exp i
1

4

h0ðtÞ
hðtÞ y

2

��
þ mðtÞ

hðtÞ y
��

q1ðx; tÞ:
ð16Þ
Introducing (16) into (1) we find the solution
qðx; y; tÞ ¼ exp i
1

4

h0ðtÞ
hðtÞ y

2

��
þ mðtÞ

hðtÞ y þ /1ðy; tÞ
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
m0ðtÞ
hðtÞ x

s
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and U given by (16), with /1, U1 satisfy the equation
/1t �
i

x
/1x þ /2

1x � i/1xx þ 2U1xx þ
1

x2
þ mðtÞ2

hðtÞ2
� i

2

m00ðtÞ
m0ðtÞ ¼ 0;
if m0 6� 0. In the case m0 � 0 the reduction leads us to the trivial solution q � 0 and U given by (16) with U1 an arbitrary

function of x and t.
3. New solutions

In order to construct new solutions we can proceed in two ways. We can start with the reduced equations and look

for solutions of these equations, or we can apply the elements of the symmetry group of (1) to known solutions of this

system.

3.1. Solutions associated to the reductions

Let us start with the reduced equation (13). It is clear that this equation is satisfied for any solution of (1) inde-

pendent on t. Then, if we start with a solution of (1) that does not depend on t, using (9)–(12) we obtain a new family of

solutions of (1) which depends on four arbitrary functions of t.
As we point out in Section 1, a well-known solution of (1) is the dromion. From (2) and (3) it is clear that if we

choose the parameters p1 and p2 real parameters we obtain
qðx; y; tÞ ¼ eiat q̂qðx; yÞ; Uðx; y; tÞ ¼ bUU ðx; yÞ with a ¼ 1

4
ðp21 þ p22Þ:
Then, it is easy to see that q1ðr; sÞ ¼ q̂qðr; sÞ, U1ðr; sÞ ¼ bUU ðr; sÞ � a
8
ðr2 þ s2Þ, is a solution of (13). In particular we have
q1ðr; sÞ ¼
ap2eð1=2Þðp1rþp2sÞ

1þ d1ep1r þ d2ep2s þ d3ep1rþp2s
;

U1ðr; sÞ ¼ ln½1þ d1ep1r þ d2ep2s þ d3ep1rþp2s� � 1

32
ðp21 þ p22Þðr2 þ s2Þ:

ð17Þ
On the other hand, other coherent structures, solutions of (1) are exhibited in [11]. These solutions are bound states

among the basic coherent structures for the DS equation, the dromion and the kink. By choosing in these solutions,

some of the arbitrary complex parameters as real constants, we obtain that q and U are of the form

qðx; y; tÞ ¼ eiatq̂qðx; yÞ, Uðx; y; tÞ ¼ bUU ðx; yÞ, consequently, proceeding as in the previous case, we get the solution of (13)
q1ðr; sÞ ¼
rðr; sÞ
sðr; sÞ ; U1ðr; sÞ ¼ ln sðr; sÞ � 1

32
ðp21 þ p22Þðr2 þ s2Þ; ð18Þ
where
rðr; sÞ ¼ a exp
p1r
2

h
þ p2s

2

i
p2 1

�
þ d4

p1 � p3
p1 þ p3

ep3r
�

sðr; sÞ ¼ 1þ d1ep1r þ d4ep3r þ d2ep2s þ d3ep1rþp2s þ d2d4ep3rþp2s þ d1d4
ðp1 � p3Þ2

ðp1 þ p3Þ2
eðp1þp3Þr þ d3d4

ðp1 � p3Þ2

ðp1 þ p3Þ2
eðp1þp3Þrþp2s;

ð19Þ
with d3 ¼ d1d2 þ a2 p2
4p1

and p1, p2, p3, d1, d2, d4, a real arbitrary constants. Now, from (9) and (10) we have that our new

family of solutions satisfies
jqðx; y; tÞj2 ¼ f ðtÞ�1jq1ðf ðtÞ�ð1=2Þx� g1ðtÞ; f ðtÞ�ð1=2Þy � h1ðtÞÞj2 ð20Þ
with q1 given by (17) or (18) and (19) and f , g1, h1 arbitrary functions on t. In order to analyze this family of solutions

we start by considering two particular cases
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The case g1 � 0, h1 � 0

In this case (20) takes the form
jqðx; y; tÞj2 ¼ f ðtÞ�1jq1ðf ðtÞ�ð1=2Þx; f ðtÞ�ð1=2ÞyÞj2: ð21Þ
It is easy to see that these solutions have the properties:

• If limt!t1 f ðtÞ ¼ 0 then

jqðx; y; tÞj2 ! Cdðx; yÞ as t ! t1;

where C is a fixed constant. Indeed, that is a consequence ofZ
R2

jqðx; y; tÞj2uðx; yÞdxdy ¼
Z
R2

jq1ðr; sÞj2u f ðtÞ1=2r; f ðtÞ1=2s
� �

drds:

Note that the same property holds if we replace t1 by �1.

• If limt!t2 f ðtÞ ¼ 1 then

jqðx; y; tÞj2 ! jq1ðx; yÞj2 as t ! t2

(and the same property holds if we replace t2 by �1).

• If limt!t3 f ðtÞ ¼ 1 the amplitude of our solution tends to zero as t ! t3, in fact, the solution is diffusing into the

plane as t ! t3. As in the previous limits, the same property holds if we replace t3 by �1.

Taking into account the previous properties, it is clear that a great variety of solutions can be exhibited by choosing

the arbitrary function f ðtÞ in an appropriate way. Some examples are:

• If we choose f ðtÞ ¼ e�t, the solution (21) behaves as a nonlocalized solution of amplitude tending to zero as t ! �1
(it can be interpreted as the radiation), as t increases the solution becomes exponentially localized, in particular for

t ¼ 0 it coincides with the static solution q1ðx; yÞ (given by (17) or (18) and (19)), and as t ! 1,

jqðx; y; tÞj2 ! Cdðx; yÞ. Thus, this solution can be interpreted as a sink solution. We plot this solution, corresponding

to q1, U1, (17), in Figs. 3–5 for the choice of the parameters p1 ¼ p2 ¼ 1
2
, d1 ¼ d2 ¼ a ¼ 1 and the values of t, t ¼ �3,

t ¼ 0 and t ¼ 5, respectively.

It is clear that if we take f ðtÞ ¼ et the solution is a source solution in which jqðx; y; tÞj2 ! Cdðx; yÞ as t ! �1 and

describes a diffusion process as t ! 1.

• If we choose f ðtÞ ¼ 1� t and consider t 2 ½0; 1Þ the solution describes a finite time blow up process. In fact, the so-

lution corresponds initially to (17) (or (18) and (19)) and jqðx; y; tÞj2 ! Cdðx; yÞ as t ! 1�. For t ¼ 1, qðx; y; tÞ stops
being a solution of (1). We plot this solution with q1 and U1 given by (18) and (19), and the parameters p1 ¼ p2 ¼ 1

2
,

p3 ¼ 1, d1 ¼ d2 ¼ 1, d3 ¼ 3, a ¼ 1, in Figs. 6–9. We take t ¼ 0, t ¼ 0:5, t ¼ 0:95 and t ¼ 0:99 respectively.

• If we choose f ðtÞ ¼ 1þ t2 the solution (21) describes a diffusion process for both limits t ! �1. It can be seen as the

process of first, the creation of the localized structure from the radiation and then, its diffusion to radiation again.

The case f � 1

In this case (20) takes the form
jqðx; y; tÞj2 ¼ jq1ðx� g1ðtÞ; y � h1ðtÞÞj2; ð22Þ
which describes a coherent structure corresponding to (17) (or (18) and (19)), moving to an arbitrary velocity along an

arbitrary curve on the plane.

The general case

If f , g1 and h1 are arbitrary functions on t, the solution describes an structure with an evolution that, depending on

the choice of f consists in processes as those previously discussed, and besides, moves along an arbitrary curve to an

arbitrary velocity (depending on the choices of g1 and h1). We point out that in the case of collapse (blow up at a point),

one finds
jqðx; y; tÞj2 ! Cdðxþ g1ðt1Þ; y þ h1ðt1ÞÞ as t ! t1;
if limt!t1 f ðtÞ ¼ 0, i.e. the collapse is in this case at an arbitrary point.



-10
-5

0
5

10

-10 -5 0 5 10

0.0004

0.0005

0.0006

0.0007

Fig. 3. Solution (21), (17), with f ðtÞ ¼ e�t for t ¼ �3.
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Fig. 4. Solution (21), (17), with f ðtÞ ¼ e�t for t ¼ 0.
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Fig. 5. Solution (21), (17), with f ðtÞ ¼ e�t for t ¼ 5.
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Fig. 6. Solution (21), (18) and (19), with f ðtÞ ¼ 1� t for t ¼ 0.

402 E. Medina, M.J. Mar�ıın / Chaos, Solitons and Fractals 20 (2004) 395–407
3.2. Solutions associated to the action of the symmetry group elements

We can also construct new solutions of the Davey–Stewartson equation, by applying the symmetry groups admitted

by (1) to its known solutions. Note, in this sense, that a lot of solutions of (1) have been obtained (see for example

[2,6,8,9,11,12]).
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Fig. 7. Solution (21), (18) and (19), with f ðtÞ ¼ 1� t for t ¼ 0:5.
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Fig. 8. Solution (21), (18) and (19), with f ðtÞ ¼ 1� t for t ¼ 0:95.
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Fig. 9. Solution (21), (18) and (19), with f ðtÞ ¼ 1� t for t ¼ 0:99.
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From (8), it is clear that if we choose an element of the symmetry group with f � 0 and we start with a solution

qðx; y; tÞ, Uðx; y; tÞ, we have for the new solution
jQðX ; Y ; T Þj2 ¼ jqðX � sgðT Þ; Y � shðT Þ; T Þj2;
i.e., the action of the transformation is just a translation at an arbitrary velocity and on an arbitrary curve.

Let us consider some examples with f 6� 0, g � h � m � 0.

Example 1. f ðtÞ ¼ e�t.

In this case we have
QðX ; Y ; T Þ ¼ ð1� se�T Þ�ð1=2Þ
exp

i

8

se�T

ð1� se�T Þ ðX
2

�
þ Y 2Þ

�
q ð1
�

� se�T Þ�ð1=2ÞX ; ð1� se�T Þ�ð1=2ÞY ; T þ lnð1� se�T Þ
�
;

eUU ðX ; Y ; T Þ ¼ s2e�2T � 2se�T

384ð1� se�T Þ2
ðX 4 þ Y 4Þ þ Uðð1� se�T Þ�ð1=2ÞX ; ð1� seÞ�T Þ�ð1=2ÞY ; T þ lnð1� se�T ÞÞ:

ð23Þ
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• If s > 0, (23) gives us a solution of (1) for T 2 ðln s;1Þ satisfying

jQðX ; Y ; T Þj2 ! CdðX ; Y Þ as T ! ðln sÞþ;

jQðX ; Y ; T Þj2 ! jqðX ; Y ; T Þj2 as T ! 1:

Thus, (23) is a instantaneous source solution, verifying that for T ! 1, the solution we have started with, is re-

covered. In order to illustrated this solution we start with the solution in [8] that describes a process of fusion between

two dromions. This solution [8] corresponds to
sðx; y; tÞ ¼ 1þ 2ex�2t þ 5ex�t þ e2ðy�2tÞ þ 4eðx�2tÞ=2eðx�tÞ=2 cos
x
2

�
� 3t

4

�
þ eðx�2tÞ=2eððx�tÞ=2 þ 3ex�2te2ðy�2tÞ

þ 5ex�te2ðy�2tÞ þ 4eðx�2tÞ=2eðx�tÞ=2e2ðy�2tÞ cos
x
2

�
� 3t

4

�
þ 2eðx�2tÞ=2eðx�tÞ=2e2ðy�2tÞ: ð24Þ
From the preceding discussion and the previous formula it is clear that the solution (23) with s > 0 and jqj, U
determined by (24) describes a process in which two dromions travelling with velocities (2; 2), (1; 2) emerge from an

instantaneous source, and later, interact experimenting a fusion process. We plot this solution in Figs. 10–15 for s ¼ e�5

and t ¼ �4:999;�4:9;�4:5;�3;�1 and 5 respectively.

• If s < 0, the amplitude of (23) tends to zero as T ! �1, while jQðX ; Y ; T Þj ! jqðX ; Y ; T Þj as T ! 1. If for example

we start with the dromion solution (2) and (3), then (23) describes the creation of a dromion.

Example 2. f ðtÞ ¼ t2.

Now, we have
jQðX ; Y ; T Þj2 ¼ 1

ð1þ sT Þ2
q

X
1þ sT

;
Y

1þ sT
;

T
1þ sT

� �				 				2: ð25Þ
• For T 2 ð�1;� 1
sÞ, the creation of a certain set of structures (depending on the choice of q) and afterwards a finite

time blow-up.
• For T 2 ð� 1

s ;1Þ the solution is an instantaneous source solution, with a diffusion process as T ! 1.
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Fig. 10. Solution (23) and (24) with s ¼ e�5 for t ¼ �4:999.
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Fig. 11. Solution (23) and (24) with s ¼ e�5 for t ¼ �4:9.
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Fig. 12. Solution (23) and (24) with s ¼ e�5 for t ¼ �4:5.
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Fig. 13. Solution (23) and (24) with s ¼ e�5 for t ¼ �3.
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Fig. 14. Solution (23) and (24) with s ¼ e�5 for t ¼ �1.

0
5

10
15

20

0 5 10 15 20

0

0.1

0.2

0.3

Fig. 15. Solution (23) and (24) with s ¼ e�5 for t ¼ 5.
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Example 3. f ðtÞ ¼ 1
t.

For this choice of f we find
jQðX ; Y ; T Þj2 ¼ 1

ð1� 2sT�2Þ1=2
q

X

ð1� 2sT�2Þ1=4
;

Y

ð1� 2sT�2Þ1=4
; T ð1

 					 � 2sT�2Þ1=2
!					

2

: ð26Þ



406 E. Medina, M.J. Mar�ıın / Chaos, Solitons and Fractals 20 (2004) 395–407
In this case we see that jQðX ; Y ; T Þj ! jqðX ; Y ; T Þj in both asymptotic limits T ! �1. Moreover, depending on the

sign of s and the range of T , (26) describes the following processes:

• If s < 0, T 2 ð�1; 0Þ an annihilation process (the amplitude of the solution tends to zero as T tends to the finite value

T0 ¼ 0).

• If s < 0, T 2 ð0;1Þ the creation of the structures given by qðX ; Y ; T Þ in the limit T ! 1.

• If s > 0, T 2 ð�1;�
ffiffiffiffiffi
2s

p
Þ, a blow-up at finite time.

• If s > 0, T 2 ð
ffiffiffiffiffi
2s

p
;1Þ, a instantaneous source solution.
4. Conclusions

In this work we have made use of the theory of symmetry transformations in PDEs in order to construct new

solutions of the Davey–Stewartson equation. Using these techniques, we obtain solutions which describe interesting

processes. For example, we can find:

• Sink solutions. Solutions verifying jqðx; y; tÞj2 ! Cdðx� x0; y � y0Þ as t ! 1.

• Source solutions. Solutions verifying jqðx; y; tÞj2 ! Cdðx� x0; y � y0Þ as t ! �1.

• Solutions describing blow-up at a point, at finite time, i.e. jqðx; y; tÞj2 ! Cdðx� x0; y � y0Þ as t ! t�0 .
• Solutions describing the creation of some localized structures (for example a dromion, or a set of interacting drom-

ions) from an instantaneous source, i.e. jqðx; y; tÞj2 ! Cdðx� x0; y � y0Þ as t ! tþ0 .
• Solutions describing the creation of some localized structures from the radiation, and eventually its diffusion, i.e.

jqðx; y; tÞj2 ! 0 as t ! �1.

• Solutions describing the creation or annihilation of some localized structures, i.e. jqðx; y; tÞj2 ! 0 as t ! t�0 .
• Coherent structures moving at arbitrary velocities, along arbitrary curves.

Note that these techniques are also be applied to other integrable models which admit infinite dimensional groups of

symmetries. For example, solutions with properties similar to the solutions in this work have been constructed for the

2+ 1 dimensional BKP equation [14]. Also using these approaches we have constructed new solutions of the KP

equation [13].
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